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Abstract

The author shows that K2Z
[ 1+√

−35
2

] ∼= Z/2Z. The method of proof is a generalization of
the Tate’s method.
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§1. Introduction

In general, it is not easy to determine the structure of K2OF for a number field F with the

ring of integers OF , even for a quadratic field. Let F = Q(
√
d) be an imaginary quadratic

field. We know that K2OF is trivial for d = −1,−2,−3,−11 and K2OF
∼= Z/2Z for d =

−7, −15 (see [10]). And K2OF is also trivial for d = −5, −19 (see [4]). In [7], the auther

shows that K2OF is trivial too for d = −6. In this paper, we show that K2OF
∼= Z/2Z for

d = −35.

§2. Preliminaries

Let F be a number field, OF be its ring of integers. Denote by S∞ the set of Archimedean

places of F . If S ⊇ S∞, we denote by OS the ring of S-integers. For any v ̸∈ S, k(v) = OS/P,

where P is the maximal ideal corresponding to the place v. Suppose that v1, v2, · · · , vn, · · ·
with N(vi) ≤ N(vi+1) for all i are all finite places of F , where N(v) = #(k(v)). Let

Sn = {v1, v2, · · · , vn}
∪
S∞. H. Bass and J. Tate[1] show that there exists a positive integer

m such that

K2OF = Ker
(
KSm

2 F
(τv)−→

⨿
v∈Sm\S∞

k·(v)
)
,

where KSm
2 F = the subgroup of K2F generated by {x, y} with x, y ∈ O·

Sm
= U . Recall that

τv{x, y} = (−1)v(x)v(y)xv(y)y−v(x)(modP )

where P is the maximal ideal corresponding to v.

Suppose that the ideal P (corresponding to v) is principal, say P = πOS . Let β be the

map from U to k· given by β(u) = u(modπ). Denote by U1 the subgroup of U generated by

(1 + πU) ∩ U . J. Tate[10] gives the following result.
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Lemma 2.1. Suppose that W , C and G are subsets of U such that

(1) W ⊂ CU1 and W generates U ,

(2) CG ⊂ CU1 and β(G) generates k,

(3) 1 ∈ C
∩
Kerβ ⊂ U1.

Then τv is bijective.

For the following lemma also refer to [10].

Lemma 2.2. Let F be an imaginary quadratic field. Let M be an ideal in OF , the prime

factorization of which involves only primes in S. Suppose a, b ∈ U
∩
M and |a| + |b| <

N(v)(NM)
1
2 . If β(a) = β(b), then a ∈ bU1. Especially, if a, b ∈ U

∩
OF , |a| + |b| < N(v)

and β(a) = β(b), then a ∈ bU1.

Lemma 2.3. Suppose that we are given subsets D ⊂ OF and W ⊂ OF

∩
U . Put

E = {d− d′|d, d′ ∈ D, d ̸= d′}.

If the ideal P (corresponding to v) is principal, then τv is bijective provided that D and W

satisfy the following conditions:

(1) (#(D))3 > N(v)2,

(2) E ⊂ U ,

(3) 1 ∈ W and W generates U ,

(4) If e1, e2, e3, e4 ∈ E and w ∈ W , then

(i) N(e1e2 − e3e4) < N(v)2, (ii) N(e1w − e2) < N(v)2 or e1w/e2 ̸∈ Kerβ.

Proof. It follows from the proof of Lemma 3.4 in [1] that the conditons (1), (2) and (3)

imply that Kerβ = Ker(U → k·(v)) can be generated by the following elements:

(I) e1e2
e3e4

(e1, e2, e3, e4 ∈ E),

(II) e1w
e1

(e1, e2 ∈ E, w ∈ W ).

Now, in view of Lemma 3.2 in [1], the result follows.

From now on, we suppose that F = Q(
√
−35). In this case, the class number h = 2, 2

is intert in OF , 3OF = Q1Q2, where Q1 = (3, 1+
√
−35
2 ) and Q2 = (3, 1−

√
−35
2 ). Obviously,

Q1 ̸= Q2 and neither Q1 nor Q2 is principal. View Q1 as a lattice in C. Then the maximum

distance from Q1 to C is
√

27
7 . We will prove that τv is bijective if N(v) > 7. To do this,

we divide all cases into three parts.

§3. Case One: N(v)≥2801

By a discusion similar to that in [10], we can easily show the following

Lemma 3.1. Let W = {u ∈ OF

∩
U | |u|2 ≤ 3N(v)}. Then W generates U .

Lemma 3.2. Choose d such that d > 0 and d2 = N(v)/13. Put D = {x ∈ OF | |x| ≤ d}
and E = {d−d′|d, d′ ∈ D, d ̸= d′}. Then E satisfies (2) and (4) of Lemma 2.3 if N(v) > 199.

Proof. For any e ∈ E, there exist d and d′ ∈ D such that e = d − d′. Then N(v) ≤
(|d|+ |d′|)2 ≤ (4/13)N(v) < N(v). Consequently, e ∈ U .

On the other hand, if e1, e2, e3, e4 ∈ E, w ∈ W , then

N(e1e2 − e3e4) ≤ (|e1e2|+ |e3e4|)2 ≤
(( 8

13

)
N(v)

)2
< N(v)2

and

N(e1w − e2) ≤ (|e1w|+ |e2|)2 ≤
( 4

13

)
N(v)(

√
3N(v) + 1)2.
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Note that if N(v) > 199, then (
√
3N(v) + 1)2 < (13/4)N(v). Hence, N(e1w− e2) < N(v)2.

Lemma 3.3. Let d > 0 and D = {x ∈ OF | |x| ≤ d}. Then

#(D) ≥ 1 + 2[d] + 2
[ d

35

]
+ 4[

√
d2 − 35 · 12] + 4[

√
d2 − 35 · 22] + · · ·

+ 4

√d2 − 35 ·
[√ d

35

]2+ 2[
√

4d2 − 35 · 12]

+ 2[
√
4d2 − 35 · 32] + · · ·+ 2[

√
4d2 − 35 · θ2],

where [x] denotes the greatest integer which ≤ x and

θ =


[

2d√
35

]
, if

[
2d√
35

]
≡ 1(mod2),[

2d√
35

]
− 1, if

[
2d√
35

]
≡ 0(mod2).

Proof. In D, there are 1+2[d] rational integers; there are 2[d/
√
35] elements of the forms

x
√
−35 (x ∈ Z, x ̸= 0); there are

4[
√
d2 − 35 · 12] + 4[

√
d2 − 35 · 22] + · · ·+ 4

[√
d2 − 35

[ d√
35

]2]
elements of the forms x+ y

√
−35 (x, y ∈ Z, x · y ̸= 0); there are at least

2[
√
4d2 − 35 · 12] + 2[

√
4d2 − 35 · 32] + · · ·+ 2[

√
4d2 − 35 · θ2]

elements of the forms 1
2 (x + y

√
−35) (x ≡ y ≡ 1(mod2)), where the definition of θ is the

same as above.

Lemma 3.4. If N(v) ≥ 4693, then τv is bijective.

Proof. Choose d such that d2 = N(v)/13. We prove that ifN(v) ≥ 4963, then (#(D))3 >

N(v)2, so by Lemma 2.3 the result follows.

By Lemma 3.3,

#(D) ≥ 1 + 2[d] + 2
[ d

35

]
+ 4[

√
d2 − 35 · 12]

+ 4[
√
d2 − 35 · 22] + · · ·+ 4

[√
d2 − 35

[ d√
35

]2]
+ 2[

√
4d2 − 35 · 12] + 2[

√
4d2 − 35 · 32] + · · ·+ 2[

√
4d2 − 35 · θ2]

> 1 + 2[d] + 2
[ d

35

]
+ 4

(√
d2 − 35 · 12 +

√
d2 − 35 · 22 + · · ·+

√
d2 − 35

[ d√
35

]2
−
[ d√

35

])

+ 2
(√

4d2 − 35 · 12 +
√
4d2 − 35 · 32 + · · ·+

√
4d2 − 35 · θ2 −

[2d
35

])
> 1 + 2[d]− 2 · d√

35
− 2 · 2d√

35
+ 4

∫ d√
35

1

√
d2 − 35x2dx+

∫ 2d√
35

1

√
4d2 − 35x2dx

> 1 + 0.98(d− 1) + 4

∫ d√
35

1

√
d2 − 35x2dx+

∫ 2d√
35

1

√
4d2 − 35x2dx,

where the definition of θ is the same as in Lemma 3.3.
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Write

f(d) = 4

∫ d√
35

1

√
d2 − 35x2dx+

∫ 2d√
35

1

√
4d2 − 35x2dx+ 0.98(d− 1) + 1.

Then

f(d) = 4
(x
2

√
d2 − 35x2 +

d2

2
√
35

arcsin

√
35

d
x
)∣∣∣ d√

35

1

+
(x
2

√
4d2 − 35x2 +

2d2√
35

arcsin

√
35

2d
x
)∣∣∣ 2d√

35

1
+ 0.98(d− 1) + 1

= 4
( d2

2
√
35

arcsin 1− 1

2

√
d2 − 35− d2

2
√
35

arcsin

√
35

d

)
+

2d2√
35

arcsin 1− 1

2

√
4d2 − 35− 2d2√

35
arcsin

√
35

2d
+ 0.98(d− 1) + 1

>
2π√
35

d2 − 1

2

√
4d2 − 35− 2

√
d2 − 35− 3d−

√
35

3d
· 1

1− 35/d2

− 35

24d
· 1

1− 35/4d2
+ 0.98(d− 1) + 1,

we have used the formula

arcsinx = x+
∞∑

n=1

(2n− 1)!!

(2n)!!

x2n+1

2n+ 1
(|x| ≤ 1).

Suppose d ≥ 19. Then

1− 35

3d
· 1

1− 35/d2
− 35

24d
· 1

1− 35/4d2
> 0.

Thus

f(d) >
2π√
35

d2 − 6d+ 0.98(d− 1) =
2π√
35

d2 − 5.02d− 0.98.

Put g(d) = 2π√
35
d2 − 5.02d− 0.98− (13d2)

2
3 . Then

g′′(d) > 0, if d ≥ 1.3;

g′(d) > 0, if d ≥ 10;

g(d) > 0, if d ≥ 19.

But d ≥ 19 implies N(v) ≥ 4963. This completes the proof.

Lemma 3.5. Suppose d > 0 and d2 < N(v)2

4(1+
√

3N(v))2
. Let

D = {x ∈ OF | |x| ≤ d}, E = {d− d′| d, d ∈ D, d ̸= d′},

and W = {w ∈ OF

∩
U | |w|2 ≤ 3N(v)}. Then for e1, e2, e3, e4 ∈ E and w ∈ W ,

N(e1e2 − e3e4) < N(v)2, N(e1w − e2) < N(v)2.

The proof is analogous to that of Lemma 3.2.

Lemma 3.6. When 2081 ≤ N(v) ≤ 5379, τv is bijective.

Proof. When N(v) ≥ 2081, N(v)2

4(1+
√

3N(v))2
> 132. For brevity, we let D(n) = {x ∈

OF | |x| ≤ n}. We have #(D(13)) = 187, 1873/2 > 2557.

When N(v) ≥ 2557, N(v)2

4(1+
√

3N(v))2
> 142, we have #(D(14)) = 209, 2093/2 > 3021.
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When N(v) ≥ 3021, N(v)2

4(1+
√

3N(v))2
> 152, we have #(D(15)) = 243, 2433/2 > 3787.

When N(v) ≥ 3787, N(v)2

4(1+
√

3N(v))2
> 172, we have #(D(17)) = 307, 3073/2 > 5379.

Then by Lemma 3.1, Lemma 3.5 and Lemma 3.6, τv is bijective when 2081 ≤ N(v) ≤ 5379.

§4. Case Two: 11≤N(v)≤1037 and N(v)=1369

The following two lemmas are analogous to Lemma 15.2 and Lemma 15.3 in [10] respec-

tively.

Lemma 4.1. Suppose that M is a non-principal ideal. Then every residue class (mod

M) can be represented by an integer c with N(c) ≤ (9/7)NM .

Lemma 4.2. Suppose that (b) is a principal ideal prime to Q1 = (3, 1
2 (1 +

√
−35)).

Then every residue class (mod(b)) can be represented by an element c ∈ Q1 with N(c) ≤
(27/7)N(v).

For any non-principal ideal P , we put

C ′ = {c ∈ OF | |c|2 ≤ (9/7)N(v)}, W = {w ∈ OF

∩
U | |w|2 ≤ 3N(v)}.

Let

T = {t1, · · · , tr | ti ∈ C ′, ti ̸∈ U, 1 ≤ i ≤ r},
S = {s1, · · · , sr | si ≡ ti(modP ), si ∈ U, 1 ≤ i ≤ r}

and C = (C ′\T )
∪

S. Assume m = max
c∈C

|c|. Then by Lemma 2.2, we have

(1) If
√
3N(v) +m < N(v), then W ⊂ CU1;

(2) If G = {g} and m|g|+m < N(v), then CG ⊂ CU1 and 1 ∈ C
∩

Kerβ ⊂ U1.

It is easy to know that for each N(v) we only need to discuss a prime ideal. For any

principal prime ideal P , we choose g such that g is a primitive root (modP ) with least value

of |g|. First, we see a few examples.

N(v) = 13, P = (13,
1

2
(11 +

√
−35)), T = S = ∅, g = 2, m ≤

√
117

7
.

N(v) = 17, P = (17,
1

2
(13 +

√
−35)).

In this case, we give C directly. Let

C =
{
±1,±2,±3,±4,±1

2
(−1−

√
−35), ±1

2
(1−

√
−35),±1

2
(−3−

√
−35), ±1

2
(3−

√
−35)

}
.

Then m = 4. Take g = 3, then (1) and (2) are satisfied.

N(v) = 47, P =
(
47,

1

2
(23 +

√
−35)

)
, T = S = ∅, g = 5, m <

√
423

7
.

N(v) = 73, P =
(
73,

1

2
(29 +

√
−35)

)
, T = {1

2
(1 + 3

√
−35),

1

2
(1− 3

√
35)},

S = {1−
√
−35,

√
−35}, g = 5, m <

√
657

7
.

N(v) = 83, P =
(
83,

1

2
(31 +

√
−35)

)
, T = S = ∅, g = 2, m <

√
747

7
.

In most cases, we can take S as the following. Write P (corresponding to v) = (N(v), 1
2 (a+

b
√
−35)) (a ≡ b(mod2)) and T = {t1, · · · , tr}. Suppose that either ti +

1
2 (a + b

√
−35) or
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ti − 1
2 (a + b

√
−35) ∈ U . Then choose si to be one of them such that si ∈ U and N(si) is

the less one. Such N(v) are the following :

157, 167, 173, 223, 227, 257, 283, 293, 307, 313, 367,
383, 397, 433, 467, 503, 523, 563, 577, 587, 647, 677,
727, 733, 773, 787, 797, 853, 857, 937, 983, 997, 1013.

For the rest, we list N(v), g and m.

N(v) = 97, g = 5, m <
√
873/7; N(v) = 103, g = 5, m <

√
927/7;

N(v) = 353, g = 3, m ≤
√
6265; N(v) = 593, g = 3, m ≤

√
5265;

N(v) = 607, g = 3, m ≤
√
10311; N(v) = 643, |g| ≤ 11, m ≤

√
3375;

N(v) = 887, g = 5, m ≤
√
8841.

Now, we turn to principal prime ideals.

First, suppose that

N(v) = 11, P =
(1
2
(3 +

√
−35)

)
, P =

(1
2
(3−

√
−35)

)
.

For P , we take

W =
{
±1, 2, 3,

1

2
(1 +

√
−35),

√
−35, 5

}
,

C =
{
±1,±2,±3,±1

2
(5−

√
−35),±1

2
(7−

√
−35)

}
,

G = {2}.

For P = ( 12 (3−
√
−35)), we take

W =
{
±1, 2, 3,

1

2
(1 +

√
−35),

√
−35, 5,

1

2
(3 +

√
−35)

}
,

C =
{
±1,±2,±3,±1

2
(5 +

√
−35),±1

2
(7 +

√
−35)

}
,

G = {2}.

It is easy to check that W ⊂ CU1, W generates U , CG ⊂ CU1 and {1} = C ∩Kerβ. Then

by Lemma 2.1, τv is bijective.

For other principal prime ideals, we have the following method.

As done in the situation of non-principal prime ideals, we introduce the following nota-

tions:

C ′ =
{
α ∈ Q1| |α|2 ≤

(27
7

)
N(v)

}
,

T = {t1, · · · , tr| ti ∈ C ′, ti ̸∈ U, 1 ≤ i ≤ r},
S = {s1, · · · , sr| si ∈ C ′, si ∈ U, si ≡ ti(modP ), 1 ≤ i ≤ r}.

Let C = (C ′\T ) ∪ S ∪ {1}, W = {w ∈ OF ∩ U | |w|2 ≤ 3N(v)} and G = {g}. Assume

m = max
c∈C

|c|.

Suppose that P = (a + b
√
−35) is a principal prime ideal. In all cases below, for any

ti ∈ T , we can always choose βi such that ti − βi ∈ C ′ together with ti − βi ∈ U , where

βi = either
1

2
(1 +

√
−35)(a+ b

√
−35) or

1

2
(1 +

√
−35)(a+ b

√
−35)

or 3(a+ b
√
−35) or − 3(a+ b

√
−35).
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We choose si = ti − βi so that si ∈ C ′∩U and N(si) is the least one. The principle of

choice of g is the same as in non-principal cases. The following is a list of N(v).

29, 71, 79, 109, 149, 151, 179, 191,
211, 239, 281, 331, 359, 379, 389, 401,
421, 431, 449, 491, 499, 541, 569, 571,
599, 631, 641, 659, 701, 709, 739, 751,
809, 821, 911, 919, 991, 1009, 1019, 1031.

There are six intert prime ideals satisfying 11 ≤ N(v) ≤ 2069. They are (19), (23), (31),

(37), (41), (43).

For

P = (19), N(v) = 192,

T =
{
31− 2

√
−35, 34 +

√
−35,

1

2
(61− 5

√
−35),

1

2
(59− 7

√
−35)

}
,

S =
{
−26− 2

√
−35,−23 +

√
−35,

1

2
(−53− 5

√
−35),

1

2
(−55− 7

√
−35)

}
,

in this time, m <
√
9747/7. Note that #(OF /(19)) = 361. Hence there are φ(360) = 96

primitive roots in OF /(19), where φ( ) is the Euler’s function. Suppose that g ∈ C is

a primitive root. Then (g) = Q1B, where B is an integral ideal. If there is a primitive

root g ∈ C with |g| < 15.7, then by Lemma 2.1, gU ⊂ CU1. Therefore, τv is bijective. If

|g| > 15.7, we may assume B is not a prime ideal, since there are at most 14 prime ideals

satisfying the assumpation. Clearly, B is not a principal ideal. Thus there are only the

following possibilities:

(i) B = (2)P (P is a non-principal ideal),

(ii) B = QP, Q|3 or Q|5,
(iii) B = (b)P, 3 < |b|2 < 15.72.

For case (i), take α = 1 +
√
−35 and M = 2Q2

1. For case (ii), take α = 9, M = 3Q1, if

Q = Q̄1, or M = Q3
1, if Q = Q1; or α = 1

2 (5−
√
−35), M = Q2

1Q
′, where Q′2 = (5), if Q|5.

For case (iii), take α = b and M = bQ1. Then, by Lemma 2.1, τv is bijective.

The same method can be applied to treat (23), (31), (37), (41), and (43). But we have a

simpler method for (41) and (43).

§5. Case Three: 1037<N(v)<2081

Throughout this section, notation D(n) always denotes the set {x ∈ OF | |x| ≤ n}. Let

P = (41). Then N(v) = 412 = 1681. Take

W = {α ∈ U | |α|2 ≤ 3 · 1657},

D = D(11)
∪{

±10±
√
−35,

1

2
(±15± 3

√
−35), 2

√
−35

}
.

Then W and D satisfy the assumption of Lemma 2.3. Therefore τv is bijective.

Similarly, for P = (43), we take W = {α ∈ U | |α|2 ≤ 3 · 1847}, D = D(12).

In general, the above method is simpler than the methods which we have used. But we

need N(v) to be quite great when we use the above method. Next, we give D for any N(v)

with 1031 < N(v) < 2081 except N(v) = 1369. For any N(v), W = {w ∈ OF

∩
U | |w|2 ≤
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3N(v)}. It is easy to check that for any N(v), D and W satisfy the assumptions of Lemma

2.3.

For N(v) = 1051, 1061, 1063, 1123, take D = D(10)\{±8±
√
−35}. Then #(D) = 111.

For N(v) = 1171, take D = D(10)\{±(8 +
√
−35)}. Then #(D) = 113.

For N(v) = 1097, 1129, 1153, 1193, 1201, 1217, 1223, 1229, take D = D(10). Then #(D) =

115.

For N(v) = 1277, 1289, 1307, take D = D(10) ∪ {±11} ∪ { 1
2 (±21 ±

√
−35)}. Then

#(D) = 121.

For N(v) = 1433, take D = D(11)\{1
2 (13± 3

√
−35)}. Then #(D) = 131.

For N(v) = 1477, take D = D(11)\{±11}. Then #(D) = 131.

ForN(v) = 1237, 1381, 1409, 1427, 1429, 1439, 1451, 1471, 1481, 1483, 1487, 1499, takeD =

D(11). Then #(D) = 133.

For N(v) = 1543, 1549, 1553, 1567, take D = D(11) ∪ {10±
√
−35}. Then #(D) = 135.

For N(v) = 1579, 1613, 1619, 1621, 1627, 1637, take D = D(11) ∪ {±10 ±
√
−35, ±12}.

Then #(D) = 139.

For N(v) = 1657, 1693, take D = D(11) ∪ {±10 ±
√
−35,±12, 1

2 (±15 + 3
√
−35)}. Then

#(D) = 143.

For N(v) = 1697, 1709, 1753, 1759, 1777, 1783, 1789, 1801, 1823, 1831, 1847, 1867, 1871,

1901, 1907, take D = D(12). Then #(D) = 157.

For N(v) = 1973, 1987, 1993, 1999, 2011, take D = D(12)∪{±11±
√
−35}. Then #(D) =

161.

For N(v) = 2039, 2063, 2069, take D = D(13). Then #(D) = 187.

From the results we have obtained, we have

Theorem 5.1. Suppose S = {∞, 2OF , Q1, Q2, Q,Q′}, where Q1Q2 = 3OF , Q
2 = 5OF ,

Q′2 = 7OF . Then

K2Z[
1

2
(1 +

√
−35)] ⊂ KS

2 F.

§6. Determining the Structure of K2Z[12(1+
√
−35)]

In this section, we will prove the following main result of the present paper.

Theorem 6.1. Let F = Q(
√
−35) with the ring of integers OF = Z[ 12 (1+

√
−35)]. Then

K2OF
∼= Z/2Z.

Let S be the same as in Theorem 5.1. Then U = O·
S can be generated by

V =
{
±1, 2,

1

2
(1 +

√
−35), 3,

1

2
(5 +

√
−35),

1

2
(7 +

√
−35)

}
.

Hence KS
2 F can be generated by {x, y} with x, y ∈ V . Let us observe below some relations

among the generators of KS
2 F .

By [3], 2− rank(K2OF ) = 1. Let ε = {−1, 5}. We claim that ε ̸= 1. Otherwise {2, 5}2 =

ε = 1, then {2, 5} is an element of order 2, then there exists a z = x+
√
−35y ∈ F (x, y ∈ Q)

such that {−1, z} = {2, 5}, and therefore

τv{−1, z} =

{ −1, if N(v) = 5,

1, otherwise.
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This is impossible, since Diophantine equations X2+35Y 2 = 5N2 and X2+35Y 2 = 10N2

have no answers in Z. For general results, see [8]. The above discussion also shows that the 2-

Sylow subgroup of K2OF is isomorphic to Z/2Z. As done above, we can show {−1,−1} ̸= 1,

hence {−1,−1} = {−1,−5}, furthermore, {−1, 7} = 1. Let ∆ = {z ∈ F ·|{−1, z} = 1}.
Then [∆ : F ·2] = 4, and thus

∆ = F ·2 ∪ 2F ·2 ∪ 7F ·2 ∪ 14F ·2.

By [2], for any x ∈ F ·,

{x, x+ 1}2 = 1, {x, x2 + 1}4 = 1, {x, x2 + x+ 1}3 = 1.

Then we have {1
2
(1 +

√
−35),

1

2
(1−

√
−35)

}
= 1,{1

2
(1 +

√
−35),

1

2
(1 +

√
−35)

}2

= 1,{1
2
(1−

√
−35),

1

2
(1−

√
−35)

}2

= 1.

Let x = − 1
2 (1 +

√
−35). Then x2 + x + 1 = −8, and hence {−8,−1

2 (1 +
√
−35)}3 = 1.

Similarly, {2
5
,−5−

√
−35

10

}3

= 1,
{4
7
,−7 +

√
−35

14

}3

= 1.

But {−1, 1+
√
−35} = 1, since 1+

√
−35 = (1/14)(7+

√
−35)2. Hence {2, 1+

√
−35}9 = ε.

On the other hand, {1
2

(1
2
(1 +

√
−35)

)
,
1

2

(1
2
(5 +

√
−35)

)}2

= 1,

and {1
2
(1 +

√
−35),

1

2
(5 +

√
−35)

}2

=
{1
2
(1 +

√
−35),−5

(1
2
(1−

√
−35)

)}
= {1 +

√
−35, 5}{5, 2},

{1
2
,
1

2
(5 +

√
−35)

}2

=
{1
2
,−5

(1
2
(1−

√
−35)

)}
= {5, 2}

{1
2
,
1

2
(1−

√
−35)

}
.

Clearly,

{2, 1 +
√
−35}{2, 1−

√
−35} =

{
2,

1

2
(1 +

√
−35)

}{
2,

1

2
(1−

√
−35)

}
= 1.

Then we have {1 +
√
−35, 5} = {1 +

√
−35, 2}3. It follows from

{2/5,−5(−
√
−35)/10}6 = 1 and {2/5,−1/10} = ε

that {2, 1 +
√
−35}3 = {5, 1 +

√
−35}3. Hence

{2, 1 +
√
−35}3 = ε, {5, 1 +

√
−35} = 1.

Furthermore, {7, 1 +
√
−35} = 1.
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Note that

32 =
1

2
(1 +

√
−35) · 1

2
(1−

√
−35),(1

2
(5 +

√
−35)

)2
=

1

2
· 5(−1 +

√
−35),(1

2
(7 +

√
−35)

)2
=

1

2
· 7(1 +

√
−35).

Clearly,

{2, 1 +
√
−35} ̸∈ K2OF , {2, 1 +

√
−35}3 ∈ K2OF .

Hence, considering all relations we have obtained, we immediately conclude that K2OF
∼=

Z/2Z.

Remarks. 1. In [4], J. Browkin gives some conjectural values of K2OF for imaginary

quadratic fields F ; one of those is just what we have confirmed above, namely, #(K2OF ) = 2.

2. Our method can be used to determine K2OF for other imaginary quadratic fields F .
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