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THE COMPLETE LANGLANDS PARAMETERS CORRESPONDING TO
THE REPRESENTATIONS OF THE CLASSICAL GROUPS WITH
INTEGRAL REGULAR INFINITESIMAL CHARACTERS***
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Abstract

The authors determine all the complete Langlands parameters corresponding to the rep-
resentations of the classical groups with integral regular infinitesimal characters, and get all
L-packets in that case.
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§1. Complete Langlands Parameters and L-Packets

In this section we review some basic facts from [1]. We denote the sets of real numbers,
complex numbers and integers by R, C and Z, respectively.

Suppose that G is a connected complex reductive algebraic group. We have an extended
group GT for G, and VG' is an E-group for GT'. We denote the set of Langlands parameters
and the set of geometric parameters for VG by P(YG') and X (VGT), respectively. There
is a natural map from P(YG') to X (YG'). It induces a bijection from equivalence classes
of Langlands parameters to geometric parameters (see [1, Proposition 6.17]). Write ®(YG")
for the set of equivalence classes of them.

Fix ¢ € P(VG"). Associated with ¢ we have a pair (y,A) € (YG'' =V G) xV g satisfying
certain conditions (see [1, Proposition 5.6]). We write ¢ = (y, A). Define

LN ={g€YG | Ad(g)A = A}, K(y) = centralizer in G of y,
\/G¢ = K(y) N L()\).

v . vGaes

Then Ag’c = ﬁ is the Langlands component group for ¢, and A;)C’alg == Gifl)g)o is the
universal component group for ¢. Here VG?® is the algebraic universal cover of VG, i.e.,
there is a short exact sequence 1 — m (VG)*8 — VG318 — VG — 1 and sz)lg is the

inverse imagine of VG, in VG*8.

T

Definition 1.1. A complete Langlands parameter for VG' is a pair (¢,7) with T an

irreducible representation of Algc’alg, Two such parameters are called equivalent if they are
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conjugate under the obvious action of YG*&. We write Z(YG') = Z*(G/R) for the set
of equivalence classes of complete Langlands parameters. Here z € Z(YG) is the second
invariant of VGV,

For an extended group G' of G, we have the canonical covering G, i.e., there is a short
exact sequence 1 — 71 (G)*" — G — G — 1. The group of continuous characters
of 1 (G)® is naturally isomorphic to the set of elements of finite order in Z(VG)%% (see [1,
Lamma 10.2]). Here 07 is the automorphism of Z(“@) induced by any automorphism of VG
coresponding to the first invariant a of VGT.

A canonical projective represetation of a strong real form of G' is a pair (7,d), with
§ a strong real form of G'' and 7 an admissible representation of G(R,§)*". Suppose
z € Z(VG)?2fin. We define 11*(G') = T1I*(G/R) to be the set of infinitesimal equivalence
classes irreducible canonical projective representation of type z.

An important consequence of [1] is the following theorem:

Theorem 1.1 (see [1, Theorem 10.4]). Suppose that VG* is an E-group for G*'. Write z
for the second invariant of the E-group. Then there is a natural bijection p between =% (G /R))
and II*(G/R).

Suppose that (7(£),d(€)) is the imagine of £ € Z*(G/R) under the bijection p in the
theorem. Let M () be the standard representation with the Langlands quotient 7(¢), and

KII*(G/R) free Z-module with the base II*(G/R). Then M () = > ome(n,9r(n)
n€=*(G/R)
in KTI*(G/R), where 0 < m,.(n,&) € Z.

Definition 1.2. Fizx an equivalence class ¢ € ®*(G/R) of Langlands parameters. We
define the L-packet of ¢ as

5 ={(m().8(6) | €= (6,7), 7€ AT™E}.
Here z is the second invariant of VGT.
According to Chapter 6 in [1], X (YGT) = Up X (0,YGY) with O the semisimple G-orbits
in Vg. X(0,YG") has a smooth complex algebraic variety structure in a natural way. The
open and closed VG-orbits on X (YGT) have special meanings.

Theorem 1.2 (see [1, Proposition 1.11, 22.9, (7.11) and Corollory 15.13]). Let ¢,¢’ €
®*(G/R) be two Langlands parameters, and sy, sy C X(YGY) the corresponding YG-orbits.
Then

(a) ¢ is tempered if and only if sy is open in X (VGV). In this case
ME = > mnorn)
m(n) €M

for any w(§) € T} If 54, 54 belong to the same X;(0,YG") (see [1, Proposition 6.24]), there
exists w(§) € 113 and m(n) € 113, such that w(§) is a composition factor of M(n).

(b) If s¢ is closed, w(§) must not be any composition factor of M(n) for any w(§) € 113
and m(n) ¢ 113.

In the sense of the theorem, we can say that tempered representations are “small” and
representations described by closed YG-orbits on X (VG') are “large.” “small” representa-

tions must be unitary.
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§2. Geometric Parameters of Representations of the Classical Groups

Write Diag[Ay, Ag, - -+ , Ay] for the block diagonal matrix

Ay
Az
Ay,
and I,, for the unit matrix of order n. Define
ap = (detal)~wal, al, = Diag[I,, — I,

by, = Diag[—1Izp, Io(n—p)+1), ¢p = Diag[ly, =1y, Iy, —I_p),
dp = Diag[lgp, _12(71717)]7 d;)/ = Diag[12p+1, —12(71,1,),1],
dl, = (detdt)~ == d, d... = dpnDiag[—1, In_1],

0 I
Ak = Cpi = dyp, = <—Ik g)

Suppose that G is a complex connected semisimple Lie group. Let ¢ be a real form of G,
and 6 be the corresponding Cartan involution. Write K = G? and G(R) = G for the set
of fixed points of G under the actions of 6 and o, respectively.

Theorem 2.1. The sets of equivalence classes of Cartan involutions for the classical

groups are listed as the following Table 1.

Table I
The proof is immediately by [2] and direct verifications. For the complex classical groups,
it is well-known that

VSL(n,C) = PGL(n,C), YSO(2n+1,C) = SP(n,C), YSO(2n,C) = SO(2n,C).

From the knowledge of based root data (see [1, Definiition 2.10]) of the classical groups
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and definitions, we have
Theorem 2.2. All of the extended groups and E-groups for the classcal groups are

A (1w D) =Y Ay (£1,1), B,(1,1) =Y B,(1,£1),
Cn(1,£1) =V CL(1,1), D, (£1,4+1) =Y D, (1, £1).

Here A, (1,w;I) and YA, (1,I) denote the extended groups with invariants (1,w;I) and the
E-group with invariants (1,1) for SL(n, C), respectively. A, (1,w;I) =Y A, (1,I) means that
VA, (1,1) is the E-group for A, (1,w;I), others are similar. YA, (£1,1), VB, (1,1), VCy,(1,1),
VD (+1,1) are L-groups.

It is easy to know that the regular dominant coweight set of the groups G = SL(n, C),
SO(2n 4+ 1,C) and SP(n,C) are

P (SL(n,C)) = {Z % +Ai —0i1 i) By | i € Z,

i=1
n

ZAizo, 0>/\2>/\3>--~>/\n},

i=1
Pt(SO(2n+1,0)) = {ZV_IAZ'(E%fl,% —Esi9i-1) | i €Z,

i1

)\1>/\2>~~>/\n>0},

n

A
P (SP(n,C)) = {Z(?l + X — 01 Xi)(Eii — Entinti) | Ni € Z,
i=1

A
?1+An>0>)\2>>\3>--->)\n}.

Here E;; is the square matrix with entry 1 where the i-th row and the j-th column meet,
all other entries being 0.

Fix an E-group (VG',S) for the complex classical group G, Y6 € S, and A € PI*(VG).
Then P(A) is a Borel subgroup of YG(\) =Y G (here we used the nations of [1], Theorem
6.16). Now O =Y G - X\ CY g is an integral regular semisimple orbit. We will give a detailed
description of X(0,YGTY) in this case. Choose the Weyl group W of VG and the function
w(w), w € W as in §1 of [4] for certain Cartan involution € of VG.

From now on, we set

Ay
Idiag[A1, Ay, -+, Ay = 4 ’
Ap
1
1 1 1 !

X = 1 ) Y(l >’ Zl( —1)’ ZQ(_]‘ >,

1
Yn - Dlag[yv Yv aYL Wn = Idlag[l’l’ ’1]

— —

We define some sets for various (YGT,S) as follows.
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1) (YGT,8) =V A,(1,1), 0 = a”). Set

Agf),()\) = {(apa[_nlﬂ] V8, 4/ a,(,l)((,u)curar(,u*1 A | w=w(w),we W},

0<p<[n/2, 0<r<p,
w’!‘ = Dia‘g[YT’7In—27’—17 (_1)7’]’

Diag[ly,, —€1, €2, , —€p—2r, €p—2r 11,
€p—2r42," ", €n—2r—1, (71)T€n—2r] if b= 2ka p> 2T7
Diag[IZM €1,€2," " ,€Ep—2r—1, (_1)T€n72r} 1f p= Qka p S 27“,
Qr = Diag[IQ’m —€1, —€2, " — €p_2r, €p_2r41,
€p727‘+27 L, €p—2r—1, <_1)T€n72'f] lf pP= 2k + 17 P > 27",
Diag[l, 1,V —1l, Iy pi1, €1,
€2, ,€pn—2r—1, (_1)T6n—2r] if p= 2k + 1, p<2r

where ¢; = +1 and the number of ¢; equal to —1is p —r.
Choose two subsets of {Aélz()\) |0<r<p}
AP = (9,97 ), A = {(y, 97 M)
(9°)% = Idiag[vV=1W,, 1,V =1W,,_, 1],
(gC)Q = Diag[_617 €2, , —€p, €pt1,Epp2, 7671]7

where ¢; = +1, and the number of ¢; equal to —1 is p.
2) (VGT,8) =V A, (—1,1), 0 = a'?. Set

AP = {0/ aP (@wra,w X)) | w=w(w),we W0 < r < [n/2)),

I or Diag[—1I3, I, o] if n=2k, r =k,
Qp = .
I if not,

w, = Diag[V=1Y, I,,_,].
Choose two subsets of {A§22(/\), 0<r<in/2]}:
AP = {6,950}, AP = (),
(9°)? = Idiag[v/—1Wy, 1, V—1W,](if n =2k +1),
(9°)% = V=1W, or (¢°)? = Idiag[—v—=1Wa, V=1W,,_,].
If n = 2k, set
AP = {(am 8, \Ja @A | w = w(w),we W},
A0 = (awe Y8,9° - N) € AT, AP = (@b ) € APV (),

1 0 0 0 -~ 0 0 0

o 0 1 0 -~ 0 0 0

w2 | O 0 0 0 0 1 0
@rX=10 1 0o o 0 0 0
o 0 0 1 0 0 0
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3) (VGT,S) =V B,(1,1), 0 = V. Set

BY () = {(cpet Y0, /e @)matraw A | w = w(w),w e W}
0<p<[n/2l, 0<r+4+s<p),

Y.
025 IZS
w _ In72sf2r
s — )
’ Y,
_IQS 025
In—QT—Zs
ar,s = Diag[a;. _, a, /] (p is even or p is odd but p > 2r),
Diag[Ierrzs, —€1, €2, ", —€p_2r_2s,
a/ — 6p72r72s+17 €p72r72s+27 e >€n72r72s] lf P > 2r + 237
e Diag[l2r+2sa €1,€2," " 76n—27‘—2s] if 2r< p < 2r +2s,

or p < 2r, p=2k,

ars = Diaglal’ ;. al ]

s @rs] (pisoddand p < 2r),
a, , = Diag[I,_1, V—1Is, Iopio5—p—1,€1,€2" »€n—2r—25),
a;n/,ls = Diag[—’p—l, 7\/j112712r+257p71a €1,€2, ", En_2r—2s)-
Here ¢; = £1, and the number of ¢; equal to —1is p—r — s.
Choose two subsets of {Bé}g,s()\) 0<p<[n/2], 0<r+s<ph

BMV(N) = (y,9° - N, BN = {(y,9°- M},
OP Ip
o0\2 __ In—p
(g ) - 7Ip Op )
In_p
(90)2 = Diag[g/7 gl]’ g/ = Diag[_eh —€2, ", —€p, Ept1,€pt2, 76n]7

where the number of €; equal to —1 is p.
If 6 = cSP, set

Bn{ls(A) = {(¥s, cgll)(<,u)(,ur75czr75w*1 A ] w=w(w),weWH0 < 2r+s<n),

)

Qpr s = Diag[l2'm €1,€2," " 7687]774727‘78) [2ra €1,€2," " 7€S7In727‘78](6i = il),

V-1y,
V-1l
w _ In—2r—s On—27’—s
r,s \/jer
V-1,

On—2r—s Iy _or s
Choose two subsets of {B,(Llls()\) 0<r+s<p}:
B () = (9,2, BIE() = {(*6,9° N},
(9°)* = Idiag[v/—1Diag[e, €2, - , €], V—1Diagler, €2, - - , €,]](€; = £1).
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4) (GT,8) =V C,(1,1), 6 = bV, Set

Cl(%l%s()‘) = {(bpb[_(rlb—i-l)/Z] 0, \/bigl)(w)wnsansw_l A w=w(w),we W}
(0<p<[n/2], 0<r+[(s+1)/2] <p),

Wr.s = Dlag[X7 s aXa Zla to 7Z1aI2n74'r72s; (_1)8];
———— e —
r s
Diag[ly,yos, €112, €2la, -+, €p_op_2512,1] if p<2r+s,
Qp s = Diag[l4r+237 —e1ly, —ealn, - -+, _ep—27'—5127 €p—2r—s+112a
6p—27‘—8+2[2’ e 7€n—2r—8127 ]-] if p> 2r + S,

where ¢; = +1, and the number of ¢; equal to —1isp—r —[(s+1)/2].
Choose two subsets of {C,(,}Q,s()\), 0<p<[n/2], 0<r+[(s+1)/2] <p}:

CP N = (0% 0, O = {(.9° - N}
(9°)* = Diag[Z1, - , Z1, Isns1-4p), (9;)2 = Diagle1 I, €215, -+ , €nl2, 1],
———
2p

where the number of ¢; = +1 equal to —1 is p.
Theorem 2.3. Suppose O =V G-\ CY g for X € PFT(YG). Then e(O) = exp(2mi)) is
independent of A € O. For the E-group (VGT,8) in Theorem 2.2, the set A of the VG-orbits

on X (0,YGY) are in Table 11, where V6 € S. In paticular, we have given the open and closed
orbits.

Table 1T
Proof. Since the proof is fairly similar for all the cases, we shall give the details only in
the case (VGT,S) =V C,(1,1). Then VG = SO(2n+1, C). First we calculate the K-orbits of
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Borel subgroups when 6 = bz()l) by the theory of [4]. Now in the nations of [4], G, = SO(2n+
1). Chooset = {(t1,t2, - ,tn) | t; € R}, where (t1,t2, - ,t,) = Diag[t1 Zs,taZa, - - , tnZa].
The root system of G with respect to ¢t is A = {e; —ej, £(ej +ex),te; |1 <i#j<n,1<
j <k < n}. Here e; acts on t as follows: e;(t1,ta, -+ ,tn) = —v/—1t;.

Set P={e; —ej,e;+ej,er |1 <i<j<mn,1<k<n} for the set of positive roots and
write B for the corresponding Borel subgroup. The Weyl group is W = S, - (Z2)™ (semi-
direct, while (Z3)™ is the direct sum of n cyclic groups of order 2 ). Set P = (i1,i2, - ,in) €
S, and A = (e1, €2, -+ ,€,) € (Za)"(e; = £1). Then w = PA operates on ¢ as follows:
w(t1,ta, -+ tn) = (€, tiy, €inlin, -+ €0 L0, )-

For 6 = b](gl)(O <p<mn), wehave 0 | t = id and 0 ow = w for w € W. One can choose
a representative in each conjugacy class of elements of order two in W from [5] and get the
set Wo = {wys = P,As | 0 < 2r +s < n}, where P, = (12)(34) --- (2r — 1, 2r).

AS:(la"'717_17"'7_1715"'a1)'
—_——— —— ——
2r s

For w, s € Wy, choose w, s = w(w,s) € N(T') as 4) before the theorem. Then
— e(wr,s)wr,s = { Diag[‘[‘lk? _I4712n*4k*3] if b= 2k + 13 r> kv

0 I if not,
h;r = {(tlatlatQatQa e 7t7‘7t7’>07 e ,07t27"+s+1ﬂt27°+5+27 e ’tn) | ti € R}7
——
S
h,,; = {(tlv _t17t27 _t27 e 7t7‘7 _tT7t2T+17t2T+27 e 7t27‘+5707 tee 70) | tl S R}7
———
n—2r—s
T = {Diag[a(t1), a(t1), a(te), a(tz), -, alt,),
a(ty), Ias, a(toryst1), 0tarista), - a(ty), 1]},
TJ = {Diag[a(tl)v a(_tl)a Ck(tz), a(_tQ)’ e aa(tr)a
a(—=t.), altorsr), a(tars2), - altorss), lon—ar—2s+1]},
cost sint
where a(t) = (—sint cost) ’

~

T ={acTt|a®>=ay"}
Diag[+1y, -+ 14, Ins, £1o, - ,£15,1] if p=2k or p=2k+1,p > 2r,

- r n—2r—s
0 if not.
The set of elements of ij which are not congruent modulo T to each other is
To = {Diag[li 106, £12,- - , +15,1]}.
—_———
n—2r+s

We must make sure if g € fo lies in exp+/—1p. From the knowledge of quadratic forms
we know that B(Adg1X,Y) and B(Adg>X,Y) have the same siganatures iff the Jordan
canonical forms of ¢g; and g, have the same numbers of diagnal elements equal to —1,
where g1,g92 € SO(2n + 1), and B(,-) is the Killing form. So w, sa,s € exp(v/—1p) iff
0<r+][(s+1)/2] <pand a,s as 4) shows by Proposition 8 and Remark of [4].

Since t is a fundamental Cartan subalgebra, the closed K-orbits, equivalently, the open
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B-orbits on the flag manifold B (see [3, Corollary of Proposition 2]) correspond to wp o = 1,
and the number of them is (Z)

For the unique open K-orbit, the corresponding dimn; (see (44) of [4]) should be the
maximal. Suppose p < [n/2]. Then for wo 2, = Agp € W, P7' = {e; —ej,e; +ej,e | 1 <
i <2p,i<j<mn1l<k<2p} (see (42) of [4]). It is easy to see dimny = 4p(n — p). By
comparing the dimensions and ranks we know that the corresponding K-orbit is open.

Now we can come to the conclusion by the proof of Proposition 6.16 in [1].

§3. The Complete Langlands Parameters
and L-Packets of the Classical Groups

Suppose that G is a connected semisimple complex classical group. YG' is an E-group
for an extended group G'. Choose a Langlands parameter ¢ = (y,g - A) in Table II with
y € VG =V G and A € P{*(VG). Then 6, = Ady|"G is a Cartan involution of VG and
K(y) = K is the set of the fixed points. T¢ = L(\) (section 1) is a Cartan subgroup of VG
and g-\ represents a K -orbit of Borel subgroups. In the nations of [4], we have T' = K (y)NT
and g = ywa € /[®], w = w(w), for some w € W, a = (§,(w)w)~!. In fact, we have
made 6, (g) = g~! by the appropriate choice of g.

Theorem 3.1. In the setting of descriptions above, set 0, = 0, ow|® and T, is the set
fized points of 0, in T. Then Ag’c’alg =dTelg /(dralg),.

Proof. Since ) is regular and semisimple, we have VG = K(y) N L(g - \) = (¢Tg=1)%.
If v = gtg~! €Y Gy for some t €T, then 6, o Adg>(t) = t, i.e., 6, o w(t) = t because of
0y(z) =z and 0,(g) = g~ . So VG4 = g'T,,g~ ! and we come to the conclusion.

According to [1], the Langlands parameter ¢ = (y,g - A) in Table II describes the repre-
sentations with the infinitesimal character A.

Theorem 3.2. Suppose that G is a semisimple connected complex classical group, and
VGT is an E-group for an extended group G'. z is the second invariant of YG*. Choose
A€ P*(MG), O =Y G- \. Then the set of infinitesimal equivalence classes irreducible
canonical projective representation of G of type z with the infinitesimal character A is in
the following Table 111. Obviously this table specifically describes all the the L-packets in this
case.

Proof. We only give the proof in the case of Cy,(1,+1) =Y C,,(1,I). Others are similar.

Now YG' = SO(2n + 1,C). Choose A € Pi*(YG) and ¢ = (y,9-A) € B,()?T),S. Then
e(A\) = I and L()\) = exp%. Here t = {(t1,ta, -~ ,t,) | t; € C}, (t1,ta, - ,tn) =
Diaglt1 Za,t2 72, -+, tnZa).

It is easy to prove the following fact:

a) In the setting of Theorem 3.1, write ¥* = {X €t | 0,(X) = £X}, dﬁ; =
{expX | X €t;, 2X € X,(?T)}. Then 9T, is generated by exp® and 9T, .

b) For a Langlands parameter ¢ = (y,g - A), if g has the form g = \/W €
V/[®0], then Ag’c’alg ~ Al;oc’alg, where ¢o = (y,90 - A), go = y/woag € /[Po].

Because of b), it is sufficient to consider only the case of g = | /W, G 5.

dt;tr s {(tlatla e atrvtr707 T 707t27“+s+1;t27’+s+27 T 7tn)}7
, ———

S
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dt;T,S = {(tla _t17t2> _t27 e 7t’r‘7 _tr>t2r+17t27‘+27 e 7t27‘+s>07 e 70)}

Table ITI
By a) we have

dTUjm = {Diag[a(t1), a(tr), a(tz), a(ts), -, at,), alt),
:|:Ig, cee ,ﬂ:[z,()l(tg,«+s+1), cee ,oz(tn), 1] | t; € C}
—_————

S

Here
cost sint
oft) = (—sint cost) ’
But 7, (YG)& = {£1}, so

dflj:)lrg,s = {Diag[a(tl)’ a(tl)’ Oé(tg), Oé(tg), t ,Oé(t,-), a(tT')v
:l:IQ, ce 7:l:.[2,06(t2r+5+1)7 v 7Ol(tn)7 :tl] | t; € C}
——_— —

Obviously Ai;c’alg — drals j(drale yo ~ 75T Now by the representation theory of finite

Wi, s Wy, s

groups we know there is a bijection between Al¢*8 and Z5t.
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