ON ABELIAN AUTOMORPHISM GROUPS OF SURFACES OF GENERAL TYPE

CAI JINXING*

Abstract

It is proved that for a complex minimal smooth projective surface S of general type, its abelian automorphism group is of order $\leq 36K_S^2 + 24$, provided $\chi(\mathcal{O}_S) \geq 8$, where K_S is the canonical divisor of S, and $\chi(\mathcal{O}_S)$ the Euler characteristic of the structure sheaf of S.

Keywords Projective surface, Automorphism group, Canonical divisor1991 MR Subject Classification 14J50Chinese Library Classification 0187.2

§1. Introduction

It is well-known that for a complex curve of genus $g \ge 2$, its total automorphism group (resp. abelian automorphism group) is of order $\le 84(g-1) = 42 \deg K_C$ (resp. $\le 4g + 4$), where K_C is the canonical divisor of C (cf. [3, 4]). It is an intriguing problem to generalise these bounds to higher dimensions. Several authors have studied this problem (see [5, 6] for details). Recently, Xiao has generalised these results to surfaces of general type, in good analogy with the case of curves. He has proved that for a complex minimal smooth projective surface S of general type, its total automorphism group (resp. abelian automorphism group) is of order $\le 42^2 K_S^2$ (resp. $\le 52K_S^2 + 32$, provided $K_S^2 \ge 140$), where K_S is the canonical divisor of S (cf. [5, 6, 7]). Clearly, the coefficient 42^2 is the best for the total automorphism group; but the coefficient 52 does not seem to be best possible as Xiao pointed out in [5]. In this paper, we improve on this result. Our main result is the following

Theorem 1.1. Let S be a minimal smooth surface of general type over the complex number field, K the canonical divisor of S, and $\chi(\mathcal{O}_S)$ the Euler characteristic of the structure sheaf of S. Let G be an abelian group of automorphisms of S (i.e., $G \subset \operatorname{Aut}(S)$). Then $\#G \leq 36K^2 + 24$, provided $\chi(\mathcal{O}_S) \geq 8$.

The arguments here are inspired by the work of Xiao^[5]. We consider the natural action of the abelian group G on the space $H_n = H^0(S, nK_S)$, for a fixed positive integer n. Because G is finite abelian, such an action is diagonalisable, in other words H_n has a basis consisting of semi-invariant vectors. Consider two such semi-invariants v_1 , v_2 in H_n , with

$$\sigma(v_i) = \alpha_i(\sigma)v_i \quad \text{for} \quad \sigma \in G,$$

where α_i are the corresponding characters of G. Suppose that the two semi-invariants v_1, v_2 correspond to the same character of G (i.e., $\alpha_1 = \alpha_2$), and let D_1 and D_2 be the

Manuscript received March 7, 1994.

^{*}Department of Mathematics, East China Normal University, Shanghai 200062, China

corresponding divisors in $|nK_S|$. Then D_1 and D_2 generate a pencil Λ whose general fibre F is fixed by G. Therefore #G is limited by the order of the group of automorphisms of the normalijation \tilde{F} of F as a smooth curve. But $\#\operatorname{Aut}(\tilde{F})$ increases proportionally with K_S^2 , as $g(\tilde{F})$ so does.

Instead of considering the natural map

$$H_n \otimes H_n \to H_{2n},$$

we may consider the natural map

$$H_{n-t} \otimes H_{n+t} \oplus H_n \otimes H_n \to H_{2n},$$

which is compatible with the above actions of G, i.e., if $v_1 \in H_{n-t}$, $v_2 \in H_{n+t}$ (resp. $w_i \in H_n$, i = 1, 2) are two semi-invariants, then $v_1 \otimes v_2$ (resp. $w_1 \otimes w_2$) is semi-invariant in H_{2n} . If there are more than dim H_i semi-invariants in H_i for some $i \leq n + t$, then there are semi-invariants in H_i (therefore in H_{2n}) with the same character, and we are done. So we may assume that there are exactly $\delta_i = \dim H_i$ ($i \leq n + t$) semi-invariants v_j^i ($j = 1, \dots, \delta_i$) in H_i , corresponding to mutually different characters. Each vector v_j^i corresponds to a unique divisor D_j^i in |iK|. The relation $v_j^i \otimes v_k^l = cv_m^r \otimes v_n^s$ (where c is a constant, and i + l = r + s = 2n) in H_{2n} translates into a relation

$$D_j^i + D_k^l = D_m^r + D_n^s \tag{(*)}$$

between these divisors.

Fix a semi-invariant $u \in H_t$ when $H_t \neq 0$. Then u corresponds to a unique divisor U in |tK| which is fixed by G. We can consider the finite set Σ_i of points corresponding to D_j^i in a certain divisorial space P_i defined in [5, §1], and there are natural embeddings:

$$\Sigma_{n-t} \to \Sigma_n \to \Sigma_{n+t}, \quad P_{n-t} \stackrel{\iota_2}{\to} P_n \stackrel{\iota_3}{\to} P_{n+t}$$

defined by U. In such a setting, a semi-invariant in H_{2n} of the form $v_j^i \otimes v_k^l$ corresponds naturally to the mid-point of two points in Σ_{n+t} corresponding to D_j^i and D_k^l , and a relation of the form (*) means that the corresponding mid-points coincide.

Denote by S_1 the set of mid-points of two points p, q in Σ_{n+t} such that either p is in Σ_{n-t} and q is in Σ_{n+t} or p and q are in Σ_n . Now the problem has been reduced to that of comparing the number of points in S_1 and the dimension of H_{2n} . In this way we show that for n = 3 and t = 1 the number of points in S_1 is larger than the dimension of H_6 , provided that $\chi(\mathcal{O}_S) \geq 8$ and S has no pencils of curves of genus 2. The case that S has pencils of curves of genus 2 has been studied completely by using the properties of pencils of curves of genus 2 (cf. [2, 5]).

The estimation in Theorem 1.1 appears to be crude (cf. [5, Example 1], [2, Example 5.7]). An interesting question is, roughly speaking: what is asymptotically the best upper bound for G? I hope to return to this subject in a subsequent paper.

\S **2.** Proof of Theorem 1.1

We fix a smooth complex projective minimal surface of general type S in the future, and let K be the canonical divisor of S, $H_n = H^0(S, nK)$, and $\chi = \chi(\mathcal{O}_S)$. We also fix an abelian group G of automorphisms of S. For the reader's convenience, we recall some notation defined in [5].

Definition 2.1.^[5] Let v_1, \dots, v_{δ_n} be a basis of H_n consisting of semi-invariants for the natural action of G on H_n , and D_1, \dots, D_{δ_n} the divisors in |nK| corresponding to these vectors, where $\delta_n = \dim H_n$. We say that H_n is uniquely decomposable (under the action of G) if the set $\{D_i\}$ is uniquely determined, or equivalently if there are exactly δ_n different characters for the natural action of G on H_n .

Fix the divisor D_1 . Denote by P'_n the set

{Q-divisors D on $S \mid$ there is an $m \in \mathbb{Z}^+$ such that

mD is linearly equivalent to mD_1 .

Denote by [D] the element of P'_n corresponding to the Q-divisor D. We define addition and scalar multiplication as follows:

$$[D] + [D'] = [D + D' - D_1],$$

$$c[D] = [cD + (1 - c)D_1], \quad c \in \mathbf{Q}$$

Then P'_n is a generally infinite dimensional linear space, with $[D_1]$ as the origin.

The subset I in P'_n of points corresponding to the integral divisors linearly equivalent to D_1 is an additive subgroup, and there is a set of generators of I which form a basis of P'_n . Under such a basis, I is a subset of points with integral coordinates.

Denote by P_n the finite dimensional subspace generated by the set

$$\{[D_1], [D_2], \cdots, [D_{\delta_n}]\}.$$

Let Σ_n be the finite set in P_n consisting of the points corresponding to the effective divisors in |nK| fixed by G. Then P_n , therefore Σ_n , is uniquely determined up to the choices of D_1 only if H_n is uniquely decomposable. We will call the set Σ_n a basic set in P_n .

Clearly, P_n depends on the choice of D_1 ; but if we replace D_1 by another divisor, say D_i , P_n differs only by an integral translation. Because $\#\Sigma_n$ and the number of middle points of Σ_n , which are all the properties about Σ_n we use, are integral translation invariants, it dose not matter which D_i is selected. Also, Σ_n is determined up to integral translations as above iff H_n has exactly δ_n semi-invariants, and thus iff there are δ_n different characters for the action of G on H_n .

Assume $H_1 \neq 0$. Fix a semi-invariant $u \in H_1$ for the natural action of G on H_1 . Let U be the divisor in |K| corresponding to u. We have natural maps:

$$H_2 \stackrel{\otimes u}{\to} H_3 \stackrel{\otimes u}{\to} H_4; \quad |2K| \stackrel{+U}{\to} |3K| \stackrel{+U}{\to} |4K|; \quad P'_2 \stackrel{l'_2}{\to} P'_3 \stackrel{l'_3}{\to} P'_4.$$

If we take [nU] to be the origin of P'_n , then $l'_i(i = 2, 3)$ are embeddings of linear spaces. We will identify P'_2 and P'_3 as subspaces of P'_4 in this way in the future. Since U is fixed by G, l'_i (i = 2, 3) induce natural embeddings:

$$\Sigma_2 \to \Sigma_3 \to \Sigma_4, \quad P_2 \stackrel{l_2}{\to} P_3 \stackrel{l_3}{\to} P_4.$$

Let v (resp. w) be a semi-invariant in H_2 (resp. H_4), and p (resp. q) the corresponding point in Σ_2 (resp. Σ_4). Let D be the divisor in |6K| corresponding to the vector $v \otimes w$. Then $l_3([\frac{1}{2}D])$ corresponds to a point in P_4 , which is just the mid-point $\frac{1}{2}(l_3l_2(p)+q)$.

Similarly, let v_1 , v_2 be two semi-invariants in H_3 , and p, q the corresponding points in Σ_3 .

Let D be the divisor in |6K| corresponding to the vector $v_1 \otimes v_2$. Then $l_3([\frac{1}{2}D])$ corresponds to a point in P_4 , which is just the mid-point $\frac{1}{2}(l_3(p) + l_3(q))$.

Definition 2.2.^[5] Let \mathcal{A} and \mathcal{B} be finite sets of points in a linear space P. We define \mathcal{A} . \mathcal{B} to be the set of mid-points $\frac{1}{2}(p+q)$ of two points p in \mathcal{A} and q in $\mathcal{B}(p$ and q may be the same point if $\mathcal{A} \cap \mathcal{B} \neq \emptyset$; so $\mathcal{A} \cap \mathcal{B} \subset \mathcal{A}.\mathcal{B}$).

We define the dimension of \mathcal{A} to be the dimension of the (affine) space generated by \mathcal{A} . Let \mathcal{A} be a finite set of points in P, and \mathcal{B} a subset of \mathcal{A} . The set \mathcal{B} is said to be relatively convex in \mathcal{A} , if no point of $\mathcal{A} - \mathcal{B}$ is contained in the convex hull of \mathcal{B} . The set \mathcal{B} is called integrally convex if it is relatively convex in some lattice \mathcal{A} generating P. With such a lattice \mathcal{A} fixed, we will call the points in \mathcal{A} integral points.

A chain in a set \mathcal{B} is by definition a series of points p_1, \dots, p_n in \mathcal{B} such that the vectors $p_i - p_{i-1}$ $(i = 2, \dots, n)$ are equal. In this case, n is called the length of the chain. If \mathcal{B} is integrally convex (in a fixed lattice \mathcal{A}) and p, q are two points in \mathcal{B} , then the integral points on the line segment joining p and q form a chain in \mathcal{B} in an obvious way.

Remark. The set Σ_n is integrally convex with respect to the lattice \mathcal{L} consisting of the points corresponding to divisors linearly equivalent to nK (cf. [5, Lemma 3]). Clearly it is easy to verify that Σ_i is relatively convex in Σ_{i+1} for i = 2, 3, as we consider Σ_i as a subset of Σ_{i+1} in the above way.

Lemma 2.1. Suppose that $\chi \geq 5$, and that P_6 is uniquely decomposable. Then the dimension of Σ_3 is 3.

Proof. Let d be the dimension of Σ_3 . Then

$$\#(\Sigma_3, \Sigma_3) \ge (d+1) \left(\#\Sigma_3 - \frac{d}{2} \right) \quad (\text{cf. [5, Lemma 1]}).$$

Now assume $d \ge 4$. Then taking into account the inequality $\#\Sigma_3 \ge d+1$, we have

$$\#(\Sigma_3.\Sigma_3) \ge 5\#\Sigma_3 - 10.$$

On the other hand, we have

dim
$$H_6 = 15K^2 + \chi$$
, dim $H_3 = 3K^2 + \chi$

So we get $\#(\Sigma_3, \Sigma_3) \ge 5 \dim H_3 - 10 > \dim H_6$ when $\chi \ge 3$, a contradiction. Hence we have $d \le 3$. Now $d \le 2$ is impossible, otherwise the image of the 3-canonical map of S is either a rational curve or a rational surface (cf. [5, Lemma 3]).

We may copy the proof of [5, Lemma 4] to get the following

Lemma 2.2. Suppose $K^2 \ge 10$, and let Σ_i be a basic set in H_i for i = 3, 4. Assume that either there is a chain in Σ_4 of length $\ge \frac{1}{6} \# \Sigma_4$ or there is a chain in Σ_3 of length $\ge \frac{1}{4} \# \Sigma_3$. Then S has a pencil of curves of genus 2.

Lemma 2.3. Let \mathcal{A}_i (i = 1, 2, 3) be finite integral sets in a \mathbb{Q} -linear space P with $\mathcal{A}_1 \subset \mathcal{A}_2 \subset \mathcal{A}_3$. Let P_2 be the enveloping space of \mathcal{A}_2 . Assume dim $P_2 < \dim P$. Then there exists an integral linear map φ (i.e., φ maps integral points to integral points) from P to P_2 such that

(i) $\varphi|_{\mathcal{A}_3}$ is injective, and $\varphi|_{P_2}$ is identity;

(ii) $\#(\mathcal{A}_1.\mathcal{A}_3 \cup \mathcal{A}_2.\mathcal{A}_2) \ge \#(\mathcal{A}_1.\varphi(\mathcal{A}_3) \cup \mathcal{A}_2.\mathcal{A}_2).$

Proof. Let x_1, \ldots, x_n be a (integral) basis of P. We can suppose that dim $P_2 = \dim P - 1$, and P_2 is the hyperplane $x_n = 0$. Since \mathcal{A}_3 is a finite set, we can choose an

integer t such that $|a_i| + |b_i| < t$ $(i = 1, \dots, n)$ for any two points (a_1, \dots, a_n) , (b_1, \dots, b_n) in \mathcal{A}_3 . We define

$$\varphi: \quad P \to P_2$$

(x₁, x₂,..., x_n) \mapsto (x₁ + tx_n, x₂ + tx_n,..., x_{n-1} + tx_n, 0).

Clearly, φ satisfies (i) by the choice of t. Now the mid-point of two points p in \mathcal{A}_1 and q in $\varphi(\mathcal{A}_3)$ is the image of the mid-point of two points p in \mathcal{A}_1 and $\varphi^{-1}(q)$ in \mathcal{A}_3 , and if $\frac{1}{2}(p_1+q_1)=\frac{1}{2}(p_2+q_2)$ for p_i in \mathcal{A}_1 and q_i in \mathcal{A}_3 , then

$$\frac{1}{2}(p_1 + \varphi(q_1)) = \frac{1}{2}(p_2 + \varphi(q_2)).$$

Hence φ satisfies (ii).

Definition 2.3.^[5] Let \mathcal{A} be a finite integral set in a space P with a basis x_1, \dots, x_n . The arrangement of \mathcal{A} with respect to x_i is a new integral set \mathcal{A}' such that a point (a_1, \dots, a_n) is contained in \mathcal{A}' iff

(i) $a_i \geq 0$, and

(ii) there are at least $a_i + 1$ points (b_1, \dots, b_n) in \mathcal{A} such that $a_j = b_j$ for all $j \neq i$.

It is immediate that \mathcal{A}' is integral, and has the same cardinality and dimension as that of \mathcal{A} . But if \mathcal{A} is convex, \mathcal{A}' need not be convex. Clearly, if \mathcal{A}_i (i = 1, 2, 3) are finite integral sets in P with $\mathcal{A}_1 \subset \mathcal{A}_2 \subset \mathcal{A}_3$, then by the definition we have

$$\mathcal{A}_1' \subset \mathcal{A}_2' \subset \mathcal{A}_3'$$

Lemma 2.4. Let \mathcal{A}_i (i = 1, 2, 3) be finite integral sets of dimension 3 with $\mathcal{A}_1 \subset \mathcal{A}_2 \subset \mathcal{A}_3$, and let \mathcal{A}'_i be the arrangement of \mathcal{A}_i with respect to a coordinate axis. Then

$$\#(\mathcal{A}_1.\mathcal{A}_3\cup\mathcal{A}_2.\mathcal{A}_2) \geq \#(\mathcal{A}_1'.\mathcal{A}_3'\cup\mathcal{A}_2'.\mathcal{A}_2').$$

Proof. For the sake of simplicity, let i = 1, and use x, y, z instead of x_1, x_2, x_3 . Take any two integers y_m, z_m , and assume that there are k points in $\mathcal{A}'_1.\mathcal{A}'_3 \cup \mathcal{A}'_2.\mathcal{A}'_2$ with $y = y_m$, $z = z_m$. Then there exist two points $p = (x_1, y_1, z_1)$ and $q = (x_2, y_2, z_2)$ in \mathcal{A}'_3 whose mid-point is $(\frac{1}{2}(k-1), y_m, z_m)$. Now $(\frac{1}{2}(k-1), y_m, z_m)$ is either in $\mathcal{A}'_1.\mathcal{A}'_3$ or in $\mathcal{A}'_2.\mathcal{A}'_2$. Hence we have either $p \in \mathcal{A}'_1, q \in \mathcal{A}'_3$ or $p, q \in \mathcal{A}'_2$. Now we suppose $p \in \mathcal{A}'_1, q \in \mathcal{A}'_3$. (For the latter case, the proof is similar). By the definition of arrangement, this means that there are at least $x_1 + 1$ points with $y = y_1, z = z_1$ in \mathcal{A}_1 and at least $x_2 + 1$ points with $y = y_2$, $z = z_2$ in \mathcal{A}_3 . Because $x_1 + x_2 + 1 = k$, we see that the points in \mathcal{A}_1 with $y = y_1, z = z_1$ and the points in \mathcal{A}_3 with $y = y_2, z = z_2$ produce at least k mid-points with $y = y_m, z = z_m$ in $\mathcal{A}_1.\mathcal{A}_3$. In fact, let the $x_1 + 1$ (resp. $x_2 + 1$) points in the first (resp. second) row of \mathcal{A}_1 (resp. \mathcal{A}_3) be p_1, \dots, p_{x_1+1} (resp. q_1, \dots, q_{x_2+1}) such that if i < j then the x coordinate of p_i (resp. q_i) is less than p_j (resp. q_j). Then the mid-points

$$\frac{1}{2}(p_1+q_1), \ \frac{1}{2}(p_1+q_2), \cdots, \frac{1}{2}(p_1+q_{x_2+1}), \ \frac{1}{2}(p_2+q_{x_2+1}), \cdots, \frac{1}{2}(p_{x_1+1}+q_{x_2+1})$$

form the desired subset of $\mathcal{A}_1.\mathcal{A}_3$.

Lemma 2.5. Let \mathcal{A}_i (i = 1, 2, 3) be finite integrally convex sets with $\mathcal{A}_1 \subset \mathcal{A}_2 \subset \mathcal{A}_3$, and the dimension of \mathcal{A}_1 is 3. Suppose that the length of the longest chain in \mathcal{A}_3 (resp. \mathcal{A}_2) is less then $\frac{1}{6}#\mathcal{A}_3$ (resp. $\frac{1}{4}#\mathcal{A}_2$). And suppose

$$#\mathcal{A}_2 \ge 21, \quad #\mathcal{A}_3 \le 2#\mathcal{A}_2.$$

Then

$$\#(\mathcal{A}_{1}.\mathcal{A}_{3}\cup\mathcal{A}_{2}.\mathcal{A}_{2}) \geq \min \begin{cases} \#\mathcal{A}_{3}+3\#\mathcal{A}_{2}-23, \\ \frac{5}{6}\#\mathcal{A}_{3}+\frac{10}{3}\#\mathcal{A}_{2}-10, \\ \frac{5}{6}\#\mathcal{A}_{3}+\frac{13}{4}\#\mathcal{A}_{2}-2, \\ \frac{7}{12}\#\mathcal{A}_{3}+\frac{15}{4}\#\mathcal{A}_{2}-6, \\ \frac{1}{2}\#\mathcal{A}_{3}+4\#\mathcal{A}_{2}-4, \\ 5\#\mathcal{A}_{2}-31. \end{cases}$$

Proof. By Lemma 2.3, we can suppose that the dimension of the enveloping space of \mathcal{A}_3 is 3. Let p_1, \dots, p_l be a longest chain in \mathcal{A}_2 . Assume that p_1 is the origin of the enveloping space, and that $p_2 = (1, 0, 0)$. Let x, y, z be this basis. Then

$$\sqrt[3]{\#\mathcal{A}_2} \le l \le \frac{1}{4} \#\mathcal{A}_2.$$

Arrange \mathcal{A}_n $(i = 1, \dots, 3)$ with respect to x-axis, then with respect to y, and then to z. By Lemma 2.4, we need only to count the number of points in the set of mid-points of the new set $\#(\mathcal{A}'_1.\mathcal{A}'_3 \cup \mathcal{A}'_2.\mathcal{A}'_2)$ thus produced.

Let m_{xi} (resp. m_{yi}, m_{zi}) be the number of points of \mathcal{A}'_i on the x (resp. y, z) axis, i = 1, 2, 3. We have $m_{x2} = l \leq \frac{1}{4} \# \mathcal{A}_2$ (cf. [5, p. 625]) and $m_{x3} \leq \frac{1}{6} \# \mathcal{A}_3, m_{x1} \leq m_{x2} \leq m_{x3}$, etc. If the basis elements y and z are chosen carefully, \mathcal{A}'_1 will also be of dimension 3. We may assume that the points of \mathcal{A}'_3 have either z = 0, or z = 1, y = 0 (cf. [5, p. 626]).

Now for simplicity of the notation we replace \mathcal{A}'_i by \mathcal{A}_i . Remark that (0, 0, 1) is in \mathcal{A}_1 , and although \mathcal{A}_i is not convex now, it has the property that if a point (a, b, c) is in \mathcal{A}_i , then all integral points (a', b', c') such that

$$0 \le a' \le a, \quad 0 \le b' \le b, \quad 0 \le c' \le a$$

are in \mathcal{A}_i too.

Let \mathcal{A}_{i0} be just the subset of points of \mathcal{A}_i in the plane z = 0. Let t_i (i = 1, 2, 3) be the number of points in \mathcal{A}_i with z = 1. Clearly,

$$1 \le t_1 \le t_2 \le t_3 \le m_{x3} \le \frac{1}{6} \# \mathcal{A}_3.$$

In what follows we denote by S the set $A_1.A_3 \cup A_2.A_2$.

Consider the mid-points $\frac{1}{2}(r+s)$ with $r, s \in \mathcal{A}_2$ and r on the *x*-axis and s on the *y*-axis. Two of such points $\frac{1}{2}(r_1+s_1)$ and $\frac{1}{2}(r_2+s_2)$ are different if $r_1 \neq r_2$ or $s_1 \neq s_2$. Consider the mid-points $\frac{1}{2}(p+q)$ with $p = (0, 0, 1) \in \mathcal{A}_1$ and q in the plane z = 0. Therefore \mathcal{S} contains at least $m_{x2}m_{y2} + \#\mathcal{A}_{30}$ points. Hence we can assume $m_{x2}m_{y2} \leq \frac{13}{4}\#\mathcal{A}_2$. Consequently,

$$m_{x2} + m_{y2} \le \frac{1}{4} \# \mathcal{A}_2 + 12,$$
 (2.1)

as we have $\sqrt[3]{\#\mathcal{A}_2} \le m_{x2} \le \frac{1}{4} \#\mathcal{A}_2, m_{y2} \le \frac{1}{4} \#\mathcal{A}_2.$

First, we have

$$#(\mathcal{A}_{20}.\mathcal{A}_{20}) = 4#\mathcal{A}_{20} - 2(m_{x2} + m_{y2}) + 1, \qquad (2.2)$$

$$\#S \ge \#(\mathcal{A}_2, \mathcal{A}_2) = (t_2 - 1)(m_{y2} - 3) + 5\#\mathcal{A}_2 - 2(m_{x2} + m_{y2}) - 3.$$
(2.3)

See [5, Lemma 6] for the proofs of (2.2) and (2.3).

Second, we estimate #S by considering not only the set $A_2.A_2$ but also the set $A_1.A_3$.

Since p := (0, 0, 1) is in \mathcal{A}_1 , the mid-points in

$$\mathcal{B}_1 := \left\{ \frac{1}{2}(p+q), q \text{ is in } \mathcal{A}_{30} \right\}$$

are in $\mathcal{A}_1.\mathcal{A}_3$; clearly, the mid-points in $\mathcal{B}_2 := \mathcal{A}_{30}.\mathcal{A}_{30}$ and

$$\mathcal{B}_3 := \left\{ \frac{1}{2} ((a, 0, 1) + (b, 0, 1)), 0 \le a, \ b \le t_2 - 1, a, \ b \in \mathbb{Z} \right\}$$

are in $\mathcal{A}_2.\mathcal{A}_2$. It is easy to see that $\mathcal{B}_i \cap \mathcal{B}_j = \emptyset$ for $i \neq j$. Let $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 \cup \mathcal{B}_3$. Then

$$\#\mathcal{B} = \#\mathcal{A}_{30} + \#(\mathcal{A}_{20},\mathcal{A}_{20}) + 2t_2 - 1$$

By (2.1) and (2.2), we have

$$\#S \ge \#B = \#A_3 + 4\#A_2 - 2(m_{x2} + m_{y2}) - t_3 - 2t_2$$
(2.4)

$$\geq \#\mathcal{A}_3 + \frac{7}{2}\#\mathcal{A}_2 - t_3 - 2t_2 - 24.$$
(2.5)

Now we consider the following cases separately.

Case I1. $\frac{1}{2}t_3 < t_2 \leq \frac{1}{8} \# \mathcal{A}_2$. By (2.5), we have

$$\#S \ge \#A_3 + \frac{7}{2}\#A_2 - 4t_2 - 23 \ge \#A_3 + 3\#A_2 - 23.$$

Case I2. $t_2 \leq \min\{\frac{1}{2}t_3, \frac{1}{8} \# \mathcal{A}_2\}$. Let $a = t_3 - 2t_2 + 1$. Since p := (0, 0, 1) is in \mathcal{A}_1 , the mid-points in

$$\mathcal{C} := \left\{ \frac{1}{2} (p + (t_3 - 1, 0, 1)), \frac{1}{2} (p + (t_3 - 2, 0, 1)), \cdots, \frac{1}{2} (p + (t_3 - a, 0, 1)) \right\}$$

are in S; it is clear that $\mathcal{B} \cap \mathcal{C} = \emptyset$, and $\#\mathcal{C} = a = t_3 - 2t_2 + 1$.

Now by (2.5) we have

$$\#\mathcal{S} \ge \#\mathcal{B} + \#\mathcal{C} \ge \#\mathcal{A}_3 + 3\#\mathcal{A}_2 - 23$$

Case II1. $t_2 \ge \frac{1}{8} \# A_2$ and $m_{y2} \ge 7$. By (2.1) and (2.3), we have

$$\#S \ge 4(t_2 - 1) + \frac{9}{2}\#A_2 - 27 \ge 5\#A_2 - 31.$$

Case II2. $t_2 \ge \frac{1}{8} \# \mathcal{A}_2$ and $m_{y2} \le 6$. Note that we have $m_{y2} \ge 3$ since $m_{x2} \le \frac{1}{4} \# \mathcal{A}_2$. Let $e = m_{y2}m_{x2} + t_2 - \# \mathcal{A}_2 \ge 0$, and let n_i be the number of the points of \mathcal{A}_2 with y = i, z = 0. Clearly, $m_{x2} = n_0$. The mid-points in

$$\mathcal{E} := \left\{ \frac{1}{2} ((n_i - 1, i, 0) + (n_{i+1} - 1, i + 1, 0)), \cdots, \frac{1}{2} ((n_{i+1}, i, 0) + (n_{i+1} - 1, i + 1, 0)), \right.$$

provided $n_i > n_{i+1}, i = 0, \cdots, 3. \right\}$

are in $\mathcal{S}, \mathcal{B} \cap \mathcal{E} = \emptyset$, and $\#\mathcal{E} = e$. By (2.4), we have

$$#S \ge #B + #E \ge #A_3 + 4#A_2 - 2(m_{x2} + m_{y2}) - t_3 - 2t_2 + e.$$
(2.6)

Case II2.1. $m_{y2} = 5$ or 6. If $m_{y2} = 6$, then $m_{x2} \ge \frac{1}{7}(\#\mathcal{A}_2 + e)$. By (2.6), we have

$$#S \ge #A_3 + 2#A_2 + 10m_{x2} - t_3 - e - 12$$
$$\ge \frac{5}{6}#A_3 + \frac{24}{7}#A_2 - 12 \ge \frac{5}{6}#A_3 + \frac{10}{3}#A_2 - 10$$

Similarly, if $m_{y2} = 5$, then we have $\#S \ge \frac{5}{6} \#A_3 + \frac{10}{3} \#A_2 - 10$.

Case II2.2. $m_{y2} = 4$. By (2.6), we have

$$\#S \ge \frac{5}{6} \#A_3 + \frac{13}{4} \#A_2 - 2 + \frac{e}{4},$$

provided $m_{x2} \ge \frac{5}{24}(\#\mathcal{A}_2 + e) + 1$. This allows us to assume

$$\frac{1}{5}(\#\mathcal{A}_2 + e) \le m_{x2} \le \frac{5}{24}(\#\mathcal{A}_2 + e)$$

Therefore, $t_2 \geq \frac{1}{6}(\#\mathcal{A}_2 + e)$. Let w be the integer part of $\frac{1}{12}\#\mathcal{A}_3$. Then the point p = (w - 1, 0, 1) is in \mathcal{A}_2 since $\#\mathcal{A}_3 \leq 2\#\mathcal{A}_2$ by the hypothesis, and the mid-points in

$$\mathcal{F} := \left\{ \frac{1}{2} (p + (a, b, 0)), \ a \in \mathbb{Z}, \ a \ge w - 1, \ b = 0, \cdots, \ 3, (a, b, 0) \text{ is in } \mathcal{A}_{20} \right\}$$

are in $\mathcal{S}, \mathcal{B} \cap \mathcal{F} = \emptyset$, and

$$\#\mathcal{F} = 4(m_{x2} - w + 1) - e \ge 4(m_{x2} - \frac{1}{12}\#\mathcal{A}_3 + 1) - e$$

Now by (2.6) we have

$$#S \ge #A_3 + 4#A_2 - 2(m_{x2} + m_{y2}) - t_3 - 2t_2 + e + #F.$$
$$\ge \frac{1}{2}#A_3 + 2#A_2 + 10m_{x2} - 2e - 4 \ge \frac{1}{2}#A_3 + 4#A_2 - 4$$

Case II2.3. $m_{y2} = 3$. In this case $m_{x2} = t_2 = \frac{1}{4} \# A_2$. The mid-points in

$$\mathcal{G} := \left\{ \frac{1}{2} ((a, 0, 1) + (a, b, 0)), \text{ where } \frac{1}{12} \# A_3 \le a \le \frac{1}{4} \# A_2, a \in \mathbb{Z}, b = 0, \cdots, 2. \right\}$$

are in $\mathcal{S}, \mathcal{B} \cap \mathcal{G} = \emptyset$ since $2a > m_{x2}$, and $\#\mathcal{G} = 3(\frac{1}{4}\#\mathcal{A}_2 - \frac{1}{12}\#\mathcal{A}_3)$. Then by (2.5), we have

$$\#\mathcal{S} \ge \#\mathcal{B} + \#\mathcal{G} \ge \frac{7}{12}\#\mathcal{A}_3 + \frac{15}{4}\#\mathcal{A}_2 - 6.$$

Summing up above inequalities, we get what we wanted.

Corollary 2.1. Suppose that $\chi \ge 8$ and S has no pencils of curves of genus 2. Then H_6 is not uniquely decomposable.

Proof. We can suppose H_n is uniquely decomposable for $n \leq 4$, for otherwise the corollary is trivially true. Let Σ_i be a basic set in P_i (i = 2, 3, 4). By Lemma 2.2 and Lemma 2.3, the condition of Lemma 2.5 is satisfied for $\Sigma_2 \subset \Sigma_3 \subset \Sigma_4$. Then this corollary results from the relations

$$\#\Sigma_i = \dim H_i = \frac{i(i-1)}{2}K^2 + \chi \quad (i = 2, 3, 4),$$

$$K^2 \le 9\chi \quad (\text{Bogomolov-Miyaoka-Yau's inequality}),$$

that $\#(\Sigma_2, \Sigma_4 \cup \Sigma_3, \Sigma_3) > \dim H_6$. In particular, there are more than dim H_6 semi-invariants in H_6 .

The following lemma is a modification of [5, Lemma 7].

Lemma 2.6. Suppose that $K^2 \ge 10$ and S has no pencils of curves of genus 2. Let G be an Abelian group of automorphisms of S such that |6K| contains a pencil Λ whose general members are fixed under the action of G. Then

$$\#G \le 36K^2 + 24.$$

Proof. Blowing up the base points of Λ , we get a surface S' such that Λ is associated to a fibration $f: S' \to C$. Let F be a general fibre of f, and let k be the number of fibres of f contained in a general member of the moving part of Λ . We have

$$g(F) - 1 \le \frac{3k + 18}{k^2} K^2.$$

Let H be the stabiliser of F. Then the index of H in G is at most k. Because H is an Abelian group of automorphisms of curve F, we have $\#H \leq 4g(F) + 4$. Therefore if $k \geq 3$, we get $\#G \leq 36K^2 + 24$. This allows us to assume $k \leq 2$. Consequently there is no divisor in |2K| whose pull-back on S' contains F.

Let $\pi: F \to B := F/H$ be the projection. Let O_1, \dots, O_l be the orbits of the action of H on F contained in pull-backs of fixed divisors in |2K|, n_i the number of points in O_i . If l < 4, then the image of the bicanonical map of S is a rational surface (see e.g. [5, p. 624] for a proof); therefore S has a pencil of curves of genus 2 (cf. [1]), contrary to the hypothesis. So we can assume $l \ge 4$. Using Hurwitz formula to π , we get

$$(l-2)#H \le 2g(F) - 2 + \sum_{i=1}^{l} n_i.$$

Because $n_i \leq 2KF \leq 12K^2/k$, we see that $\#G \leq 34K^2$, once $l \geq 5$, and $\#G \leq 33K^2 + 24$ when l = 4 as in [5, Lemma 7].

Proof of Theorem 1.1. If S has a relatively minimal genus 2 fibration, then $\#G \leq 12.5K^2 + 100$ (cf. [2, Theorem 0.2]). Hence we can suppose that S has no pencil of curves of genus 2. Then the corollary to Lemma 2.5 guarantees that there is a pencil Λ in |6K| each of whose elements is a fixed divisor by G. Hence by Lemma 2.6 we get the result.

§3. Abelian Subgroups for Small Numerical Invariants

As a consequence of Theorem 1.1, we have that the order of an Abelian subgroup of $\operatorname{Aut}(S)$ is at most $\#G \leq 36K^2 + 24$, provided $K^2 \geq 64$. Here we give a similar estimation for surfaces with $K^2 < 64$.

Lemma 3.1. Suppose that $K^2 \ge 4$ (resp. $K^2 \ge 2$). Then H_{12} (resp. H_{16}) is not uniquely decomposable.

Proof. We may consider the natural map

$$H_4 \otimes H_8 \oplus H_6 \otimes H_6 \to H_{12} \quad (\text{resp. } H_5 \otimes H_{11} \oplus H_8 \otimes H_8 \to H_{16})$$

instead of

$$H_2 \otimes H_4 \oplus H_3 \otimes H_3 \to H_6.$$

Note that if there is a chain in Σ_6 (resp. Σ_8 , Σ_{11}) of length $\geq \frac{1}{4} \# \Sigma_6$ (resp. $\geq \frac{1}{4} \# \Sigma_8$, $\geq \frac{1}{6} \# \Sigma_{11}$) then S has a pencil of curves of genus 1, contradicting the fact that S is of general type (cf. [5, Lemma 4] for a proof). We choose and fix a semi-invariant u' in H_2 (resp. u''in H_3) instead of u in H_1 , as in §1. Then one checks immediately that the first half of §1 goes for the new pair, and the lemma is a counterpart of the corollary to Lemma 2.5.

Theorem 3.1. Let S be a minimal smooth surface of general type over the complex number field, and K the canonical divisor of S. Let G be an abelian group of automorphisms

of S (i.e., $G \subset Aut(S)$). Then

$$\#G \leq \begin{cases} 114K^2 + 24, \ provided \ 4 \leq K^2 \leq 63\\ 200K^2 + 22, \ provided \ 2 \leq K^2 \leq 3,\\ 270, \ provided \ K^2 = 1. \end{cases}$$

Proof. If $K^2 \ge 4$ (resp. $K^2 \ge 2$), by Lemma 3.1, H_{12} (resp H_{16}) is not uniquely decomposable. We modify the proof of [5, Lemma 7] to get our results. We can assume that there is no divisor in |3K| (resp. |4K|) whose pull-back contains a general fibre F of the fibration $f: S' \to C$ induced by a pencil Λ of G-invariant divisors in |12K| (resp. |16K|). Let O_1, \dots, O_l be the orbits on F contained in pull-backs of fixed divisors in the moving parts of the pull-backs of |3K| (resp. |4K|). As $K^2 \ge 4$ (resp. $K^2 \ge 2$), the tricanonical map (resp. 4-canonical map) is birational by Bombieri's theorem, and so $l \ge 4$. And as

$$g(F) - 1 \le \frac{6k + 72}{k^2} K^2 \quad \left(\text{resp. } g(F) - 1 \le \frac{8k + 128}{k^2} K^2\right),$$

 $n_i \leq 36K^2/k$ (resp. $\leq 64K^2/k$), we get $\#G \leq 112K^2$ (resp. $\leq 198K^2$), once $l \geq 5$, and $\#G \leq 114K^2 + 24$ (resp. $\leq 200K^2 + 22$) when l = 4 as in the proof of Lemma 2.5.

Acknowledgment. I am grateful very much to Professor Gang Xiao and Professor Zhi-Jie Chen for their advice, encouragement and help, and to the referee for pointing out several inaccuracies and grammatical mistakes in the original version of the manuscript.

References

- Bombieri, E., Canonical models of surfaces of general type, Publ. math., Inst. Hautes Etud. Sci., 42 (1973), 171-219.
- [2] Chen, Z. J., Bounds of automorphism groups of genus 2 fibrations, Tohoku Math. J., 46 (1994), 499-521.
- Hurwitz, A., Uber algebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann., 41(1893), 403-442.
- [4] Nakajima, S., On Abelian automorphism groups of algebraic curves, J. Lond. Math. Soc., II. Ser., 36 (1987), 23-32.
- [5] Xiao, G., On abelian automorphism groups of surfaces of general type, Invent. Math., 102 (1990), 619-631.
- [6] Xiao, G., Bound of automorphisms of surfaces of general type, I, Annals of Math., 139 (1994), 51-77.