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ON INTERACTION OF SHOCK AND SOUND WAVE (I)

Chen Shuxing*

Abstract

This paper studies the interaction of shock and gradient wave (sound wave) of solutions to
the system of inviscid isentropic gas dynamics as a model for the corresponding problems for
nonlinear hyperbolic systems. The problem can be reduced to a boundary value problem in

a wedged domain. By using the method of constructing asymptotic solutions and Newton’s
iteration process it is proved that if a weak shock hits a gradient wave, then the grandient
wave will split into two gradient waves, while the shock continuses propagating. In this paper
the author reduces the problem to a standard form and constructs asymptotic solution of the

problem. The existence of the genuine solution will be given in the following paper.
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§1. Introduction

Recently the study of discontinuous solution for the system of conservation laws in higher

dimensional space has been considerably developed. In [1,9–12] the local existence of solution

for such system with discontinuity involving single shock, rarefaction wave or sound wave

(gradient wave) has been established. In [2] and [14] the problems on interaction of two

shocks or interaction of weak singularities are also considered. It is natural to ask what

about the result when a shock is interacted by a wave with weaker singularities, particularly,

for the n by n system with n > 2. The purpose of this paper and [3] is to solve this problem.

For definiteness we restrict ourselves to the system of inviscid isentropic flow in gas dynamics

under the assumption that both shock and sound wave are extreme waves. It is proved that

when such two waves meet together, the sound waves will split into two gradient waves

while the shock continues propagating. Since the head and the tail of rarefaction wave is a

gradient wave, the conclusion in this paper has also intepreted the character of interaction

between shock and rarefaction wave. Besides, the method in our paper can also be applied

to treating the interaction of shock and singularities weaker than gradient waves.

Since the shock and sound wave before interaction are extreme waves, by using the conclu-

sions in [9,12] and the fact that the hyperbolic system has the property of finite propagation

velocity one can determine the intersection of shock and sound wave. Hence the remaining

problem is to determine the solution of the system of isentropic flow in a wedged domain

with an unknown shock front as its free boundary and a given characteristic surface as its
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another fixed boundary. Meanwhile, inside the domain there could be a surface, on which

the gradient of the solution is discontinuous. Certainly, the surface is also characteristic and

is to be determined.

Our plan is as follows. In §2 we give a precise formulation of the problem . In §3 the

problem is reduced to a nonlinear Goursat problem in a wedged domain, and then in §4 an

asymptotic solution is constructed. The existence of exact solution to the problem will be

given in [3]. There the asymptotic solution will be chosen as the first term in the iterative

process. After some technical preparation in §5, the iterative process and corresponding

estimates are established in §6. Finally, we complete our proof of the main theorem in §7
and thus establish the main conclusion of this paper.

§2. Formulation

Let us consider the system of unsteady inviscid isentropic flow in two dimensional space

with the form of conservation laws
∂F0

∂t
+
∂F1

∂x
+
∂F2

∂y
= 0, (2.1)

where

F0 = t(ρ ρu ρv), F1 = t(ρu p+ρu2 ρuv), F2 = t(ρv ρuv p+ρv2),

u, v, ρ, p represent the components of velocity, density and pressure respectively. p = p(ρ)

is a given function with p′(ρ) > 0. Denote the sound speed by a = (p′(ρ))
1
2 . (2.1) can be

written in the form of symmetric hyperbolic system

B0
∂U

∂t
+B1

∂U

∂x
+B2

∂U

∂y
= 0, (2.2)

where U = t(u, v, p),

B0 =

 ρ
ρ

a−2ρ−1

 , B1 =

 ρu 1
ρu

1 a−2ρ−1u

 , B2 =

 ρv
ρv 1
1 a−2ρ−1v

 .

We consider the weak solution of (2.1). If the solution U is discontinuous on S : x = ψ(t, y),

then the Rankine-Hugoniot condition

[F0]ψt − [F1] + [F2]ψy = 0 (2.3)

should be satisfied. In this paper we always assume that the jump of U on shock is small.

If the surface Λ(t, x, y) =const. is characteristic, then one of the following three relations

will hold on it:

Λt + uΛx + vΛy + a(Λ2
x ± Λ2

y)
1
2 = 0, (2.4)

Λt + uΛx + vΛy = 0. (2.5)

Obviously, if the characteristic surface is discribed by x = ϕ(t, y), then ϕ(t, y) satisfies

ϕt − u+ vϕy + a(1± ϕ2y)
1
2 = 0 (2.6)

or

ϕt − u+ ϕy = 0. (2.7)



No.1 Chen, S. X. ON INTERACTION OF SHOCK AND SOUND WAVE (I) 37

Suppose that the system (2.1) has a weak solution for t < 0, which contains a weak shock

of first class S : x = ψ(t, y) and a sound wave R1 : x = ϕ1(t, y) propagating along the first

characteristics,

ψ(0, 0) = ϕ1(0, 0) =
∂ψ

∂y
(0, 0) =

∂ϕ1
∂y

(0, 0) = 0. (2.8)

Then the solution U(t, x, y) can be expressed as

U(t, x, y) =


U−(t, x, y), x < ψ(t, y),

U+
1 (t, x, y), ψ(t, y) < x < ϕ1(t, y),

U+
2 (t, x, y), x > ϕ1(x, y),

where U− and U+
1 satisfy (2.3) on x = ψ(t, y), (2.7) and the equality U+

1 = U+
2 on x =

ϕ1(t, y). The problem is to determine the solution of (2.1) at t > 0.

The wave graph of the solution of our problem can be looked as a perturbation of the

similar problem in one space-dimensional case. That is, S and R will intersect at a curve

Γ, and then the shock S continues propagating, while weak singularities will split into two

waves propagating along characteristics R2 and R3 , issuing from Γ. Our main result can

be precisely expressed as follows.

Theorem 2.1. For given s > 0, there exists an integer µ > 0 (to be determined), such

that for U−, U+
1 , U

+
2 ∈ Hµ, ϕ1(t, y) ∈ Hµ, ψ(t, y) ∈ Hµ+1 in t < 0 we have the following

conclusions:

1) We can find an integer λ satisfying 0 < λ < µ , a neighborhood Ω0 of the origin,

and a function τ(y) defined on Ω0 ∩ {t = x = 0}, such that ϕ1(t, y) (resp.ψ(t, y)) can be

continuously extended to 0 < t < τ(y) as Hλ(Hλ+1) function, and U−, U+
1 , U

+
2 can be

continuously extended to {0 < t < τ(y), x < ψ}, {0 < t < τ(y), ψ < x < ϕ1}, {0 < t <

τ(y), x > ψ} as Hλ functions respectively. Besides, (2.1)-(2.7) are still satisfied.

2) For t > τ(y), there are functions ψ̃(t, y) ∈ Hs+1, ϕ̃1(t, y) ∈ Hs defined on Ω0∩{x = 0},
Λ(t, x, y) ∈ Hs defined on Ω0 and a piesewise Hs function

Ũ(t, x, y) =


Ũ−(t, x, y), x < ϕ̃1(t, y),

Ũ−
2 (t, x, y), x > ϕ̃1(t, y),Λ(t, x, y) < 0,

Ũ−
1 (t, x, y), Λ(t, x, y) > 0, x < ψ̃(t, y),

Ũ+(t, x, y), x > ψ̃(t, y),

such that

ψ̃(τ(y), y) = ψ(τ(y), y) = ϕ̃1(τ(y), y), Λ(τ(y), ψ̃(τ(y), y), y) = 0,

Ũ+(τ(y), x, y) = U+
2 (τ(y), x, y), Ũ−(τ(y), x, y) = U−(τ(y), x, y).

Besides, (2.3), (2.5) and (2.7) are satisfied on x = ψ̃,Λ = 0 and x = ϕ̃1 respectively, while

the system (2.1) is satisfied in the domain where U is in Hs.

§3. Nonlinear Gousart Problem

Before the proof of Theorem 2.1 we remark that in this theorem we pay main attention

to the existence of the smooth solution to the problem of wave interaction; meanwhile, we

allow the smoothness loss of the solution comparing the smoothness of the initial data. The
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similar treatment was accepted in [1,12], when the authors proved the existence of sound

wave or rarefaction wave, even without wave interaction. Under such an understanding the

first part of Theorem 2.1 can be easily proved by applying the result in [8] and [10,11]. Since
∂ϕ1
∂t

(0, 0) >
∂ψ

∂t
(0, 0), by implicit function theorem we can determine a function t = τ(y)

for small |y| from the equality ψ(t, y) = ϕ1(t, y), and then the intersection Γ : t = τ(y), x =

ψ(τ(y), y) is obtained. The uniqueness of the solution in between the extension of S and R

is garanteed by the property of finite propagation velocity for hyperbolic systems.

The proof of the second part is our main task. The functions Ũ−(t, x, y), Ũ+(t, x, y) and

ϕ̃1(t, y) can also be determined by using the property of finite propagation velocity. However,

in order to find other unknown functions for t > τ(y) , we need to take a long procedure.

Next in order to alleviate the notational burden we simply omit the notation above U,ψ and

ϕ1, if no confusion arises.

We first reduce the problem to a Goursat problem on a wedged domain by several coor-

dinate transformations. The first transformation is

χ1 : t1 = t− τ(y), x1 = x− ξ(y), y1 = y, (3.2)

where ξ(y) = ϕ1(τ(y), y). It is easy to see that χ1 transforms Γ to t1 = x1 = 0 and transforms

the system (2.2) to

B
(1)
0

∂U

∂t1
+B

(1)
1

∂U

∂x1
+B

(1)
2

∂U

∂y1
= 0, (3.3)

where B
(1)
0 = B0 − τ ′(y)B2, B

(1)
1 = B1 − ξ′(y)B2, B

(1)
2 = B2.

As the second step we introduce

χ2 : t2 = t1, y2 = y1, x2 =
2x1 − ψ(t1, y1)− ϕ1(t1, y1)

ψ(t1, y1)− ϕ1(t1, y1)
t1 (3.4)

which transforms the shock S and the characteristic surface of first class R1 to x2 = t2 and

x2 = −t2 respectively. Denote the image of the family of characteristic surfaces of second

class by Λ(t2, x2, y2) =const. For definitness we determine these constants in the expression

by adding boundary conditions as

Λ(x2, x2, y2) = x2 for x2 > 0, Λ(−x2, x2, y2) = x2 for x2 < 0. (3.5)

The next transformation is

χ3 : t3 = t2, y3 = y2, x3 = Λ(t2, x2, y2) (3.6)

which maps all characteristic surfaces of second class to x3 =const. Particularly, the char-

acteristic surface starting from the intersection Γ is x3 = 0 now. Meanwhile, (3.6) holds the

form of the boundary x2 = ±t2. Under the coordinate system (t3, x3, y3) the system (3.3)

has the form

B
(3)
0

∂U

∂t1
+B

(3)
1

∂U

∂x1
+B

(3)
2

∂U

∂y1
= 0, (3.7)

where B
(3)
0 = B

(2)
0 = B

(1)
0 , B

(3)
2 = B

(2)
2 = B

(1)
2 , B

(3)
1 = B

(2)
0

∂Λ

∂t2
+B

(2)
1

∂Λ

∂x2
+B

(2)
2

∂Λ

∂y2
,

B
(2)
1 = B

(1)
0

(x2
t2

− ψt − ϕ1t
ψ − ϕ1

x2 −
ψt + ϕ1t
ψ − ϕ1

t2

)
+B

(1)
1

2t2
ψ − ϕ1

+B
(1)
2

(
−ψy − ϕ1y

ψ − ϕ1
x2 −

ψy + ϕ1y
ψ − ϕ1

t2

)
. (3.8)
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Here we emphasize that the transforms χ2, χ3 depend on the unknown function ψ, so the

coefficients of (3.7) depend on the gradient of ψ.

Finally we introduce the transformation

χ4 :

{
t4 = t3, x4 = x3, y4 = y3 for x3 > 0,

t4 = t3, x4 = −x3, y4 = y3 for x3 < 0,
(3.9)

and set

A0 = diag(B
(3)
0 , B

(3)
0 ), A1 = diag(B

(3)
1 ,−B(3)

1 ), A2 = diag(B
(3)
2 , B

(3)
2 ),

U(t4, x4, y4) =
t(U (1)(t4, x4, y4), U (2)(t4, x4, y4)) =

t(U(t4, x4, y4), U(t4,−x4, y4)).

We have

LU ≡ A0
∂U

∂t4
+A1

∂U

∂x4
+A2

∂U

∂y4
= 0 in Ω : 0 < x4 < t4. (3.10)

Obviously, the transform (3.9) is nothing but folding the domain t3 > 0,−t3 < x3 < t3 in

half. Corresponding to the above transforms χ1 to χ4, the boundary conditions are

U (2) = U−, Σ1 : x4 = t4, (3.11)

F (U,ψ) ≡ [F ∗
0 ]ψt4 − [F ∗

1 ] + [F ∗
2 ]ψy4 = 0, Σ1 : x4 = t4, (3.12)

ψ = 0, Γ : x4 = t4 = 0, (3.13)

U (1) = U (2), Σ2 : x4 = 0, (3.14)

where F ∗
j can be easily obtained by direct calculation.

Besides, the inverse function x2 = Φ(t2, x3, y2) of x3 = Λ(t2, x2, y2) satisfies aΦt3 +bΦy3 +

d = 0, where a = 1− τ ′(y)v, b = v,

d = −a
(x2
t2

− ψt − ϕ1t
ψ − ϕ1

x2 −
ψt + ϕ1t
ψ − ϕ1

t2

)
− 2t2

u− ξ′(y)v

ψ − ϕ1
−
(ϕ1y − ψy
ψ − ϕ1

x2 −
ψy + ϕ1y
ψ − ϕ1

t2

)
v

with (t2, x2, y2) replaced by (t3,Φ, y3). Let

Φ(t4, x4, y4) =
t(Φ(1) Φ(2)) =

t(Φ(t4, x4, y4) Φ(t4,−x4, y4)).

Then Φ satisfies the equation with the form as

aΦt4 + bΦy4 + d = 0. (3.15)

Besides, the function Φ satisfies the condition

Φ(t4, x4, y4) = x4 on Σ1. (3.16)

Therefore, our problem has been reduced to finding a solution (U,Φ, ψ) for the system

(3.10),(3.15) in Ω, so that the boundary conditions (3.11)-(3.14) and (3.16) are satisfied.

This problem is called Problem (G). Obviously, once the existence of solution for (G) with

appropriate smoothness is proved, the second part of Theorem 2.1 is obtained.

§4. Asymptotic Solution

To prove the existence of the solution of (3.10)-(3.16) we will use Newton iterative scheme.

As a first term of the iterative sequence we construct an asymptotic solution (U (a),Φ(a),

ψ(a)), which satisfies the system with error O(tλ0) and the boundary condition with error

O(tλ0+1).
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In order to construct the asymptotic solution we have to show that the system and the

boundary condition satisfy compatibility conditions. It means that by using different way

to compute the derivatives of U,Φ, ψ at Γ, the results are identical. From the first part of

Theorem 2.1, the initial data on t = 0 for the system (3.3) are known. These data have

discontinuity at x1 = 0 and satisfy the compatibility conditions of order zero. But in order

to satisfy compatibility conditions of higher order we need the following lemma.

Lemma 4.1. If the system of conservation laws
n∑
i=0

∂Fi(u)

∂xi
= 0 (4.1)

is strictly hyperbolic, the initial data at x0 = 0,

u =

{
u+0 (x), xn > 0,

u−0 (x), xn < 0
(4.2)

have jump at xn = 0, u±0 ∈ Cℓ, and there is a function σ0(x
′), such that λN (u−0 ) > σ0 >

λN (u+0 ) and

σ0(F0(u
+
0 )− F0(u

−
0 )) = (Fn(u

+
0 )− Fn(u

−
0 )), x0 = xn = 0. (4.3)

Then for any k < ℓ we can define σk(x
′), uj,k(x

′) ∈ Cℓ−k for 1 ≤ j ≤ N − 1 and ϕj,k(x
′) ∈

Cℓ−k for 1 ≤ j ≤ N − 1, so that when we regard σk as the derivative ∂k+1ψ

∂xk+1
0

; ϕj,k as the

derivative
∂kϕj

∂xk
0

; uj−1,k, uj,k as the k-th derivative of u on both sides of characteristic surface

Rj (for j < N) or shock S (for j = N), the compatibility conditions of order ℓ − 1 at

x0 = xn = 0 are satisfied.

Proof. Without loss of generality we assume that F0(u) ≡ u. Denote the shock by

S : xn = ψ(x′), the characteristic surfaces by Rj : xn = ϕj(x
′), 2 ≤ j ≤ N . The Rankine-

Hugoniot condition on shock is
n−i∑
i=0

ψxi(f
+
i − f−i ) = f+n − f−n . (4.4)

Hence (4.3) is just the compatibility condition of order 0. Denoting x0 by t and differentiating

(4.4) along xn = ψ(x′) with respect to t, we have

n−1∑
i=0

ψxit(f
+
i − f−i ) +

n−1∑
i=0

ψxi(∂t + ψt∂n)(f
+
i − f−i ) = f+n

′
(∂t + ψt∂n)u

+ − f−n
′
(∂t + ψt∂n)u

−.

(4.5)

Noticing ψ(0, x′) = 0, we have

σ1[u]− ψt(ψt − f−n
′
)uN−1,1 = G1(σ0, ∂x′σ0, u

+
0 ,∇u

+
0 , uN−1,0) (4.6)

at t = 0, where G1 is a given function of its arguments. Similarly, differentiating along

xn = ψ(t, x) successively implies

σk[u]−ψkt (ψt−f−n
′
)uN−1,k = Gk(∂

k2
x′ σk, ∂

k1
xn
∂k2x′ u

+
0 , ∂

k2
x′ uN−1,k1)k1+k2≤k,k1<k (k < ℓ), (4.7)

which is the compatibility condition of order k.

On the other hand, if xn = ϕ(t, x) is a characteristic surface starting from xn = t = 0,

then ϕj(0, x
′) = 0, and

ϕj,t = λj(u, (ϕj)x′ ,−1), (4.8)
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where λj(u, ξ,−1) is the j-th eigenvalue of Σξif
′
i . The compatibility condition of order 0 is

ϕj,1 = λj(u
−
0 , 0,−1). Differentiating (4.8) along xn = ϕj(t, x

′), we have (ϕj)tt =
∂λj
∂u

(∂t +

ϕjt∂n)u+
∂λj
∂ξ

(ϕj)x′t. Then the compatibility condition of order 1 is

ϕj2 =
∂λj
∂u

(ϕj,1 − f ′n)uj,1 +
∂λj
∂ξ

∂ϕj,1
∂x′

(4.9)

(or the equality with uj,1 replaced by uj−1,1 ). Subtracting the equiality for uj−1,1 from

(4.9) for uj,1, we obtain
∂λj
∂u

(ϕj,1 − f ′n)(uj−1,1 − uj,1) = 0. Therefore, we require

(ϕj,1 − f ′n)(uj−1,1 − uj,1) = 0. (4.10)

Similarly, by differentiating successively we can obtain

(ϕj,1 − f ′n)(uj−1,k − uj,k) = 0. (4.11)

In view of the fact that (3.4) is strictly hyperbolic, uj−1,k − uj,k is the j-th eigenvector for

f ′n. So we have

uj−1,k − uj,k = wj,kej , (4.12)

where ej is the unit eigenvector of j-th class. Hence

uN−1,k =
N−1∑
j=1

wj,kej + u0,k, (4.13)

where u0,k represents the derivatives of u
−
0 (x) and then belongs to Cℓ−k. Substituting (4.13)

to (4.7) we obtain

σk[u]− ψkt (ψt − f ′n)wj,kej = known. (4.14)

Now if the strength of the shock is weak, then u+0 (0) is near to u−0 (0) , so [u] is near to

proportional to the first eigenvector e1 for f ′n, and ψ
k
t (ψt−f ′n)ej is near to ψkt (ψt−λj)ej . In

view of the strict hyperbolicity of (3.4), e1, · · · , eN are linearly independent. Thus regarding

(4.14) as a linear system of σk and wj,k, the determinant of the coefficient matrix is not

zero, and then these unknowns are uniquely determined. After this uj,k and ϕj,k can also

be determined. Certainly, these quantities satisfy compatibility conditions and smoothness

conditions as required. Thus Lemma 3.1 is obtained.

Remark. If u on the both sides of xn = 0 belongs to Hℓ with l > s, then similar

conclusion is also satisfied, but the functions σk, uj,k, ϕj,k are only in Hℓ−k− 1
2 .

Theorem 4.1. For the problem (G) there is an asymptotic solution (U (a),Φ(a), ψ(a))

satisfying

 LU (a) = O(tλ−2
4 ) in Ω, aΦ

(a)
t4 + bΦ(a)

y4
+ d = 0 in Ω,

F (U
(a)
(1) , ψ

(a)) = O(tλ−1
4 ), U

(a)
(2) = U−

3 , Φ(a) = x4 on Σ1, (4.15)

U
(a)
(1) = U

(a)
(2) , Φ

(a)
(1) = Φ

(a)
(2) on Σ2, ψ(a) = 0 on Γ,

where the arguments U,Φ, ψ in the coefficients of L and a, b, d should also be substituted by

U (a),Φ(a), ψ(a).

Proof. By using Lemma 4.1 we may determine the derivatives of higher order for

ϕ1, ϕ2, ψ, as well as u in between R1 and R2 or in between R2 and S. After transformations
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χ2, χ3, χ4, we know the derivatives of higher order for U , Φ and ψ on Γ.

Now we construct the asymptotic solution as follows. First, we determine all derivatives

of ∂αU (2) with |α| ≤ λ. In fact, all tangential derivatives DαU (2) are equal to correspond-

ing DαU−
3 on Σ1. Besides, the normal coefficient matrix β = n0A0 + n1A1 + n2A2 has

constant rank on Σ1, where (n0, n1, n2) is the normal direction of Σ1. According to the

boundary condition on Σ1 we may use a suitable transformation of unknown functions to

reduce the vector U (2) to t(U ′
(2) U

∗
(2)), such that the corresponding normal coefficient

matrix is

(
0

β∗

)
with β∗ being 2 × 2 nonsingular. Therefore, if we know all deriva-

tives (∂k
′

n D
αU (2))|α|+k′≤λ,k′<k, then (∂knD

αU∗
(2))k+|α|≤λ can also be determined because of

detβ∗ ̸= 0. On the other hand, ∂knD
αU ′

(2) can be determined by solving a differential equa-

tion with initial data given on x4 = t4 = 0 . Hence by induction we obtain all derivatives

∂αU (2) with |α| ≤ λ. Similarly, such a conclusion is also valid for Φ(2).

Regarding the value of ∂αU (2) as trace we may determine the function U
(a)
(2) ∈ Hλ(Ω)

having the derivatives as given above. Combining with (3.14) we may construct an Hλ

function U
(a)
(1) on Σ2. Then in a similar way we obtain U

(a)
(1) ∈ Hλ(Ω) with given trace on Σ2.

Afterwards, we determine a function Φ(a) ∈ Hλ(Ω) so that it is the solution of (3.15) with

its trace on Σ1 satisfying (3.16). The function Φ(a) automatically satisfies Φ
(a)
(1) = Φ

(a)
(2) on

Σ2, because Σ2 is a characteristic for (3.15). Finally, the function ψ(a) ∈ Hλ+1(Σ1) can be

determined by finite Taylor series according to its derivatives on Γ. Since the derivatives of

(U (a),Φ(a), ψ(a)) satisfies compatibility conditions of order λ− 1, which is just derived from

(3.10)-(3.16), (4.15) is satisfied.

The above asymptotic solution will be chosen as the first term of the sequence, which

converges to the genuine solution of the Problem (G). The details will be given in [3].
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