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Abstract

This paper discusses pointwise error estimates for the approximation by bounded linear op-

erators of continuous functions defined on compact metric spaces (X, d). The authors introduce
a new majorant of the modulus of the continuity which is the smallest among those g(ξ)′s which
have the following properties ω(f, ϵ) ≤ g(f, ϵ) and g(f, λϵ) ≤ (1+λ)g(f, ϵ) and by this majorant
a new quantitative Korovkin type theorem on any compact metric space is proved.

Keywords Quantitative approximation, Modulus of the continuity,

Compact metric space

1991 MR Subject Classification 41A65

Chinese Library Classification O174.41

§0. Introduction

In this paper we deal with quantitative Korovkin type theorems for the approximation

by bounded linear operators defined on C(X), and in particular by positive ones. Here

C(X) = CR(X, d) denotes the Banach lattice of real-valued continuous functions defined on

the compact metric space (X, d) with norm given by ∥f∥X = max |f(x)|, x ∈ X. We also

assume that X has diameter d(X) > 0. The first such theorem for general positive linear

operators and X = [a, b] equipped with the euclidian distance is due to R. Mamedov[4].

For spaces (X, d) being metrically convex in the sense of K. Menger[5], D. Newman and

M. Shapiro proved a theorem similar to that of Mamedov[6]. More recently M. Jimenez

Pozo introduced the compact spaces having a coefficient of convex deformation ρ < ∞ and

generalized the theorem to these spaces[3]. Furthermore, H.Gonska proved the theorem of

this type in terms of the least concave majorant of the modulus of continuity on any compact

metric space as follows.

Theorem A.[1] Let A be of the form A(f, y) = ψA(y) and let L be a bounded linear

operator, both mapping C(X) into B(Y ). Then for f ∈ C(X), y ∈ Y and 0 < ϵ, we have

|(L−A)(f, y)| ≤ max{1
2
(∥L∥+ ∥L(1X)∥Y ), ϵ−1(d(X)(∥Φy ◦ L∥ − L(1X , Y )))}

+ |L(d(·, gA(y)))|ω̃(f, ϵ) + |(L−A)(1X , y)||f(gA(Y ))|.
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Here 1X denotes the function X ∋ x 7→ 1 ∈ R,Φy denotes the operator C(Y ) ∋ f 7→ f(y) ∈
R, and ω̃(f, ϵ) denotes the least concave majorant of ω given by

ω̃(f, ϵ) :=


sup

0≤x≤ϵ≤y≤d(X)
x ̸=y

(ϵ− x)ω(f, y) + (y − ϵ)ω(f, x)

y − x
for 0 ≤ ϵ ≤ d(X),

ω(f, d(X)) for ϵ > d(X).

Gonska’s results are achieved via the use of a certain K-functional, and the least concave

majorant he used is not the best majorant in terms of the property ω̃(f, λϵ) ≤ (1+λ)ω̃(f, ϵ).

So in this paper we will introduce a new majorant of the modulus of continuity and prove

a new quantitative theorem by direct method.The new majorant and its properties will be

given in §1, and in §2 we prove the new quantitative theorem in terms of it.

§1. The Majorant and Its Properties

Definition 1.1. The n-majorant of ω(f, ϵ) is defined by

ω̂n(f, ϵ) := max(ωn(f, ϵ), ω(f, ϵ)),

where
ωn(f, 0) := ω(f, 0),

ωn

(
f,
d(X)

2n

)
:= K1

d(X)

2n
, where K1 = inf

{
K : Kϵ ≥ ω(f, ϵ) for ϵ ≥ d(X)

2n

}
,

ωn(f, ϵ) :=
(
ωn

(
f,
d(X)

2n

)
− ωn(f, 0)

)
2n

ϵ

d(X)
for 0 ≤ ϵ ≤ d(X)

2n
.

More general, if we have defined ωn

(
f,
kd(X)

2n

)
, we let

ωn

(
f,

(k + 1)d(X)

2n

)
:= max

{
Kk

(k + 1)

2n
, ωn

(
f,
kd(X)

2n

)}
,

where

Kk : = inf
{
K : Kϵ+ ωn

(
f,
kd(X)

2n

)
≥ ω(f, ϵ) for ϵ ≥ (k + 1)d(X)

2n

}
,

ωn(f, ϵ) = ωn

(
f,
kd(X)

2n

)
+

2n

d(X)

(
ωn

(
f,

(k + 1)d(X)

2n

)
− ωn

(
f,
kd(X)

2n

))(
ϵ− kd(X)

2n

)
for

kd(X)

2n
≤ ϵ ≤ (k + 1)d(X)

2n
.

Lemma 1.1. ωn(f, ϵ) is a Cauchy sequence.

Proof. We will prove it by three steps.

In step 1, we prove that for any ϵ′ > 0 there exists an N such that for any n > N,∣∣∣ωn

(
f,

(k + 1)d(X)

2n

)
− ωn

(
f,
kd(X)

2n

)∣∣∣ < ϵ′.

Without loss of generality we can assume

ω(f, 0) = 0, lim
ϵ7→0

(f, ϵ) = ω(f, 0), ω(f, ϵ) ≤ 1 and d(X) = 1.

Thus there exists a δ, and if 0 < ϵ < δ, we have ω(f, ϵ) < ϵ′. Let N satisfy
1

δ2N
<
ϵ′

2
. If

n ≥ N , we have ω
(
f,

k

2n
)
<
ϵ′

2
for

k

2n
≤ ϵ′δ

2
. Thus∣∣∣ωn

(
f,

(k + 1)

2n

)
− ωn

(
f,

k

2n

)∣∣∣ ≤ ϵ′.
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For
k

2n
>
ϵ′δ

2
, we have Kk+1 ≤ 1

δ
, where Kk is as in Definition 1.1. Thus∣∣∣ωn

(
f,

(k + 1)

2n

)
− ωn

(
f,

k

2n

)∣∣∣ ≤ Kk+1

( 1

2n

)
≤ 1

δ2N
≤ ϵ′,

and all these conclude the proof.

In step 2, we prove that for the N in step 1 and any n > N we have∣∣∣ωn

(
f,

k

2n

)
− ωN

(
f,

k

2n

)∣∣∣ < ϵ′.

We prove it by inductive method. First it is obvious that |ωn(f, 0) − ωN (f, 0)| = 0. Now

assuming ∣∣∣ωn

(
f,

k

2n

)
− ωN

(
f,

k

2n

)∣∣∣ ≤ ϵ,

by Definition 1.1 we know

ωn

(
f,
k2n−N + 2n−N − 1

2n

)
− ωN

(
f,

k

2n

)
> −ϵ′

and

ωn

(
f,
k2n−N + 2n−N − 1

2n

)
− ωN

(
f,

(k + 1)

2n

)
< ϵ′.

So by Definition 1.1 we have∣∣∣ωn

(
f,

(k + 1)

2n

)
− ωN

(
f,

(k + 1)

2n

)∣∣∣ < ϵ′.

In step 3, we prove

|ωn(f, ϵ)− ωN (f, ϵ)| < 2ϵ′ for
k

2n
≤ ϵ ≤ (k + 1)

2n
.

From

ωn

(
f,

k

2n

)
≤ ωn(f, ϵ) ≤ ωn

(
f,

(k + 1)

2n

)
and

ωN

(
f,

k

2n

)
≤ ωN (f, ϵ) ≤ ωN

(
f,

(k + 1)

2n

)
,

it can be seen that

|ωn(f, ϵ)− ωN (f, ϵ)|

≤ max
{∣∣∣ωN

(
f,

(k + 1)

2n

)
− ωn

(
f,

k

2n

)∣∣∣, ∣∣∣ωn

(
f,

(k + 1)

2n

)
− ωN

(
f,

k

2n

)∣∣∣}.
Because ∣∣∣ωn

(
f,

(k + 1)

2n

)
− ωN

(
f,

k

2n

)∣∣∣
≤

∣∣∣ωN

(
f,

(k + 1)

2n

)
− ωN

(
f,

k

2n

)∣∣∣+ ∣∣∣ωN

(
f,

k

2n

)
− ωn

(
f,

k

2n

)∣∣∣ ≤ 2ϵ,

and similarly ∣∣∣ωn

(
f,

(k + 1)

2n

)
− ωn

(
f,

k

2n

)∣∣∣ ≤ 2ϵ′,

we arrive at the estimate of step 3.

Finally, if n,m ≥ N ,

|ωn(f, ϵ)− ωm(f, ϵ)| ≤ |ωn(f, ϵ)− ωN (f, ϵ)|+ |ωM (f, ϵ)− ωN (f, ϵ)|
≤ 2ϵ′ + 2ϵ′ = 4ϵ′,
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and this concludes the proof.

Lemma 1.2. For any linear function f(x), if f(x) ≤ (1+
x

ϵ
)f(ϵ) and f(y) ≤ (1+

y

ϵ
)f(ϵ),

then for any z = ax+ by, a+ b = 1, we have f(z) ≤ (1 +
z

ϵ
)f(ϵ).

Proof.

f(z) = f(ax+ by) = af(x) + bf(y)

≤ a(1 +
x

ϵ
)f(ϵ) + b(1 +

y

ϵ
)f(ϵ) = (1 +

z

ϵ
)f(ϵ).

Lemma 1.3. For ωn(f, ϵ) as in Definition 1.1, we have

ωn(f, λϵ) ≤ (1 + λ)ωn(f, ϵ).

Proof. For λ ≤ 1, it is the consequence of the nondecreasing of ωn(f, ϵ). For λ > 1, we

assume ϵ ∈
[ l

2n
,
l + 1

2n

]
and λϵ ∈

[ k
2n
,
(k + 1)

2n

]
. If l = k, the proof is simple, so let l < k.

By Definition 1.1, we know Kl ≥ Kl+1. Thus

ωn

(
f,

k

2n

)
≤ kϵ

2n
ωn(f, ϵ),

and

ωn

(
f,

(k + 1)

2n

)
≤ (k + 1)ϵ

2n
ωn(f, ϵ).

By Lemma 1.2 we arrive at the estimate.

Corollary 1.1. ω̂n(f, ϵ) is a Cauchy sequence and it satisfies

ω̂n(f, λϵ) ≤ (1 + λ)ω̂n(f, ϵ).

Proof. It can be easily seen from Lemma 1.1 and Lemma 1.3.

Definition 1.2. We define the least 1-majorant of the modulus of the continuity ω(f, ϵ)

as ω̂(f, ϵ) = lim ω̂n(f, ϵ).

Theorem 1.1. ω̂(f, λϵ) ≤ (1 + λ)ω̂(f, ϵ).

Proof. It is trivial from Corollary 1.1.

Lemma 1.4. If ω(f, ϵ) satisfies ω(f, λϵ) ≤ (1 + λ)ω(f, ϵ), we have ω̂(f, ϵ)
.
= ω(f, ϵ).

Proof. By Lemma 1.1, it can be seen that if n is large enough,we have∣∣∣ωn

(
f,

(k + 1)d(X)

2n

)
− ωn

(
f,
kd(X)

2n

)∣∣∣ < ϵ′ for any ϵ′ > 0.

We also use the inductive method. First ω(f, 0) = ωn(f, 0). Now assume∣∣∣ωn

(
f,
kd(X)

2n

)
− ω

(
f,
kd(X)

2n

)∣∣∣ < ϵ′.

For ωn

(
f,
kd(X)

2n

)
≤ ω

(
f,
kd(X)

2n
)
, it can be easily seen from Definition 1.1 that

ωn

(
f,

(k + 1)d(X)

2n

)
≤ ωn

(
f,
kd(X)

2n

)
+ ϵ′ ≤ ω

(
f,
kd(X)

2n

)
+ ϵ′

≤ ω
(
f,

(k + 1)d(X)

2n

)
+ ϵ′.

For ωn

(
f,
kd(X)

2n

)
> ω

(
f,
kd(X)

2n

)
, we also have

ωn

(
f,

(k + 1)d(X)

2n

)
≤ ω

(
f,

(k + 1)d(X)

2n

)
+ ϵ′.
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All these show that

ω
(
f,
kd(X)

2n

)
≤ ω̂n

(
f,
kd(X)

2n

)
≤ ω

(
f,
kd(X)

2n

)
+ ϵ′.

When n→ ∞, we have ω̂(f, ϵ) = ω(f, ϵ) almost everywhere.

Theorem 1.2. If g(f, ϵ) satisfies

(1) g(f, ϵ) is non-decreasing,

(2) g(f, λϵ) ≤ (1 + λ)g(f, ϵ),

(3) ω(f, ϵ) ≤ g(f, ϵ).

Then we have ω̂(f, ϵ) ≤ g(f, ϵ) almost everywhere.

Proof. We can also define ĝ(f, ϵ) as in Definition 1.1, and by Lemma 1.4 ĝ(f, ϵ)
.
= g(f, ϵ),

so we can use the following Lemma 1.5 to get the result.

Lemma 1.5. If g1(f, ϵ) ≤ g2(f, ϵ) then we have ĝ1(f, ϵ) ≤ ĝ2(f, ϵ) almost everywhere.

Proof. The spirit is the same as that of Lemma 1.4, so we omit it here.

Lemma 1.6. ω̃(f, ϵ) satisfies ω̃(f, λϵ) ≤ (1 + λ)ω̃(f, ϵ).

Proof. By Brundyi’s Lemma,

ω̃(f, ϵ) = 2K(ϵ/2, f, C(X),Lip1),

where K satisfies K(λt, f) ≤ max(1, λ)K(t, f), which yields the proof.

Lemma 1.4, Lemma 1.5 and Lemma 1.6 show that ω̂(f, ϵ) can be estimated above by

ω̃(f, ϵ), the converse estimate is also true.

Theorem 1.3. ω̂(f, λϵ) ≤ ω̃(f, λϵ) ≤ (1+λ)ω̂(f, ϵ). In particular if λ = 1 this reduces to

ω̂(f, ϵ) ≤ ω̃(f, ϵ) ≤ 2ω̂(f, ϵ).

Proof. If one of λ, ϵ is equal to zero, it is obviously true. So let λ, ϵ > 0, and 0 < λϵ ≤
d(X). From the definition,

ω̂(f, λϵ) = sup
0≤x≤λϵ≤y≤d(X)

x ̸=y

(λϵ− x)ω(f, y) + (y − λϵ)ω(f, x)

y − x
,

so we have
λϵ− x

y − x
ω(f, y) +

y − λϵ

y − x
ω(f, x) ≤ λϵ− x

y − x
ω̂(f, y) +

y − λϵ

y − x
ω̂(f, x)

≤ λϵ− x

y − x
(1 +

y

ϵ
)ω̂(f, ϵ) +

y − λϵ

y − x
(1 +

x

ϵ
)ω̂(f, ϵ)

= (1 + λ)ω̂(f, ϵ).

For λϵ > d(X), we have

ω̂(f, λϵ) = ω̂(f, d(X)) ≤
(
1 +

d(X)

ϵ

)
ω̂(f, ϵ) ≤ (1 + λ)ω̂(f, ϵ).

Remark 1.1. We can also define the least ρ-majorant which satisfies ω̂(f, λϵ) ≤ (1 +

ρλ)ω̂(f, ϵ) corresponding to the compact metric space with a coefficient of convex defor-

mation ρ < ∞ and get the similar results as in Theorem 1.1, Theorem 1.2 and Theorem

1.3.

§2. Quantitative Theorem and Its Proof

Using ω̂(f, ϵ), we can now give the quantitative theorem on any compact metric space

(X, d). The proof is as that of Pozo.
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Theorem 2.1. Let (X, d) be a compact metric space, A be of the form A(f, y) =

ψA(y)f(gA(y)) and L be a bounded linear operator, both mapping C(X) in B(Y ). If y ∈ Y

is such that L(1X , y) ̸= 0, then for all f ∈ C(X) and all ϵ > 0 we have

|(L−A)(f, y)| ≤ ∥Φy ◦ L∥
(
1− L(1X , y)

∥Φy ◦ L∥

)
(1 + ϵ−1d(X))

+
|L(1X , y)|

L(1X , y)∥Φy ◦ L∥
(L(1) + ϵ−1L(d(,̇gA(y)), y))ω̂(f, ϵ)

+ |(L−A)(1X , y)||f(gA(y))|.
Proof. If f ∈ C(X), then for all t ∈ X,

|f(t)− f(gA(y))| ≤ ω(f, d(t, gA(y))) ≤ ω̂(f, d(t, d(t, gA(Y )))

≤
(
1 +

d(t, gA(y))

ϵ

)
ω̂(f, ϵ).

For fixed y ∈ Y , if t ∈ X, we define

h1(t) : = f(gA(y))−
(
1 +

d(t, gA(y))

ϵ

)
ω̂(f, ϵ),

h2(t) : = f(gA(y)) +
(
1 +

d(t, gA(y))

ϵ

)
ω̂(f, ϵ).

The continuous functions hi, i = 1, 2, satisfy h1(t) ≤ f(t) ≤ h2(t) and

|f(t)− h1(t)| = f(t)− h1(t)

≤ |f(t)− f(gA(y))|+
(
1 +

d(t, gA(y))

ϵ

)
ω̂(f, ϵ)

≤ 2
(
1 +

d

ϵ

)
ω̂(ϵ).

Here d denotes d(t, gA(y)), ω̂(ϵ) denotes ω̂(f, ϵ). Also we have

|h2(t)− f(t)| ≤ 2
(
1 +

d

ϵ

)
ω̂(ϵ).

Hence

max{∥f − hi∥, i = 1, 2} ≤ 2
(
1 +

d(X)

ϵ

)
ω̂(ϵ).

The assumption L(1X , y) ̸= 0 allows one to introduce the auxilary function T .

T (f) := Ty(f) =
|L(1X , y)|

L(1X , y)∥Φy ◦ L∥
L(f, y).

For fixed y ∈ Y this is a continuous linear functional on C(X). Hence by Riesz’s repre-

sentation theorem, there exists a µ = µ+ − µ−, where µ+, µ− are positive measures such

that

T (f, y) =

∫
X

fdµ− =

∫
X

fdµ+ −
∫
X

fdµ+.

We have

T (f, y) +

∫
X

fdµ− =

∫
X

fdµ+ ≥ 0.

We estimate
∫
X
fdµ− as follows:∫

X

fdµ− ≤ ∥f∥X
∫
X

1Xdµ
− = ∥f∥X

∫
X

1X
1

2
(−µ+ |µ|)

= ∥f∥X
1

2
(−T (1X , y) + ∥µ∥).
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Moveover

∥µ∥ = sup
{∣∣∣∫

X

fdµ
∣∣∣ : f ∈ C(X), ∥f∥X ≤ 1

}
= ∥Φy ◦ T∥.

Thus 0 ≤ T (f, y) +
∫
X
fdµ− or T (f, y) ≥ −∥f∥X 1

2 (−T (1X , y) + ∥Φy ◦ T∥). This implies

T (f, y) + ∥f∥X 1
2 (1−M) ≥ 0, where M :=

|L(1X , y)|
∥Φy ◦ L∥

≤ 1. Applying the latter inequality to

f − h1 and h2 − f shows that

T (f − h1) + ∥f − h1∥
1

2
(1−M) ≥ 0,

and

T (h2 − f) + ∥h2 − f∥1
2
(1−M) ≥ 0.

Consequently

T (f)− f(gA(y))T (1X) ≥ −∥f − hi∥
1

2
(1−M)− T (1 +

d

ϵ
)ω̂(f, ϵ)

≥ −max(∥f − hi∥, i = 1, 2)
1

2
(1−M)− T (1 +

d

ϵ
)ω̂(f, ϵ).

Similarly

T (f)− f(gA(y))T (1X) ≤ max(∥f − hi∥, i = 1, 2)
1

2
(1−M) + T (1 +

d

ϵ
)ω̂(f, ϵ).

Thus

|T (f)− f(gA(y))T (1X)| ≤ (1−M)(1 +
d

ϵ
)ω̂(f, ϵ) + T (1 +

d

ϵ
)ω̂(f, ϵ).

Recalling the definition of T , we obtain

|(L−A)(f, y)| ≤ |L(f, y)− L(1X , y)f(gA(y))|+ |(L−A)(1X , y)||f(gA(y))|

and

|L(f, y)− L(1X , y)f(gA(y))|
≤ ∥Φy ◦ L∥(T (f, y)− f(gA(y))T (1X)|

≤ ∥Φy ◦ L∥(1−M)(1 + ϵ−1d(X)) +
|L(1X , y)|

L(1X , y)∥Φy ◦ L∥
L
(
1 +

d

ϵ

)
ω̂(f, ϵ)

≤ (∥Φy ◦ L∥ − L(1X , y))(1 + ϵ−1d(X)) +
|L(1X , y)|

L(1X , y)∥Φy ◦ L∥
L
(
1 +

d

ϵ

)
ω̂(f, ϵ),

which yields the theorem.

Corollary 2.1. As is immediately seen from Theorem 2.1 we have

(1) Under the conditions of Theorem 2.1, we have

∥(L−A)(f, y)| ≤ (∥Φy ◦ L∥ − L(1X , y))
(
1 +

d(X)

ϵ

)
+ |L(1) + ϵ−1L(d(t, gA(y)), y)|ω̂(ϵ) + |(L−A)(1X , y)||f(gA(y))|.

(2) If L is a positive linear operator, and hence ∥Φy ◦ L∥ = |L(1X , y)|, then the above

estimate reduces to

|(L− a)(f, y)| ≤ L(1 + ϵ−1d(t, gA(y)))ω̂(ϵ) + |(L−A)(1X , y)||f(gA(y))|.

(3) If (X, d) is metrically convex, we can use ω(f, ϵ) instead of ω̂(f, ϵ) in all the above

estimates.
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Remark 2.1. Comparing Theorem 2.1 with Theorem A, we consider the case Y =

X, A = Id, L(1X , x) = 1. Theorem A implies that

|L(f, x)− f(x)| ≤ max(1, ϵ−1L(d(t, gA(y)), x)ω̃(f, ϵ)

and Corollary 2.2 implies that

|L(f, x)− f(x)| ≤ (1 + ϵ−1L(d(t, gA(y)), x))ω̂(f, ϵ).

If f satisfies ω̃(f, ϵ) = ω̂(f, ϵ), the first estimate is sharper. If f satisfies ω̃(f, ϵ) = 2ω̂(f, ϵ),

the second estimate is sharper.

Remark 2.2. We can apply Theorem 2.1 on many operators. For example, we can

consider Berstain-type operator on X = [0, 1]
∪
[2, 3] which is not metrically convex.

(Lnf)(x) : =
n−1∑
i=0

f
( i
n

)
ω3n,i(x, α) +

2n−1∑
i=n

(
f(1)

(
2− i

n

)
+ f(2)

( i
n
− 1

))
ω3n,i(x, α)

+
3n∑

i=2n

f
( i
n

)
ω3n,i(x, α).

Here we have

ωp,k(f, α) =

(
n

k

)k−1∏
r=0

(t+ αr)
p−k−1∏
r=0

(1− t+ αr)

p−1∏
r=0

(1 + αr)

.

Then we have

|Ln(f, x)− f(x)| ≤ (1 + ϵ−1(3n)−1(1 + α)1(1 + 3αn)xi(1− xi))
1
2 ω̂(f, ϵ).

The other applications will appear elsewhere.
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