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Abstract

The authors determine all the complete Langlands parameters corresponding to the rep-
resentations of the classical groups with integral regular infinitesimal characters, and get all

L-packets in that case.
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§1. Complete Langlands Parameters and L-Packets

In this section we review some basic facts from [1]. We denote the sets of real numbers,

complex numbers and integers by R, C and Z, respectively.

Suppose that G is a connected complex reductive algebraic group. We have an extended

group GΓ for G, and ∨GΓ is an E-group for GΓ. We denote the set of Langlands parameters

and the set of geometric parameters for ∨GΓ by P (∨GΓ) and X(∨GΓ), respectively. There

is a natural map from P (∨GΓ) to X(∨GΓ). It induces a bijection from equivalence classes

of Langlands parameters to geometric parameters (see [1, Proposition 6.17]). Write Φ(∨GΓ)

for the set of equivalence classes of them.

Fix ϕ ∈ P (∨GΓ). Associated with ϕ we have a pair (y, λ) ∈ (∨GΓ −∨G) ×∨g satisfying

certain conditions (see [1, Proposition 5.6]). We write ϕ = (y, λ). Define

L(λ) = {g ∈∨G | Ad(g)λ = λ}, K(y) = centralizer in ∨G of y,

∨Gϕ = K(y) ∩ L(λ).

Then Aloc
ϕ =

∨Gϕ

(∨Gϕ)0
is the Langlands component group for ϕ, and Aloc,alg

ϕ =
∨Galg

ϕ

(∨Galg
ϕ )0

is the

universal component group for ϕ. Here ∨Galg is the algebraic universal cover of ∨G, i.e.,

there is a short exact sequence 1 −→ π1(
∨G)alg −→ ∨Galg −→ ∨G −→ 1 and ∨Galg

ϕ is the

inverse imagine of ∨Gϕ in ∨Galg.

Definition 1.1. A complete Langlands parameter for ∨GΓ is a pair (ϕ, τ) with τ an

irreducible representation of Aloc,alg
ϕ . Two such parameters are called equivalent if they are

Manuscript received January 8, 1994.
*Department of Mathematics, Nankai University, Tianjin 300071, China.

**Department of Mathematics, Beijing University, Beijing 100871, China and Department of Mathematics,
the Northwest Normal University, Lanzhou 730070, China.

***Project supported by the National Natural Science Foundation of China



54 CHIN. ANN. OF MATH. Vol.17 Ser.B

conjugate under the obvious action of ∨Galg. We write Ξ(∨GΓ) = Ξz(G/R) for the set

of equivalence classes of complete Langlands parameters. Here z ∈ Z(∨G) is the second

invariant of ∨GΓ.

For an extended group GΓ of G, we have the canonical covering Gcan, i.e., there is a short

exact sequence 1 −→ π1(G)can −→ Gcan −→ G −→ 1. The group of continuous characters

of π1(G)can is naturally isomorphic to the set of elements of finite order in Z(∨G)θZ (see [1,

Lamma 10.2]). Here θZ is the automorphism of Z(∨G) induced by any automorphism of ∨G

coresponding to the first invariant a of ∨GΓ.

A canonical projective represetation of a strong real form of GΓ is a pair (π, δ), with

δ a strong real form of GΓ and π an admissible representation of G(R, δ)can. Suppose

z ∈ Z(∨G)θZ ,fin. We define Πz(GΓ) = Πz(G/R) to be the set of infinitesimal equivalence

classes irreducible canonical projective representation of type z.

An important consequence of [1] is the following theorem:

Theorem 1.1 (see [1, Theorem 10.4]). Suppose that ∨GΓ is an E-group for GΓ. Write z

for the second invariant of the E-group. Then there is a natural bijection p between Ξz(G/R)

and Πz(G/R).

Suppose that (π(ξ), δ(ξ)) is the imagine of ξ ∈ Ξz(G/R) under the bijection p in the

theorem. Let M(ξ) be the standard representation with the Langlands quotient π(ξ), and

KΠz(G/R) free Z-module with the base Πz(G/R). Then M(ξ) =
∑

η∈Ξz(G/R)

mr(η, ξ)π(η)

in KΠz(G/R), where 0 ≤ mr(η, ξ) ∈ Z.

Definition 1.2. Fix an equivalence class ϕ ∈ Φz(G/R) of Langlands parameters. We

define the L-packet of ϕ as

Πz
ϕ = {(π(ξ), δ(ξ)) | ξ = (ϕ, τ), τ ∈ Âloc,alg

ϕ }.

Here z is the second invariant of ∨GΓ.

According to Chapter 6 in [1], X(∨GΓ) = ∪OX(O,∨GΓ) with O the semisimple ∨G-orbits

in ∨g. X(O,∨GΓ) has a smooth complex algebraic variety structure in a natural way. The

open and closed ∨G-orbits on X(∨GΓ) have special meanings.

Theorem 1.2 (see [1, Proposition 1.11, 22.9, (7.11) and Corollory 15.13]). Let ϕ, ϕ′ ∈
Φz(G/R) be two Langlands parameters, and sϕ, sϕ′ ⊂ X(∨GΓ) the corresponding ∨G-orbits.

Then

(a) ϕ is tempered if and only if sϕ is open in X(∨GΓ). In this case

M(ξ) =
∑

π(η)∈Πz
ϕ

mr(η, ξ)π(η)

for any π(ξ) ∈ Πz
ϕ. If sϕ, sϕ′ belong to the same Xj(O,∨GΓ) (see [1, Proposition 6.24]), there

exists π(ξ) ∈ Πz
ϕ and π(η) ∈ Πz

ϕ′ such that π(ξ) is a composition factor of M(η).

(b) If sϕ is closed, π(ξ) must not be any composition factor of M(η) for any π(ξ) ∈ Πz
ϕ

and π(η) /∈ Πz
ϕ.

In the sense of the theorem, we can say that tempered representations are “small” and

representations described by closed ∨G-orbits on X(∨GΓ) are “large.” “small” representa-

tions must be unitary.
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§2. Geometric Parameters of Representations of the Classical Groups

Write Diag[A1, A2, · · · , An] for the block diagonal matrix
A1

A2

. . .

An


and In for the unit matrix of order n. Define

ap = (det a′p)
− 1

n a′p, a′p = Diag[Ip,−In−p],
bp = Diag[−I2p, I2(n−p)+1], cp = Diag[Ip,−In−p, Ip,−In−p],
dp = Diag[I2p,−I2(n−p)], d′′p = Diag[I2p+1,−I2(n−p)−1],

d′p = (det d′′p)
− 1

2n d′′p , d′nn = dnnDiag[−1, I2n−1],

akk = ckk = dkk =

(
0 Ik

−Ik 0

)
.

Suppose that G is a complex connected semisimple Lie group. Let σ be a real form of G,

and θ be the corresponding Cartan involution. Write K = Gθ and G(R) = Gσ for the set

of fixed points of G under the actions of θ and σ, respectively.

Theorem 2.1. The sets of equivalence classes of Cartan involutions for the classical

groups are listed as the following Table I.

Table I

The proof is immediately by [2] and direct verifications. For the complex classical groups,

it is well-known that

∨SL(n,C) = PGL(n,C), ∨SO(2n+ 1,C) = SP (n,C), ∨SO(2n,C) = SO(2n,C).

From the knowledge of based root data (see [1, Definiition 2.10]) of the classical groups
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and definitions, we have

Theorem 2.2. All of the extended groups and E-groups for the classcal groups are

An(±1, ωiI) →∨An(±1, I), Bn(1, I) →∨Bn(1,±I),

Cn(1,±I) →∨Cn(1, I), Dn(±1,±I) →∨Dn(±1,±I).

Here An(1, ωiI) and ∨An(1, I) denote the extended groups with invariants (1, ωiI) and the

E-group with invariants (1, I) for SL(n,C), respectively. An(1, ωiI) →∨An(1, I) means that
∨An(1, I) is the E-group for An(1, ωiI), others are similar. ∨An(±1, I), ∨Bn(1, I),

∨Cn(1, I),
∨Dn(±1, I) are L-groups.

It is easy to know that the regular dominant coweight set of the groups G = SL(n,C),

SO(2n+ 1,C) and SP (n,C) are

P++
∗ (SL(n,C)) =

{ n∑
i=1

λ1

n
+ λi − δi1λi)Eii | λi ∈ Z,

n∑
i=1

λi = 0, 0 > λ2 > λ3 > · · · > λn

}
,

P++
∗ (SO(2n+ 1,C)) =

{ n∑
i=1

√
−1λi(E2i−1,2i − E2i,2i−1) | λi ∈ Z,

λ1 > λ2 > · · · > λn > 0
}
,

P++
∗ (SP (n,C)) =

{ n∑
i=1

(
λ1

2
+ λi − δi1λi)(Eii − En+i,n+i) | λi ∈ Z,

λ1

n
+ λn > 0 > λ2 > λ3 > · · · > λn

}
.

Here Eij is the square matrix with entry 1 where the i-th row and the j-th column meet,

all other entries being 0.

Fix an E-group (∨GΓ,S) for the complex classical group G, ∨δ ∈ S, and λ ∈ P ∗∗
+ (∨G).

Then P (λ) is a Borel subgroup of ∨G(λ) =∨ G (here we used the nations of [1], Theorem

6.16). Now O =∨G · λ ⊂∨ g is an integral regular semisimple orbit. We will give a detailed

description of X(O,∨GΓ) in this case. Choose the Weyl group W of ∨G and the function

ω(w), w ∈ W as in §1 of [4] for certain Cartan involution θ of ∨G.

From now on, we set

Idiag[A1, A2, · · · , An] =


A1

A2

· · ·
An

 ,

X =


1

1
1

1

 , Y =

(
1

1

)
, Z1 =

(
1

−1

)
, Z2 =

(
1

−1

)
,

Yn = Diag[Y, Y, · · · , Y︸ ︷︷ ︸
n

], Wn = Idiag[1, 1, · · · , 1︸ ︷︷ ︸
n

].

We define some sets for various (∨GΓ,S) as follows.
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1) (∨GΓ,S) =∨An(1, I), θ = a
(1)
p . Set

A(1)
p,r(λ) = {(apa−1

[n/2]
∨δ,

√
a
(1)
p (ω)ωrarω−1 · λ | ω = ω(w), w ∈ W},

0 ≤ p ≤ [n/2], 0 ≤ r ≤ p,

ωr = Diag[Yr, In−2r−1, (−1)r],

ar =



Diag[I2r,−ϵ1,−ϵ2, · · · ,−ϵp−2r, ϵp−2r+1,
ϵp−2r+2, · · · , ϵn−2r−1, (−1)rϵn−2r] if p = 2k, p > 2r,

Diag[I2r, ϵ1, ϵ2, · · · , ϵn−2r−1, (−1)rϵn−2r] if p = 2k, p ≤ 2r,
Diag[I2r,−ϵ1,−ϵ2, · · · − ϵp−2r, ϵp−2r+1,

ϵp−2r+2, · · · , ϵn−2r−1, (−1)rϵn−2r] if p = 2k + 1, p > 2r,

Diag[Ip−1,
√
−1I2, I2r−p+1, ϵ1,

ϵ2, · · · , ϵn−2r−1, (−1)rϵn−2r] if p = 2k + 1, p < 2r,

where ϵi = ±1 and the number of ϵi equal to −1 is p− r.

Choose two subsets of {A(1)
p,r(λ) | 0 ≤ r ≤ p}:

A(1),o
p (λ) = (y, go · λ), A(1),c

p (λ) = {(y, gc · λ)},

(go)2 = Idiag[
√
−1Wr, 1,

√
−1Wn−r−1],

(gc)2 = Diag[−ϵ1,−ϵ2, · · · ,−ϵp, ϵp+1, ϵp+2, · · · , ϵn],

where ϵi = ±1, and the number of ϵi equal to −1 is p.

2) (∨GΓ,S) =∨An(−1, I), θ = a
(2)
1 . Set

A
(2)
1,r(λ) = {(∨δ,

√
a
(2)
1 (ω)ωrarω−1 · λ) | ω = ω(w), w ∈ W}(0 ≤ r ≤ [n/2]),

ar =

{
I or Diag[−I2, In−2] if n = 2k, r = k,
I if not,

ωr = Diag[
√
−1Yr, In−r].

Choose two subsets of {A(2)
1,r(λ), 0 ≤ r ≤ [n/2]}:

A
(2),c
1 = {(∨δ, gc · λ)}, A

(2),o
1 (λ) = (∨δ, λ),

(gc)2 = Idiag[
√
−1Wk, 1,

√
−1Wk](if n = 2k + 1),

(gc)2 =
√
−1Wn or (gc)2 = Idiag[−

√
−1W2,

√
−1Wn−2].

If n = 2k, set

A
(2)
2 (λ) = {(akk∨δ,

√
a
(2)
2 (ω)ω−1 · λ | ω = ω(w), w ∈ W},

A
(2),o
2 (λ) = (akk

∨δ, go · λ) ∈ A
(2)
2 (λ), A

(2),c
2 (λ) = (a∨kkδ, λ) ∈ A

(2)
2 (λ),

(go)2 =



1 0 0 0 · · · 0 0 0
0 0 1 0 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 0 1 0
0 1 0 0 · · · 0 0 0
0 0 0 1 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 0 0 1


.
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3) (∨GΓ,S) =∨Bn(1, I), θ = c
(1)
p . Set

B(1)
p,r,s(λ) = {(cpc−1

nn
∨δ,

√
c
(1)
p (ω)ωr,sar,sω−1 · λ | ω = ω(w), w ∈ W}

(0 ≤ p ≤ [n/2], 0 ≤ r + s ≤ p),

ωr,s =


Yr

O2s I2s
In−2s−2r

Yr

−I2s O2s

In−2r−2s

 ,

ar,s = Diag[a′r,s, a
′
r,s] (p is even or p is odd but p ≥ 2r),

a′r,s =


Diag[I2r+2s,−ϵ1,−ϵ2, · · · ,−ϵp−2r−2s,

ϵp−2r−2s+1, ϵp−2r−2s+2, · · · , ϵn−2r−2s] if p > 2r + 2s,
Diag[I2r+2s, ϵ1, ϵ2, · · · , ϵn−2r−2s] if 2r ≤ p ≤ 2r + 2s,

or p < 2r, p = 2k,

ar,s = Diag[a′′r,s, a
′′′
r,s] (p is odd and p < 2r),

a′′r,s = Diag[Ip−1,
√
−1I2, I2r+2s−p−1, ϵ1, ϵ2 · · · , ϵn−2r−2s],

a′′′r,s = Diag[Ip−1,−
√
−1I2, I2r+2s−p−1, ϵ1, ϵ2, · · · , ϵn−2r−2s].

Here ϵi = ±1, and the number of ϵi equal to −1 is p− r − s.

Choose two subsets of {B(1)
p,r,s(λ) 0 ≤ p ≤ [n/2], 0 ≤ r + s ≤ p}:

B(1),o
p (λ) = (y, go · λ), B(1),c

p (λ) = {(y, gc · λ)},

(go)2 =


Op Ip

In−p

−Ip Op

In−p

 ,

(gc)2 = Diag[g′, g′], g′ = Diag[−ϵ1,−ϵ2, · · · ,−ϵp, ϵp+1, ϵp+2, · · · , ϵn],

where the number of ϵi equal to −1 is p.

If θ = c
(1)
n , set

B(1)
n,r,s(λ) = {(∨δ,

√
c
(1)
n (ω)ωr,sar,sω−1 · λ | ω = ω(w), w ∈ W}(0 ≤ 2r + s ≤ n),

ar,s = Diag[I2r, ϵ1, ϵ2, · · · , ϵs, In−2r−s, I2r, ϵ1, ϵ2, · · · , ϵs, In−2r−s](ϵi = ±1),

ωr,s =



√
−1Yr √

−1Is
In−2r−s On−2r−s√

−1Yr √
−1Is

On−2r−s In−2r−s

 .

Choose two subsets of {B(1)
n,r,s(λ) 0 ≤ r + s ≤ p}:

B(1),o
n (λ) = (∨δ, λ), B(1),c

n (λ) = {(∨δ, gc · λ)},

(gc)2 = Idiag[
√
−1Diag[ϵ1, ϵ2, · · · , ϵn],

√
−1Diag[ϵ1, ϵ2, · · · , ϵn]](ϵi = ±1).
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4) (∨GΓ,S) =∨Cn(1, I), θ = b
(1)
p . Set

C(1)
p,r,s(λ) = {(bpb−1

[(n+1)/2]
∨δ,

√
b
(1)
p (ω)ωr,sar,sω−1 · λ | ω = ω(w), w ∈ W}

(0 ≤ p ≤ [n/2], 0 ≤ r + [(s+ 1)/2] ≤ p),

ωr,s = Diag[X, · · · , X︸ ︷︷ ︸
r

, Z1, · · · , Z1︸ ︷︷ ︸
s

, I2n−4r−2s, (−1)s],

ar,s =

Diag[I4r+2s, ϵ1I2, ϵ2I2, · · · , ϵn−2r−2sI2, 1] if p ≤ 2r + s,
Diag[I4r+2s,−ϵ1I2,−ϵ2I2, · · · ,−ϵp−2r−sI2, ϵp−2r−s+1I2,

ϵp−2r−s+2I2, · · · , ϵn−2r−sI2, 1] if p > 2r + s,

where ϵi = ±1, and the number of ϵi equal to −1 is p− r − [(s+ 1)/2].

Choose two subsets of {C(1)
p,r,s(λ), 0 ≤ p ≤ [n/2], 0 ≤ r + [(s+ 1)/2] ≤ p}:

C(1),o
p (λ) = (y, go · λ), C(1),c

p (λ) = {(y, gc · λ)}
(go)2 = Diag[Z1, · · · , Z1︸ ︷︷ ︸

2p

, I2n+1−4p], (gcj)
2 = Diag[ϵ1I2, ϵ2I2, · · · , ϵnI2, 1],

where the number of ϵi = ±1 equal to −1 is p.

Theorem 2.3. Suppose O =∨ G · λ ⊂∨ g for λ ∈ P++
∗ (∨G). Then e(O) = exp(2πiλ) is

independent of λ ∈ O. For the E-group (∨GΓ,S) in Theorem 2.2, the set A of the ∨G-orbits

on X(O,∨GΓ) are in Table II, where ∨δ ∈ S. In paticular, we have given the open and closed

orbits.

Table II

Proof. Since the proof is fairly similar for all the cases, we shall give the details only in

the case (∨GΓ,S) =∨Cn(1, I). Then
∨G = SO(2n+1,C). First we calculate the K-orbits of
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Borel subgroups when θ = b
(1)
p by the theory of [4]. Now in the nations of [4], Gu = SO(2n+

1). Choose t = {(t1, t2, · · · , tn) | ti ∈ R}, where (t1, t2, · · · , tn) = Diag[t1Z2, t2Z2, · · · , tnZ2].

The root system of G with respect to t is ∆ = {ei − ej ,±(ej + ek),±ei | 1 ≤ i ̸= j ≤ n, 1 ≤
j < k ≤ n}. Here ei acts on t as follows: ei(t1, t2, · · · , tn) = −

√
−1ti.

Set P = {ei − ej , ei + ej , ek | 1 ≤ i < j ≤ n, 1 ≤ k ≤ n} for the set of positive roots and

write B for the corresponding Borel subgroup. The Weyl group is W = Sn · (Z2)
n (semi-

direct, while (Z2)
n is the direct sum of n cyclic groups of order 2 ). Set P = (i1, i2, · · · , in) ∈

Sn and A = (ϵ1, ϵ2, · · · , ϵn) ∈ (Z2)
n(ϵi = ±1). Then w = PA operates on t as follows:

w(t1, t2, · · · , tn) = (ϵi1ti1 , ϵi2ti2 , · · · , ϵintin).
For θ = b

(1)
p (0 ≤ p ≤ n), we have θ | t = id and θ ◦ w = w for w ∈ W . One can choose

a representative in each conjugacy class of elements of order two in W from [5] and get the

set W0 = {wr,s = PrAs | 0 ≤ 2r + s ≤ n}, where Pr = (12)(34) · · · (2r − 1, 2r).

As = (1, · · · , 1︸ ︷︷ ︸
2r

,−1, · · · ,−1︸ ︷︷ ︸
s

, 1, · · · , 1).

For wr,s ∈ W0, choose ωr,s = ω(wr,s) ∈ N(T ) as 4) before the theorem. Then

a0 = θ(ωr,s)ωr,s =

{
Diag[I4k,−I4, I2n−4k−3] if p = 2k + 1, r > k,
I if not,

h+
u = {(t1, t1, t2, t2, · · · , tr, tr, 0, · · · , 0︸ ︷︷ ︸

s

, t2r+s+1, t2r+s+2, · · · , tn) | ti ∈ R},

h−
u = {(t1,−t1, t2,−t2, · · · , tr,−tr, t2r+1, t2r+2, · · · , t2r+s, 0, · · · , 0︸ ︷︷ ︸

n−2r−s

) | ti ∈ R},

T+
w = {Diag[α(t1), α(t1), α(t2), α(t2), · · · , α(tr),

α(tr), I2s, α(t2r+s+1), α(t2r+s+2), . . . , α(tn), 1]},
T−
w = {Diag[α(t1), α(−t1), α(t2), α(−t2), · · · , α(tr),

α(−tr), α(t2r+1), α(t2r+2), · · · , α(t2r+s), I2n−4r−2s+1]},

where α(t) =

(
cos t sin t
− sin t cos t

)
,

T̂+
w = {a ∈ T+

w | a2 = a−1
0 }

=


Diag[±I4, · · · ,±I4︸ ︷︷ ︸

r

, I2s,±I2, · · · ,±I2︸ ︷︷ ︸
n−2r−s

, 1] if p = 2k or p = 2k + 1, p > 2r,

∅ if not.

The set of elements of T̂+
w which are not congruent modulo T−

w to each other is

T̂0 = {Diag[I4r+2s,±I2, · · · ,±I2︸ ︷︷ ︸
n−2r+s

, 1]}.

We must make sure if g ∈ T̂0 lies in exp
√
−1p. From the knowledge of quadratic forms

we know that B(Adg1X,Y ) and B(Adg2X,Y ) have the same siganatures iff the Jordan

canonical forms of g1 and g2 have the same numbers of diagnal elements equal to −1,

where g1, g2 ∈ SO(2n + 1), and B(·, ·) is the Killing form. So ωr,sar,s ∈ exp(
√
−1p) iff

0 ≤ r + [(s+ 1)/2] ≤ p and ar,s as 4) shows by Proposition 8 and Remark of [4].

Since t is a fundamental Cartan subalgebra, the closed K-orbits, equivalently, the open
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B-orbits on the flag manifold B (see [3, Corollary of Proposition 2]) correspond to w0,0 = 1,

and the number of them is
(
n
p

)
.

For the unique open K-orbit, the corresponding dimn1 (see (44) of [4]) should be the

maximal. Suppose p ≤ [n/2]. Then for w0,2p = A2p ∈ W , Pσ1
+ = {ei − ej , ei + ej , ek | 1 ≤

i ≤ 2p, i < j ≤ n, 1 ≤ k ≤ 2p} (see (42) of [4]). It is easy to see dimn1 = 4p(n − p). By

comparing the dimensions and ranks we know that the corresponding K-orbit is open.

Now we can come to the conclusion by the proof of Proposition 6.16 in [1].

§3. The Complete Langlands Parameters

and L-Packets of the Classical Groups

Suppose that G is a connected semisimple complex classical group. ∨GΓ is an E-group

for an extended group GΓ. Choose a Langlands parameter ϕ = (y, g · λ) in Table II with

y ∈ ∨GΓ −∨G and λ ∈ P ∗∗
+ (∨G). Then θy = Ady|∨G is a Cartan involution of ∨G and

K(y) = K is the set of the fixed points. T d = L(λ) (section 1) is a Cartan subgroup of ∨G

and g ·λ represents aK-orbit of Borel subgroups. In the nations of [4], we have T = K(y)∩dT

and g =
√
ωa ∈

√
[Φ0], ω = ω(w), for some w ∈ W, a = (θy(ω)ω)

−1. In fact, we have

made θy(g) = g−1 by the appropriate choice of g.

Theorem 3.1. In the setting of descriptions above, set θw = θy ◦w|dT and dTw is the set

fixed points of θw in dT . Then Aloc,alg
ϕ =dT alg

w /(dT alg
w )0.

Proof. Since λ is regular and semisimple, we have ∨Gϕ = K(y) ∩ L(g · λ) = (gdTg−1)θy .

If x = gtg−1 ∈∨ Gϕ for some t ∈d Tw, then θy ◦ Adg2(t) = t, i.e., θy ◦ w(t) = t because of

θy(x) = x and θy(g) = g−1. So ∨Gϕ = gdTwg
−1 and we come to the conclusion.

According to [1], the Langlands parameter ϕ = (y, g · λ) in Table II describes the repre-

sentations with the infinitesimal character λ.

Theorem 3.2. Suppose that G is a semisimple connected complex classical group, and
∨GΓ is an E-group for an extended group GΓ. z is the second invariant of ∨GΓ. Choose

λ ∈ P ∗∗
+ (∨G), O =∨ G · λ. Then the set of infinitesimal equivalence classes irreducible

canonical projective representation of G of type z with the infinitesimal character λ is in

the following Table III. Obviously this table specifically describes all the the L-packets in this

case.

Proof. We only give the proof in the case of Cn(1,±I) →∨Cn(1, I). Others are similar.

Now ∨G = SO(2n + 1,C). Choose λ ∈ P ∗∗
+ (∨G) and ϕ = (y, g · λ) ∈ B

(1)
p,r,s. Then

e(λ) = I and L(λ) = expdt. Here t = {(t1, t2, · · · , tn) | ti ∈ C}, (t1, t2, · · · , tn) =

Diag[t1Z2, t2Z2, · · · , tnZ2].

It is easy to prove the following fact:

a) In the setting of Theorem 3.1, write dt±w = {X ∈d t | θw(X) = ±X}, dT̃−
w =

{expX | X ∈d t−w , 2X ∈ X∗(
dT )}. Then dTw is generated by expdt+w and dT̃−

w .

b) For a Langlands parameter ϕ = (y, g · λ), if g has the form g =
√

θy(ω)ω0a0ω−1 ∈√
[Φ0], then Aloc,alg

ϕ ≃ Aloc,alg
ϕ0

, where ϕ0 = (y, g0 · λ), g0 =
√
ω0a0 ∈

√
[Φ0].

Because of b), it is sufficient to consider only the case of g =
√
ωr,sar,s.

dt+wr,s
= {(t1, t1, · · · , tr, tr, 0, · · · , 0︸ ︷︷ ︸

s

, t2r+s+1, t2r+s+2, · · · , tn)},
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dt−wr,s
= {(t1,−t1, t2,−t2, · · · , tr,−tr, t2r+1, t2r+2, · · · , t2r+s, 0, · · · , 0)}.

Table III

By a) we have

dT−
wr,s

= {Diag[α(t1), α(t1), α(t2), α(t2), · · · , α(tr), α(tr),
±I2, · · · ,±I2︸ ︷︷ ︸

s

, α(t2r+s+1), · · · , α(tn), 1] | ti ∈ C}.

Here

α(t) =

(
cos t sin t
− sin t cos t

)
.

But π1(
∨G)alg = {±I}, so

dT alg
wr,s

= {Diag[α(t1), α(t1), α(t2), α(t2), · · · , α(tr), α(tr),
±I2, · · · ,±I2︸ ︷︷ ︸

s

, α(t2r+s+1), · · · , α(tn),±1] | ti ∈ C}.

Obviously Aloc,alg
ϕ = dT alg

wr,s
/(dT alg

wr,s
)0 ≃ Zs+1

2 . Now by the representation theory of finite

groups we know there is a bijection between Âloc,alg
wr,s

and Zs+1
2 .
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