COMPUTATION OF $K_2 Z[\frac{1+\sqrt{-35}}{2}]^{**}$

QIN HOURONG*

Abstract

The author shows that $K_2 Z\left[\frac{1+\sqrt{-35}}{2}\right] \cong Z/2Z$. The method of proof is a generalization of the Tate's method.

Keywords K₂ group, Tate's method, Imaginary quadratic field1991 MR Subject Classification 19F15Chinese Library Classification O156.2

§1. Introduction

In general, it is not easy to determine the structure of K_2O_F for a number field F with the ring of integers O_F , even for a quadratic field. Let $F = Q(\sqrt{d})$ be an imaginary quadratic field. We know that K_2O_F is trivial for d = -1, -2, -3, -11 and $K_2O_F \cong Z/2Z$ for d = -7, -15 (see [10]). And K_2O_F is also trivial for d = -5, -19 (see [4]). In [7], the auther shows that K_2O_F is trivial too for d = -6. In this paper, we show that $K_2O_F \cong Z/2Z$ for d = -35.

§2. Preliminaries

Let F be a number field, O_F be its ring of integers. Denote by S_{∞} the set of Archimedean places of F. If $S \supseteq S_{\infty}$, we denote by O_S the ring of S-integers. For any $v \notin S$, $k(v) = O_S/P$, where P is the maximal ideal corresponding to the place v. Suppose that $v_1, v_2, \dots, v_n, \dots$ with $N(v_i) \leq N(v_{i+1})$ for all i are all finite places of F, where N(v) = #(k(v)). Let $S_n = \{v_1, v_2, \dots, v_n\} \bigcup S_{\infty}$. H. Bass and J. Tate^[1] show that there exists a positive integer m such that

$$K_2 O_F = \operatorname{Ker} \left(K_2^{S_m} F \xrightarrow{(\tau_v)} \prod_{v \in S_m \setminus S_\infty} k^{\cdot}(v) \right),$$

where $K_2^{S_m}F$ = the subgroup of K_2F generated by $\{x, y\}$ with $x, y \in O_{S_m}^{\cdot} = U$. Recall that $\tau_v\{x, y\} = (-1)^{v(x)v(y)} x^{v(y)} y^{-v(x)} \pmod{P}$

where P is the maximal ideal corresponding to v.

Suppose that the ideal P (corresponding to v) is principal, say $P = \pi O_S$. Let β be the map from U to k^{\cdot} given by $\beta(u) = u \pmod{\pi}$. Denote by U_1 the subgroup of U generated by $(1 + \pi U) \cap U$. J. Tate^[10] gives the following result.

Manuscript received December 30, 1993.

^{*}Department of Mathematics, Nanjing University, Nanjing 210093, China.

^{**}Project supported by the National Natural Science Foundation of China

Lemma 2.1. Suppose that W, C and G are subsets of U such that

(1) $W \subset CU_1$ and W generates U,

(2) $CG \subset CU_1$ and $\beta(G)$ generates k,

(3) $1 \in C \bigcap \operatorname{Ker} \beta \subset U_1$.

Then τ_v is bijective.

For the following lemma also refer to [10].

Lemma 2.2. Let F be an imaginary quadratic field. Let M be an ideal in O_F , the prime factorization of which involves only primes in S. Suppose $a, b \in U \cap M$ and $|a| + |b| < N(v)(NM)^{\frac{1}{2}}$. If $\beta(a) = \beta(b)$, then $a \in bU_1$. Especially, if $a, b \in U \cap O_F$, |a| + |b| < N(v) and $\beta(a) = \beta(b)$, then $a \in bU_1$.

Lemma 2.3. Suppose that we are given subsets $D \subset O_F$ and $W \subset O_F \cap U$. Put

$$E = \{ d - d' | d, d' \in D, \ d \neq d' \}.$$

If the ideal P (corresponding to v) is principal, then τ_v is bijective provided that D and W satisfy the following conditions:

(1) $(\#(D))^3 > N(v)^2$,

(2) $E \subset U$,

(3) $1 \in W$ and W generates U,

(4) If $e_1, e_2, e_3, e_4 \in E$ and $w \in W$, then

(i) $N(e_1e_2 - e_3e_4) < N(v)^2$, (ii) $N(e_1w - e_2) < N(v)^2$ or $e_1w/e_2 \notin \text{Ker}\beta$.

Proof. It follows from the proof of Lemma 3.4 in [1] that the conditons (1), (2) and (3) imply that $\text{Ker}\beta = \text{Ker}(U \to k^{\cdot}(v))$ can be generated by the following elements:

(I)
$$\frac{e_1e_2}{e_2e_4}$$
 $(e_1, e_2, e_3, e_4 \in E),$

(II) $\frac{e_1 e_1}{e_1}$ $(e_1, e_2 \in E, w \in W).$

Now, in view of Lemma 3.2 in [1], the result follows.

From now on, we suppose that $F = Q(\sqrt{-35})$. In this case, the class number h = 2, 2 is intert in O_F , $3O_F = Q_1Q_2$, where $Q_1 = (3, \frac{1+\sqrt{-35}}{2})$ and $Q_2 = (3, \frac{1-\sqrt{-35}}{2})$. Obviously, $Q_1 \neq Q_2$ and neither Q_1 nor Q_2 is principal. View Q_1 as a lattice in C. Then the maximum distance from Q_1 to C is $\sqrt{\frac{27}{7}}$. We will prove that τ_v is bijective if N(v) > 7. To do this, we divide all cases into three parts.

§3. Case One: $N(v) \ge 2801$

By a discusion similar to that in [10], we can easily show the following

Lemma 3.1. Let $W = \{u \in O_F \cap U | |u|^2 \leq 3N(v)\}$. Then W generates U.

Lemma 3.2. Choose d such that d > 0 and $d^2 = N(v)/13$. Put $D = \{x \in O_F | |x| \le d\}$ and $E = \{d-d' | d, d' \in D, d \ne d'\}$. Then E satisfies (2) and (4) of Lemma 2.3 if N(v) > 199. **Proof.** For any $e \in E$, there exist d and $d' \in D$ such that e = d - d'. Then $N(v) \le (d + v + d')^2 \le (d + d)^2 N(v) \ge N(v) \ge 0$.

 $(|d| + |d'|)^2 \le (4/13)N(v) < N(v)$. Consequently, $e \in U$.

On the other hand, if $e_1, e_2, e_3, e_4 \in E, w \in W$, then

$$N(e_1e_2 - e_3e_4) \le (|e_1e_2| + |e_3e_4|)^2 \le \left(\left(\frac{8}{13}\right)N(v)\right)^2 < N(v)^2$$

and

$$N(e_1w - e_2) \le (|e_1w| + |e_2|)^2 \le \left(\frac{4}{13}\right)N(v)(\sqrt{3N(v)} + 1)^2.$$

Note that if N(v) > 199, then $(\sqrt{3N(v)} + 1)^2 < (13/4)N(v)$. Hence, $N(e_1w - e_2) < N(v)^2$. Lemma 3.3. Let d > 0 and $D = \{x \in O_F | |x| \le d\}$. Then

$$\#(D) \ge 1 + 2[d] + 2\left[\frac{d}{35}\right] + 4[\sqrt{d^2 - 35 \cdot 1^2}] + 4[\sqrt{d^2 - 35 \cdot 2^2}] + \cdots + 4\left[\sqrt{d^2 - 35 \cdot \left[\sqrt{\frac{d}{35}}\right]^2}\right] + 2[\sqrt{4d^2 - 35 \cdot 1^2}] + 2[\sqrt{4d^2 - 35 \cdot 3^2}] + \cdots + 2[\sqrt{4d^2 - 35 \cdot \theta^2}],$$

where [x] denotes the greatest integer which $\leq x$ and

$$\theta = \begin{cases} \left[\frac{2d}{\sqrt{35}}\right], & \text{if } \left[\frac{2d}{\sqrt{35}}\right] \equiv 1 \pmod{2}, \\ \left[\frac{2d}{\sqrt{35}}\right] - 1, & \text{if } \left[\frac{2d}{\sqrt{35}}\right] \equiv 0 \pmod{2}. \end{cases}$$

Proof. In *D*, there are 1+2[d] rational integers; there are $2[d/\sqrt{35}]$ elements of the forms $x\sqrt{-35}$ ($x \in Z, x \neq 0$); there are

$$4\left[\sqrt{d^2 - 35 \cdot 1^2}\right] + 4\left[\sqrt{d^2 - 35 \cdot 2^2}\right] + \dots + 4\left[\sqrt{d^2 - 35\left[\frac{d}{\sqrt{35}}\right]^2}\right]$$

elements of the forms $x + y\sqrt{-35}$ $(x, y \in \mathbb{Z}, x \cdot y \neq 0)$; there are at least

$$2[\sqrt{4d^2 - 35 \cdot 1^2}] + 2[\sqrt{4d^2 - 35 \cdot 3^2}] + \dots + 2[\sqrt{4d^2 - 35 \cdot \theta^2}]$$

elements of the forms $\frac{1}{2}(x + y\sqrt{-35})$ $(x \equiv y \equiv 1 \pmod{2})$, where the definition of θ is the same as above.

Lemma 3.4. If $N(v) \ge 4693$, then τ_v is bijective.

Proof. Choose d such that $d^2 = N(v)/13$. We prove that if $N(v) \ge 4963$, then $(\#(D))^3 > N(v)^2$, so by Lemma 2.3 the result follows.

By Lemma 3.3,

$$\begin{split} \#(D) &\geq 1 + 2[d] + 2\left[\frac{d}{35}\right] + 4[\sqrt{d^2 - 35 \cdot 1^2}] \\ &+ 4[\sqrt{d^2 - 35 \cdot 2^2}] + \dots + 4\left[\sqrt{d^2 - 35\left[\frac{d}{\sqrt{35}}\right]^2}\right] \\ &+ 2[\sqrt{4d^2 - 35 \cdot 1^2}] + 2[\sqrt{4d^2 - 35 \cdot 3^2}] + \dots + 2[\sqrt{4d^2 - 35 \cdot \theta^2}] \\ &> 1 + 2[d] + 2\left[\frac{d}{35}\right] \\ &+ 4\left(\sqrt{d^2 - 35 \cdot 1^2} + \sqrt{d^2 - 35 \cdot 2^2} + \dots + \sqrt{d^2 - 35\left[\frac{d}{\sqrt{35}}\right]^2} - \left[\frac{d}{\sqrt{35}}\right]\right) \\ &+ 2\left(\sqrt{4d^2 - 35 \cdot 1^2} + \sqrt{4d^2 - 35 \cdot 3^2} + \dots + \sqrt{4d^2 - 35 \cdot \theta^2} - \left[\frac{2d}{35}\right]\right) \\ &> 1 + 2[d] - 2 \cdot \frac{d}{\sqrt{35}} - 2 \cdot \frac{2d}{\sqrt{35}} + 4 \int_1^{\frac{d}{\sqrt{35}}} \sqrt{d^2 - 35x^2} dx + \int_1^{\frac{2d}{\sqrt{35}}} \sqrt{4d^2 - 35x^2} dx \\ &> 1 + 0.98(d - 1) + 4 \int_1^{\frac{d}{\sqrt{35}}} \sqrt{d^2 - 35x^2} dx + \int_1^{\frac{2d}{\sqrt{35}}} \sqrt{4d^2 - 35x^2} dx, \end{split}$$

where the definition of θ is the same as in Lemma 3.3.

Write

$$f(d) = 4 \int_{1}^{\frac{d}{\sqrt{35}}} \sqrt{d^2 - 35x^2} dx + \int_{1}^{\frac{2d}{\sqrt{35}}} \sqrt{4d^2 - 35x^2} dx + 0.98(d-1) + 1.$$

Then

$$\begin{split} f(d) &= 4 \Big(\frac{x}{2} \sqrt{d^2 - 35x^2} + \frac{d^2}{2\sqrt{35}} \arcsin \frac{\sqrt{35}}{d} x \Big) \Big|_1^{\frac{d}{\sqrt{35}}} \\ &+ \Big(\frac{x}{2} \sqrt{4d^2 - 35x^2} + \frac{2d^2}{\sqrt{35}} \arcsin \frac{\sqrt{35}}{2d} x \Big) \Big|_1^{\frac{2d}{\sqrt{35}}} + 0.98(d-1) + 1 \\ &= 4 \Big(\frac{d^2}{2\sqrt{35}} \arcsin 1 - \frac{1}{2} \sqrt{d^2 - 35} - \frac{d^2}{2\sqrt{35}} \arcsin \frac{\sqrt{35}}{d} \Big) \\ &+ \frac{2d^2}{\sqrt{35}} \arcsin 1 - \frac{1}{2} \sqrt{4d^2 - 35} - \frac{2d^2}{\sqrt{35}} \arcsin \frac{\sqrt{35}}{2d} + 0.98(d-1) + 1 \\ &> \frac{2\pi}{\sqrt{35}} d^2 - \frac{1}{2} \sqrt{4d^2 - 35} - 2\sqrt{d^2 - 35} - 3d - \frac{\sqrt{35}}{3d} \cdot \frac{1}{1 - 35/d^2} \\ &- \frac{35}{24d} \cdot \frac{1}{1 - 35/4d^2} + 0.98(d-1) + 1, \end{split}$$

we have used the formula

$$\arcsin x = x + \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!} \frac{x^{2n+1}}{2n+1} \quad (|x| \le 1).$$

Suppose $d \ge 19$. Then

$$1 - \frac{35}{3d} \cdot \frac{1}{1 - 35/d^2} - \frac{35}{24d} \cdot \frac{1}{1 - 35/4d^2} > 0.$$

Thus

$$f(d) > \frac{2\pi}{\sqrt{35}}d^2 - 6d + 0.98(d-1) = \frac{2\pi}{\sqrt{35}}d^2 - 5.02d - 0.98$$

Put
$$g(d) = \frac{2\pi}{\sqrt{35}}d^2 - 5.02d - 0.98 - (13d^2)^{\frac{2}{3}}$$
. Then
 $g''(d) > 0$, if $d \ge 1.3$;
 $g'(d) > 0$, if $d \ge 10$;
 $g(d) > 0$, if $d \ge 19$.

But $d \ge 19$ implies $N(v) \ge 4963$. This completes the proof. Lemma 3.5. Suppose d > 0 and $d^2 < \frac{N(v)^2}{4(1+\sqrt{3N(v)})^2}$. Let

$$D = \{ x \in O_F | |x| \le d \}, \quad E = \{ d - d' | d, d \in D, d \ne d' \},$$

and $W = \{w \in O_F \bigcap U | |w|^2 \leq 3N(v)\}$. Then for $e_1, e_2, e_3, e_4 \in E$ and $w \in W$,

$$N(e_1e_2 - e_3e_4) < N(v)^2$$
, $N(e_1w - e_2) < N(v)^2$.

The proof is analogous to that of Lemma 3.2.

Lemma 3.6. When $2081 \le N(v) \le 5379$, τ_v is bijective. Proof. When $N(v) \ge 2081$, $\frac{N(v)^2}{4(1+\sqrt{3N(v)})^2} > 13^2$. For brevity, we let $D(n) = \{x \in O_F | |x| \le n\}$. We have $\#(D(13)) = 187, 187^{3/2} > 2557$.

When
$$N(v) \ge 2557$$
, $\frac{N(v)^2}{4(1+\sqrt{3N(v)})^2} > 14^2$, we have $\#(D(14)) = 209, 209^{3/2} > 3021$.

When $N(v) \ge 3021$, $\frac{N(v)^2}{4(1+\sqrt{3N(v)})^2} > 15^2$, we have #(D(15)) = 243, $243^{3/2} > 3787$. When $N(v) \ge 3787$, $\frac{N(v)^2}{4(1+\sqrt{3N(v)})^2} > 17^2$, we have #(D(17)) = 307, $307^{3/2} > 5379$. Then by Lemma 3.1, Lemma 3.5 and Lemma 3.6, τ_v is bijective when $2081 \le N(v) \le 5379$.

§4. Case Two: $11 \le N(v) \le 1037$ and N(v) = 1369

The following two lemmas are analogous to Lemma 15.2 and Lemma 15.3 in [10] respectively.

Lemma 4.1. Suppose that M is a non-principal ideal. Then every residue class (mod M) can be represented by an integer c with $N(c) \leq (9/7)NM$.

Lemma 4.2. Suppose that (b) is a principal ideal prime to $Q_1 = (3, \frac{1}{2}(1 + \sqrt{-35}))$. Then every residue class (mod(b)) can be represented by an element $c \in Q_1$ with $N(c) \leq (27/7)N(v)$.

For any non-principal ideal P, we put

$$U = \{ c \in O_F | |c|^2 \le (9/7)N(v) \}, \qquad W = \{ w \in O_F \bigcap U | |w|^2 \le 3N(v) \}.$$

Let

C

$$T = \{t_1, \cdots, t_r \mid t_i \in C', \quad t_i \notin U, \quad 1 \le i \le r\},$$

$$S = \{s_1, \cdots, s_r \mid s_i \equiv t_i (\text{mod}P), \quad s_i \in U, \quad 1 \le i \le r\}$$

and $C = (C' \setminus T) \bigcup S$. Assume $m = \max_{c \in C} |c|$. Then by Lemma 2.2, we have

(1) If $\sqrt{3N(v)} + m < N(v)$, then $W \subset CU_1$;

(2) If $G = \{g\}$ and m|g| + m < N(v), then $CG \subset CU_1$ and $1 \in C \bigcap \operatorname{Ker} \beta \subset U_1$.

It is easy to know that for each N(v) we only need to discuss a prime ideal. For any principal prime ideal P, we choose g such that g is a primitive root (mod P) with least value of |g|. First, we see a few examples.

$$\begin{split} N(v) &= 13, \quad P = (13, \frac{1}{2}(11 + \sqrt{-35})), \quad T = S = \emptyset, \quad g = 2, \quad m \leq \sqrt{\frac{117}{7}}.\\ N(v) &= 17, \quad P = (17, \frac{1}{2}(13 + \sqrt{-35})). \end{split}$$

In this case, we give C directly. Let

 $C = \left\{ \pm 1, \pm 2, \pm 3, \pm 4, \pm \frac{1}{2}(-1-\sqrt{-35}), \ \pm \frac{1}{2}(1-\sqrt{-35}), \pm \frac{1}{2}(-3-\sqrt{-35}), \ \pm \frac{1}{2}(3-\sqrt{-35}) \right\}.$ Then m = 4. Take g = 3, then (1) and (2) are satisfied.

$$\begin{split} N(v) &= 47, \quad P = \left(47, \frac{1}{2}(23 + \sqrt{-35})\right), \quad T = S = \emptyset, \quad g = 5, \quad m < \sqrt{\frac{423}{7}}, \\ N(v) &= 73, \quad P = \left(73, \frac{1}{2}(29 + \sqrt{-35})\right), \quad T = \{\frac{1}{2}(1 + 3\sqrt{-35}), \quad \frac{1}{2}(1 - 3\sqrt{35})\}, \\ S &= \{1 - \sqrt{-35}, \sqrt{-35}\}, \quad g = 5, \quad m < \sqrt{\frac{657}{7}}, \\ N(v) &= 83, \quad P = \left(83, \frac{1}{2}(31 + \sqrt{-35})\right), \quad T = S = \emptyset, \quad g = 2, \quad m < \sqrt{\frac{747}{7}}. \end{split}$$

In most cases, we can take S as the following. Write P (corresponding to v) = $(N(v), \frac{1}{2}(a + b\sqrt{-35}))$ ($a \equiv b \pmod{2}$) and $T = \{t_1, \dots, t_r\}$. Suppose that either $t_i + \frac{1}{2}(a + b\sqrt{-35})$ or

No.1

 $t_i - \frac{1}{2}(a + b\sqrt{-35}) \in U$. Then choose s_i to be one of them such that $s_i \in U$ and $N(s_i)$ is the less one. Such N(v) are the following :

157,	167,	173,	223,	227,	257,	283,	293,	307,	313,	367,
383,	397,	433,	467,	503,	523,	563,	577,	587,	647,	677,
727,	733,	773,	787,	797,	853,	857,	937,	983,	997,	1013.

For the rest, we list N(v), g and m.

$$\begin{split} N(v) &= 97, \quad g = 5, \quad m < \sqrt{873/7}; \quad N(v) = 103, \quad g = 5, \quad m < \sqrt{927/7}; \\ N(v) &= 353, \quad g = 3, \quad m \le \sqrt{6265}; \quad N(v) = 593, \quad g = 3, \quad m \le \sqrt{5265}; \\ N(v) &= 607, \quad g = 3, \quad m \le \sqrt{10311}; \quad N(v) = 643, \quad |g| \le 11, \quad m \le \sqrt{3375}; \\ N(v) &= 887, \quad g = 5, \quad m \le \sqrt{8841}. \end{split}$$

Now, we turn to principal prime ideals.

First, suppose that

$$N(v) = 11, P = \left(\frac{1}{2}(3 + \sqrt{-35})\right), \overline{P} = \left(\frac{1}{2}(3 - \sqrt{-35})\right)$$

For P, we take

$$W = \left\{ \pm 1, 2, 3, \frac{1}{2} (1 + \sqrt{-35}), \sqrt{-35}, 5 \right\},$$

$$C = \left\{ \pm 1, \pm 2, \pm 3, \pm \frac{1}{2} (5 - \sqrt{-35}), \pm \frac{1}{2} (7 - \sqrt{-35}) \right\},$$

$$G = \{2\}.$$

For $\overline{P} = (\frac{1}{2}(3 - \sqrt{-35}))$, we take

$$W = \left\{ \pm 1, 2, 3, \frac{1}{2} (1 + \sqrt{-35}), \sqrt{-35}, 5, \frac{1}{2} (3 + \sqrt{-35}) \right\},$$

$$C = \left\{ \pm 1, \pm 2, \pm 3, \pm \frac{1}{2} (5 + \sqrt{-35}), \pm \frac{1}{2} (7 + \sqrt{-35}) \right\},$$

$$G = \{2\}.$$

It is easy to check that $W \subset CU_1$, W generates $U, CG \subset CU_1$ and $\{1\} = C \cap \text{Ker}\beta$. Then by Lemma 2.1, τ_v is bijective.

For other principal prime ideals, we have the following method.

As done in the situation of non-principal prime ideals, we introduce the following notations:

$$C' = \left\{ \alpha \in Q_1 | |\alpha|^2 \le \left(\frac{27}{7}\right) N(v) \right\}, T = \{ t_1, \cdots, t_r | t_i \in C', t_i \notin U, 1 \le i \le r \}, S = \{ s_1, \cdots, s_r | s_i \in C', s_i \in U, s_i \equiv t_i (\text{mod}P), 1 \le i \le r \}.$$

Let $C = (C' \setminus T) \cup S \cup \{1\}$, $W = \{w \in O_F \cap U | |w|^2 \le 3N(v)\}$ and $G = \{g\}$. Assume $m = \max_{c \in C} |c|$.

Suppose that $P = (a + b\sqrt{-35})$ is a principal prime ideal. In all cases below, for any $t_i \in T$, we can always choose β_i such that $t_i - \beta_i \in C'$ together with $t_i - \beta_i \in U$, where

$$\begin{split} \beta_i &= \text{either } \frac{1}{2}(1+\sqrt{-35})(a+b\sqrt{-35}) \quad \text{or} \quad \frac{1}{2}(1+\sqrt{-35})(a+b\sqrt{-35}) \\ &\text{or} \quad 3(a+b\sqrt{-35}) \quad \text{or} \quad -3(a+b\sqrt{-35}). \end{split}$$

We choose $s_i = t_i - \beta_i$ so that $s_i \in C' \cap U$ and $N(s_i)$ is the least one. The principle of choice of g is the same as in non-principal cases. The following is a list of N(v).

29,	71,	79,	109,	149,	151,	179,	191,
211,	239,	281,	331,	359,	379,	389,	401,
421,	431,	449,	491,	499,	541,	569,	571,
599,	631,	641,	659,	701,	709,	739,	751,
809,	821,	911,	919,	991,	1009,	1019,	1031.

There are six intert prime ideals satisfying $11 \le N(v) \le 2069$. They are (19), (23), (31), (37), (41), (43).

For

$$\begin{split} P &= (19), \quad N(v) = 19^2, \\ T &= \Big\{ 31 - 2\sqrt{-35}, 34 + \sqrt{-35}, \frac{1}{2}(61 - 5\sqrt{-35}), \frac{1}{2}(59 - 7\sqrt{-35}) \Big\}, \\ S &= \Big\{ -26 - 2\sqrt{-35}, -23 + \sqrt{-35}, \frac{1}{2}(-53 - 5\sqrt{-35}), \frac{1}{2}(-55 - 7\sqrt{-35}) \Big\}, \end{split}$$

in this time, $m < \sqrt{9747/7}$. Note that $\#(O_F/(19)) = 361$. Hence there are $\varphi(360) = 96$ primitive roots in $O_F/(19)$, where $\varphi(\)$ is the Euler's function. Suppose that $g \in C$ is a primitive root. Then $(g) = Q_1 B$, where B is an integral ideal. If there is a primitive root $g \in C$ with |g| < 15.7, then by Lemma 2.1, $gU \subset CU_1$. Therefore, τ_v is bijective. If |g| > 15.7, we may assume B is not a prime ideal, since there are at most 14 prime ideals satisfying the assumption. Clearly, B is not a principal ideal. Thus there are only the following possibilities:

- (i) B = (2)P (P is a non-principal ideal),
- (ii) B = QP, Q|3 or Q|5,
- (iii) B = (b)P, $3 < |b|^2 < 15.7^2$.

For case (i), take $\alpha = 1 + \sqrt{-35}$ and $M = 2Q_1^2$. For case (ii), take $\alpha = 9$, $M = 3Q_1$, if $Q = \bar{Q_1}$, or $M = Q_1^3$, if $Q = Q_1$; or $\alpha = \frac{1}{2}(5 - \sqrt{-35})$, $M = Q_1^2Q'$, where $Q'^2 = (5)$, if $Q|_5$. For case (iii), take $\alpha = b$ and $M = bQ_1$. Then, by Lemma 2.1, τ_v is bijective.

The same method can be applied to treat (23), (31), (37), (41), and (43). But we have a simpler method for (41) and (43).

§5. Case Three: 1037 < N(v) < 2081

Throughout this section, notation D(n) always denotes the set $\{x \in O_F | |x| \le n\}$. Let P = (41). Then $N(v) = 41^2 = 1681$. Take

$$\begin{split} W &= \{ \alpha \in U | \quad |\alpha|^2 \leq 3 \cdot 1657 \}, \\ D &= D(11) \bigcup \Big\{ \pm 10 \pm \sqrt{-35}, \frac{1}{2} (\pm 15 \pm 3\sqrt{-35}), 2\sqrt{-35} \Big\}. \end{split}$$

Then W and D satisfy the assumption of Lemma 2.3. Therefore τ_v is bijective.

Similarly, for P = (43), we take $W = \{ \alpha \in U | |\alpha|^2 \le 3 \cdot 1847 \}$, D = D(12).

In general, the above method is simpler than the methods which we have used. But we need N(v) to be quite great when we use the above method. Next, we give D for any N(v) with 1031 < N(v) < 2081 except N(v) = 1369. For any N(v), $W = \{w \in O_F \cap U \mid |w|^2 \le 10^{-5} \text{ m}^{-1} \text{ m}^{-$

3N(v). It is easy to check that for any N(v), D and W satisfy the assumptions of Lemma 2.3.

For N(v) = 1051, 1061, 1063, 1123, take $D = D(10) \setminus \{\pm 8 \pm \sqrt{-35}\}$. Then #(D) = 111. For N(v) = 1171, take $D = D(10) \setminus \{\pm (8 + \sqrt{-35})\}$. Then #(D) = 113.

For N(v) = 1097, 1129, 1153, 1193, 1201, 1217, 1223, 1229, take D = D(10). Then #(D) = 115.

For N(v) = 1277, 1289, 1307, take $D = D(10) \cup \{\pm 11\} \cup \{\frac{1}{2}(\pm 21 \pm \sqrt{-35})\}$. Then #(D) = 121.

For N(v) = 1433, take $D = D(11) \setminus \{\frac{1}{2}(13 \pm 3\sqrt{-35})\}$. Then #(D) = 131.

For N(v) = 1477, take $D = D(11) \setminus \{\pm 11\}$. Then #(D) = 131.

For N(v) = 1237, 1381, 1409, 1427, 1429, 1439, 1451, 1471, 1481, 1483, 1487, 1499, take D = D(11). Then #(D) = 133.

For N(v) = 1543, 1549, 1553, 1567, take $D = D(11) \cup \{10 \pm \sqrt{-35}\}$. Then #(D) = 135.

For N(v) = 1579, 1613, 1619, 1621, 1627, 1637, take $D = D(11) \cup \{\pm 10 \pm \sqrt{-35}, \pm 12\}$. Then #(D) = 139.

For N(v) = 1657, 1693, take $D = D(11) \cup \{\pm 10 \pm \sqrt{-35}, \pm 12, \frac{1}{2}(\pm 15 + 3\sqrt{-35})\}$. Then #(D) = 143.

For N(v) = 1697, 1709, 1753, 1759, 1777, 1783, 1789, 1801, 1823, 1831, 1847, 1867, 1871, 1901, 1907, take D = D(12). Then #(D) = 157.

For N(v) = 1973, 1987, 1993, 1999, 2011, take $D = D(12) \cup \{\pm 11 \pm \sqrt{-35}\}$. Then #(D) = 161.

For N(v) = 2039, 2063, 2069, take D = D(13). Then #(D) = 187.

From the results we have obtained, we have

Theorem 5.1. Suppose $S = \{\infty, 2O_F, Q_1, Q_2, Q, Q'\}$, where $Q_1Q_2 = 3O_F$, $Q^2 = 5O_F$, $Q'^2 = 7O_F$. Then

$$K_2 Z[\frac{1}{2}(1+\sqrt{-35})] \subset K_2^S F.$$

§6. Determining the Structure of $K_2 Z[\frac{1}{2}(1+\sqrt{-35})]$

In this section, we will prove the following main result of the present paper.

Theorem 6.1. Let $F = Q(\sqrt{-35})$ with the ring of integers $O_F = Z[\frac{1}{2}(1+\sqrt{-35})]$. Then $K_2O_F \cong Z/2Z$.

Let S be the same as in Theorem 5.1. Then $U = O_S$ can be generated by

$$V = \left\{ \pm 1, 2, \frac{1}{2} (1 + \sqrt{-35}), 3, \frac{1}{2} (5 + \sqrt{-35}), \frac{1}{2} (7 + \sqrt{-35}) \right\}.$$

Hence $K_2^S F$ can be generated by $\{x, y\}$ with $x, y \in V$. Let us observe below some relations among the generators of $K_2^S F$.

By [3], $2 - \operatorname{rank}(K_2O_F) = 1$. Let $\varepsilon = \{-1, 5\}$. We claim that $\varepsilon \neq 1$. Otherwise $\{2, 5\}^2 = \varepsilon = 1$, then $\{2, 5\}$ is an element of order 2, then there exists a $z = x + \sqrt{-35}y \in F(x, y \in Q)$ such that $\{-1, z\} = \{2, 5\}$, and therefore

$$\tau_v\{-1, z\} = \begin{cases} -1, & \text{if } N(v) = 5, \\ 1, & \text{otherwise.} \end{cases}$$

This is impossible, since Diophantine equations $X^2 + 35Y^2 = 5N^2$ and $X^2 + 35Y^2 = 10N^2$ have no answers in Z. For general results, see [8]. The above discussion also shows that the 2-Sylow subgroup of K_2O_F is isomorphic to Z/2Z. As done above, we can show $\{-1, -1\} \neq 1$, hence $\{-1, -1\} = \{-1, -5\}$, furthermore, $\{-1, 7\} = 1$. Let $\Delta = \{z \in F^{\cdot} | \{-1, z\} = 1\}$. Then $[\Delta : F^{\cdot 2}] = 4$, and thus

$$\Delta = F^{\cdot 2} \cup 2F^{\cdot 2} \cup 7F^{\cdot 2} \cup 14F^{\cdot 2}$$

By [2], for any $x \in F^{\cdot}$,

$${x, x + 1}^2 = 1, \quad {x, x^2 + 1}^4 = 1, \quad {x, x^2 + x + 1}^3 = 1$$

Then we have

$$\left\{ \frac{1}{2} (1 + \sqrt{-35}), \frac{1}{2} (1 - \sqrt{-35}) \right\} = 1,$$

$$\left\{ \frac{1}{2} (1 + \sqrt{-35}), \frac{1}{2} (1 + \sqrt{-35}) \right\}^2 = 1,$$

$$\left\{ \frac{1}{2} (1 - \sqrt{-35}), \frac{1}{2} (1 - \sqrt{-35}) \right\}^2 = 1.$$

Let $x = -\frac{1}{2}(1 + \sqrt{-35})$. Then $x^2 + x + 1 = -8$, and hence $\{-8, -\frac{1}{2}(1 + \sqrt{-35})\}^3 = 1$. Similarly,

$$\left\{\frac{2}{5}, -\frac{5-\sqrt{-35}}{10}\right\}^3 = 1, \quad \left\{\frac{4}{7}, -\frac{7+\sqrt{-35}}{14}\right\}^3 = 1.$$

But $\{-1, 1 + \sqrt{-35}\} = 1$, since $1 + \sqrt{-35} = (1/14)(7 + \sqrt{-35})^2$. Hence $\{2, 1 + \sqrt{-35}\}^9 = \varepsilon$. On the other hand,

$$\left\{\frac{1}{2}\left(\frac{1}{2}(1+\sqrt{-35})\right), \frac{1}{2}\left(\frac{1}{2}(5+\sqrt{-35})\right)\right\}^2 = 1,$$

and

$$\begin{split} \left\{ \frac{1}{2} (1 + \sqrt{-35}), \frac{1}{2} (5 + \sqrt{-35}) \right\}^2 &= \left\{ \frac{1}{2} (1 + \sqrt{-35}), -5 \left(\frac{1}{2} (1 - \sqrt{-35}) \right) \right\} \\ &= \left\{ 1 + \sqrt{-35}, 5 \right\} \{5, 2\}, \left\{ \frac{1}{2}, \frac{1}{2} (5 + \sqrt{-35}) \right\}^2 \\ &= \left\{ \frac{1}{2}, -5 \left(\frac{1}{2} (1 - \sqrt{-35}) \right) \right\} \\ &= \left\{ 5, 2 \right\} \left\{ \frac{1}{2}, \frac{1}{2} (1 - \sqrt{-35}) \right\}. \end{split}$$

Clearly,

$$\{2, 1+\sqrt{-35}\}\{2, 1-\sqrt{-35}\} = \left\{2, \frac{1}{2}(1+\sqrt{-35})\right\}\left\{2, \frac{1}{2}(1-\sqrt{-35})\right\} = 1.$$

Then we have $\{1 + \sqrt{-35}, 5\} = \{1 + \sqrt{-35}, 2\}^3$. It follows from

$$\{2/5, -5(-\sqrt{-35})/10\}^6 = 1$$
 and $\{2/5, -1/10\} = \varepsilon$

that $\{2, 1 + \sqrt{-35}\}^3 = \{5, 1 + \sqrt{-35}\}^3$. Hence

$$\{2, 1 + \sqrt{-35}\}^3 = \varepsilon, \ \{5, 1 + \sqrt{-35}\} = 1.$$

Furthermore, $\{7, 1 + \sqrt{-35}\} = 1$.

Note that

$$\begin{aligned} 3^2 &= \frac{1}{2}(1+\sqrt{-35}) \cdot \frac{1}{2}(1-\sqrt{-35}),\\ \left(\frac{1}{2}(5+\sqrt{-35})\right)^2 &= \frac{1}{2} \cdot 5(-1+\sqrt{-35}),\\ \left(\frac{1}{2}(7+\sqrt{-35})\right)^2 &= \frac{1}{2} \cdot 7(1+\sqrt{-35}). \end{aligned}$$

Clearly,

$$\{2, 1 + \sqrt{-35}\} \notin K_2 O_F, \quad \{2, 1 + \sqrt{-35}\}^3 \in K_2 O_F.$$

Hence, considering all relations we have obtained, we immediately conclude that $K_2 O_F \cong Z/2Z$.

Remarks. 1. In [4], J. Browkin gives some conjectural values of K_2O_F for imaginary quadratic fields F; one of those is just what we have confirmed above, namely, $\#(K_2O_F) = 2$.

2. Our method can be used to determine K_2O_F for other imaginary quadratic fields F.

Acknowledgement. I should like to express my thanks to Professor Zhou Boxun and Professor Tong Wenting.

References

- Bass, H. & Tate, J., The Milnor ring of a global field, Algebraic K-theory II, Lecture Notes in Math. 342, Berlin-Heidelberg-New York, Springer, 1973, 349-428.
- [2] Browkin, J., Elements of small order in K_2F , Algebraic K-theory I, Lecture Notes in Math. 966, Berlin-Heidelberg-New York, Springer, 1982, 1-6.
- [3] Browkin, J. & Schinzel, A., On Sylow 2-subgroups of K_2O_F for quadratic fields F, J. reine angew. Math., **331** (1982), 104-113.
- [4] Browkin, J., Conjectures on the dilogarithm, K-theory, 3 (1989), 29-56.
- [5] Milnor, J., Algebraic K-theory and quadratic forms, Invent. Math., 9(1970), 318-344.
- [6] Milnor, J., Introduction to algebraic K-theory, Annals of Math. Studies 72, Princeton: Princeton University Press, 1971.
- [7] Qin Hourong, Computation of $K_2 Z[\sqrt{-6}]$, J. Pure and Applied Alg., **96** (1994), 133-146.
- [8] Qin Hourong, The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields, Acta Arith., LXIX:2 (1995), 153-169.
- [9] Qin Hourong, K_2 and algebraic number theory, Ph. D. Thesis, Naning University, 1992.
- [10] Tate, J., Appendix, Algebraic K-theory, Lecture Notes in Math. 342, Berlin-Heidelberg-New York, Springer, 1973, 429-446.
- [11] Tate, J., Relations between K₂ and Galois cohomology, Invent. Math., 36 (1976), 257-274.