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A CONSTRUCTIVE PROOF OF THE INVERSION

FORMULA FOR ZONAL FUNCTIONS ON SL(2,R)
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Abstract

A constructive proof is given for the inversion formula for zonal functions on SL(2, R). A

concretely constructed sequence of zonal functions are proved to satisfy the inversion formula
obtained by Harish-Chandra for compact supported infinitely differentiable zonal functions.
Making use of the property of this sequence somehow similar to that of approximation kernels,
the authors deduce that the inversion formula is true for continuous zonal functions on SL(2, R)

under some condition. The classical result can be viewed as a corollary of the results here.
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§1. Introduction

Let SL(2, R) denote the multiplicative group of all 2× 2 real matrices with determinant

1. In this paper, we use G to denote both SL(2, R) and the linear Lie group

SU(1, 1) =
{(

α β
β̄ ᾱ

)
:| α |2 − | β |2= 1

}
(1.1)

because they are isomorphic to each other. For j = {0, 1/2}, s = 1
2 + iλ (where λ ∈ R,

and R is the set of all real numbers), let V j,s be the principal continuous series of unitary

representations of G (cf. [4]).

Set

SK =
{
us =

(
exp(is/2) 0

0 exp(−is/2)

)
: s ∈ R

}
, (1.2)

SA =
{
at =

(
cosh(t/2) sinh(t/2)
sinh(t/2) cosh(t/2)

)
: t ∈ R

}
, (1.3)

and

SN =
{
nr =

(
1 + ir/2 −ir/2
ir/2 1− ir/2

)
: r ∈ R

}
. (1.4)

By the Iwasawa decomposition, any g ∈ G can be uniquely written as

g = usatnr, us ∈ SK, at ∈ SA, nr ∈ SN. (1.5)

Also any g in G has a Cartan decomposition as follows:

g = uxatuy, 0 ≤ x < 4π, 0 ≤ t, 0 ≤ y < 2π. (1.6)
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A function f on G is said to be a zonal function if it satisfies f(kgk′) = f(g) for each g ∈ G

and k, k′ ∈ SK. The set of all complex valued zonal functions on G is denoted by A.

The following inversion formula for a function in C∞
c (G) ∩A is well known (cf. [2-6]).

Proposition 1.1. If f ∈ C∞
c (G) ∩ A, i.e., f is an infinitely differentiable, compact

supported and zonal function on G, then

f(g) =
1

2π

∫ +∞

0

f̂
(1
2
+ iλ

)
ϕ
(
g,

1

2
+ iλ

)
λ tanhπλdλ, for each g ∈ G, (1.7)

where

ϕ(g, s) = (V 0,s
g f0, f0), f0 ≡ 1, (1.8)

and

f̂(s) =

∫
G

f(g)ϕ(g−1, s)dg. (1.9)

In this paper, we give a constructive proof for the inversion formula. A concretely con-

structed sequence of zonal functions are proved to satisfy the inversion formula. Making use

of the property of this sequence somehow similar to that of approximation identity kernels,

we can deduce that the inversion formula is true for continuous zonal functions on G under

the condition f ∈ L1(R, λ tanhπλ). Proposition 1.1 can be viewed as a corollary of our

result.

§2. Construction

For any f ∈ A, set

f⋆(t) = f(at), t ∈ R. (2.1)

Since a−t = uπatu
−1
π for any t ∈ R, f⋆ is an even function on R. Therefore the following

definition is meaningful:

f0(x) = f⋆(t) = f(at), x = cosh t. (2.2)

For f ∈ L1(G) ∩A, it can be proved that (cf. [4])

f̂(
1

2
+ iλ) =

∫ ∞

−∞
Ff (t)e

−iλtdt, t ∈ R, (2.3)

where

Ff (t) = e
1
2 t

∫ ∞

−∞
f(atnr)dr. (2.4)

If atnr = uxat′uy is the Cartan decomposition, we can prove

cosh t′ = cosh t+
1

2
etr2. (2.5)

It follows that

(Ff )
0(x) = et/2

∫ ∞

−∞
f0(cosh t+

1

2
etr2)dr

=

∫ ∞

−∞
f0(x+

1

2
s2)ds. (2.6)

For n ≥ 1, g ∈ G, set

hn(g) =

{ 1
Mn

(Ln − n cosh t)2, for 0 ≤ t ≤ 1/n

0, for t > 1/n,
(2.7)
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where g = uxatuy is the Cartan decomposition,

Kn = cosh (1/n), Ln = nKn, (2.8)

Mn = 2π

∫ 1
n

0

(Ln − n cosh t)2 sinh tdt > 0. (2.9)

It follows from the continuity of the Cartan decomposition that hn ∈ Cc(g) ∩ A and we

can easily prove that

hn ≥ 0 and

∫
G

hn(g)dg = 1. (2.10)

By the definition (2.7), for any δ > 0 there is an N = [ 1δ ] + 1 such that, when n > N , we

have

2π

∫ ∞

δ

hn(at) sinh tdt = 0. (2.11)

Theorem 2.1. If f ∈ C(G) ∩A, then

lim
n→∞

(f ∗ hn)(e) = f(e), (2.12)

where e is the identity of G.

Proof. Firstly, we note that the Haar integral on G is given by the formula∫
G

f(g)dg = 2π

∫
SK

∫ ∞

0

∫
SK

f(katk
′) sinh tdkdtdk′, (2.13)

so

(f ∗ hn)(e)− f(e) =

∫
G

(f(g−1)− f(e))hn(g)dg

= 2π

∫ ∞

0

(f(at)− f(e))hn(at) sinh tdt. (2.14)

For any ϵ > 0, because f is continuous at e, there exists a δ > 0 such that, when 0 ≤ t < δ,

we have

|f(at)− f(e)| < ϵ

2
. (2.15)

It follows from (2.11) that when n > N = [ 1δ ] + 1,

| (f ∗ hn)(e)− f(e) |

≤ 2π

∫ δ

0

| f(at)− f(e) || hn(at) | sinh tdt

+ 2π

∫ ∞

δ

| f(at)− f(e) || hn(at) | sinh tdt

≤ ϵ

2
2π

∫ δ

0

| hn(at) | sinh tdt+ 2 ∥ f ∥∞ 2π

∫ ∞

δ

| hn(at) | sinh tdt

≤ ϵ

2
2π

∫ ∞

0

| hn(at) | sinh tdt+ 0

=
ϵ

2
< ϵ.

Corollary 2.1. For any λ ∈ R, we have

lim
n→∞

ĥn(
1

2
+ iλ) = 1. (2.16)
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Proof. By the definitions of ϕ and ĥn, we know

ϕ
(
g,

1

2
+ iλ

)
∈ C(G) ∩A

and

ĥn

(1
2
+ iλ

)
=

(
ϕ
(
·, 1
2
+ iλ

)
∗ hn

)
(e). (2.17)

Therefore, (2.16) follows from Theorem 3.1.

Theorem 2.2. For each n ≥ 1, we have

hn(e) =
1

2π

∫ ∞

0

ĥn

(1
2
+ iλ

)
λ tanhπλdλ. (2.18)

Proof. For x = cosh t, by the definition of hn, we have

h0
n(x) =

{ 1
Mn

(Ln − nx)
2
, 1 ≤ x ≤ Kn,

0, x > Kn.
(2.19)

When 1 ≤ x ≤ Kn, it follows from (2.6) that

F 0
hn

(x) =

∫ ∞

−∞
h0
n(x+ (s2)/2)ds

=

∫ √
2(Kn−x)

−
√

2(Kn−x)

1

Mn

(
Ln − n

(
x+

1

2
s2
))2

ds

=
16

√
2n2

15Mn
(Kn − x)

5/2
;

and when x > Kn, we have x+ s2/2 > Kn, so F 0
hn

(x) = 0. Therefore

F 0
hn

(x) =

{
16

√
2n2

15Mn
(Kn − x)

5/2
, 1 ≤ x ≤ Kn,

0, x > Kn.
(2.20)

So we have

d

dt
(F 0

hn
(x)) =

{
−8

√
2n2

3Mn
(Kn − x)

3/2
, 1 ≤ x ≤ Kn,

0, x > Kn.
(2.21)

Set

Hn = − 1

2π

∫ ∞

−∞

(
F 0
hn

(x)
)′ (

1 +
1

2
s2
)
ds. (2.22)

Then

Hn =
2n2

3Mnπ

∫ √
2(Kn−x)

−
√

2(Kn−x)

((
√
2(Kn − 1))2 − s2)3/2ds

=
n2

Mn
(Kn − 1)

2

= hn(e). (2.23)

On the other hand, setting s = 2 sinh (t/2) in (2.22), we get

Hn = − 1

2π

∫ ∞

−∞
(F 0

hn
(x))′(cosh t) cosh (t/2)dt. (2.24)

It is easy to see from (2.20) that

Fhn(t) =

{
16

√
2n2

15Mn
(Kn − cosh t)

5/2
, − 1

n ≤ t ≤ 1
n

0, |t| > 1
n ,

(2.25)
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so Fhn(t) ∈ C2
c (R), and it follows from (2.3) that ĥn(

1
2 + iλ) is the Fourier transform of

Fhn(t) on R. By the classical results about Fourier analysis on R, we have

F 0
hn

(cosh t) = Fhn(t)

=
1

π

∫ ∞

0

ĥn(
1

2
+ iλ) cosλtdλ. (2.26)

Taking derivative with respect to x = cosh t in both sides of (2.26), we get

(F 0
hn

(x))′(cosh t) =
1

π

∫ ∞

0

ĥn

(1
2
+ iλ

)( 1

sinh t

) d

dt
(cos (λt))dλ. (2.27)

Making use of (2.23), (2.24), Fubini theorem and the relation∫ ∞

−∞
(sinh (t/2))−1 sinλtdt = 2π tanhπλ, (2.28)

we obtain

hn(e) =
1

2π2

∫ ∞

0

ĥn

(1
2
+ iλ

)(∫ ∞

−∞

λ sinλt

sinh t
cosh

t

2
dt
)
dλ

=
1

2π

∫ ∞

0

ĥn

(1
2
+ iλ

)
λ tanhπλdλ. (2.29)

Thoerem 2.3. For any n ≥ 1, we have

hn(g) =
1

2π

∫ ∞

0

ĥn

(1
2
+ iλ

)
ϕ
(
g,

1

2
+ iλ

)
λ tanhπλdλ. (3.30)

Proof. For 0 ≤ t0 < ∞, set

hc
n(g) =

∫
SK

hn(at0kg)dk. (2.31)

It is easy to see that hc
n ∈ Cc(G) ∩A. For x = cosh t, we have

(hc
n)

0
(x) = hc

n(at)

=
1

4π

∫ 4π

0

hn(at0uθat)dθ. (2.32)

If at0uθat = uyat′uz is the Cartan decomposition, then

cosh t′ = cosh t0 cosh t+ sinh t0 sinh t cos θ. (2.33)

Therefore

(hc
n)

0
(x) =

1

4π

∫ 4π

0

hn(at′)dθ

=
1

4π

∫ 4π

0

h0
n(x cosh t0 +

√
x2 − 1 sinh t0 cos θ)dθ. (2.34)

It follows that (hc
n)

0
(x) ∈ Cc(R), and we can easily prove that the infinite integral∫ ∞

0

((hc
n)

0
)′(x+

1

2
s2)ds

converges uniformly with respect to x in the support of (hc
n)

0
(x). Hence it follows from the

definition of (Fhnc)
0
(x) (cf. (2.6)) that

((Fhc
n
)
0
)′(x) =

∫ ∞

−∞
((hc

n)
0
)′(x+

1

2
s2)ds. (2.35)
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Hence

− 1

2π

∫ ∞

−∞
((Fhc

n
)
0
)′
(
x+

1

2
s2
)
ds

= − 1

2π

∫ ∞

−∞

∫ ∞

−∞
((hc

n)
0
)′
(
x+

1

2
s2 +

1

2
t2
)
dtds

= − 1

2π

∫ ∞

0

∫ 2π

0

((hc
n)

0
)′
(
x+

1

2
r2
)
rdθdr

= (hc
n)

0
(x). (2.36)

It follows that

hc
n(e) = (hc

n)
0
(1)

= − 1

2π

∫ ∞

−∞
(Fhnc

0)′
(
1 +

1

2
s2
)
ds. (2.37)

Note that (2.36) is the same as (2.23) with hc
n, so we can prove that (2.29) is true with hc

n

replacing hn, i.e.,

hc
n(e) =

1

2π

∫ ∞

0

(̂hc
n)
(1
2
+ iλ

)
λ tanhπλdλ. (2.38)

For any x, y ∈ G and λ ∈ R, we can verify∫
SK

ϕ
(
xky,

1

2
+ iλ

)
dk = ϕ

(
x,

1

2
+ iλ

)
ϕ
(
y,

1

2
+ iλ

)
. (2.39)

By Fubini theorem, we have

(̂hc
n)
(1
2
+ iλ

)
=

∫
G

hc
n(g1)ϕ

(
g−1
1 ,

1

2
+ iλ

)
dg1

=

∫
G

∫
SK

hn(at0kg1)ϕ
(
g−1
1 ,

1

2
+ iλ

)
dkdg1

=

∫
SK

∫
G

hn(g1)ϕ
(
g−1
1 at0k,

1

2
+ iλ

)
dg1dk. (2.40)

Since hn and ϕ are zonal functions on G, it follows from (2.39) and (2.40) that

(̂hc
n)(

1

2
+ iλ) =

∫
G

∫
SK

hn(k
−1g1)ϕ

(
g−1
1 at0 ,

1

2
+ iλ

)
dkdg1

=

∫
G

∫
SK

hn(g1)ϕ
(
g−1
1 kat0 ,

1

2
+ iλ

)
dkdg1

=

∫
G

hn(g1)ϕ
(
g−1
1 ,

1

2
+ iλ

)
ϕ
(
at0 ,

1

2
+ iλ

)
dg1

= ĥn

(1
2
+ iλ

)
ϕ
(
at0 ,

1

2
+ iλ

)
. (2.41)

On the other hand, we have

hc
n(e) =

∫
SK

hn(at0k)dk = hn(at0). (2.42)

From (2.38), (2.41) and (2.42), it follows that

hn(at0) =
1

2π

∫ ∞

0

ĥn

(1
2
+ iλ

)
ϕ(at0 ,

1

2
+ iλ)λ tanhπλdλ. (2.43)

For any g ∈ G, let g = uxat0uy be the Cartan decomposition. Then t0 ≥ 0, so it follows
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from (2.43) that

hn(g) = hn(at0)

=
1

2π

∫ ∞

0

ĥn

(1
2
+ iλ

)
ϕ
(
g,

1

2
+ iλ

)
λ tanhπλdλ. (2.44)

§3. Main Result

Theorem 3.1. Let f ∈ C(G) ∩A. If f̂ ∈ L1(R, λ tanhπλ), then

f(g) =
1

2π

∫ ∞

0

f̂
(1
2
+ iλ

)
ϕ
(
g,

1

2
+ iλ

)
λ tanhπλdλ. (3.1)

Proof. It is easy to see that

| ϕ(g, 1
2
+ i) |≤ 1, g ∈ G,

so the integral on the right side of (3.1) is well defined.

Making use of Theorem 2.4 and Fubini theorem, we get

(f ∗ hn)(e) =
1

2π

∫ ∞

0

f̂
(1
2
+ iλ

)
ĥn

(1
2
+ iλ

)
λ tanhπλdλ. (3.2)

Hence it follows from Theorem 2.1, Corollary 2.1 and (3.2) that

f(e) =
1

2π

∫ ∞

0

f̂
(1
2
+ iλ

)
λ tanhπλdλ. (3.3)

For any g ∈ G, if

g = uxat0uy

is the Cartan decomposition, set

f c(g) =

∫
SK

f(at0kg)dk. (3.4)

It can be shown that f c satisfies the conditions demanded for f , so (3.3) is also true with

f c replacing f . Therefore we get

f c(e) = f(at0) = f(g)

=

∫ ∞

0

f̂c
(1
2
+ iλ

)
λ tanhπλdλ. (3.5)

We can prove (cf. the proof of (2.41)) that

f̂ c
(1
2
+ iλ

)
ϕ
(
g,

1

2
+ iλ

)
. (3.6)

And (3.1) follows from (3.4) and (3.5).

Remark. If f ∈ Cc
∞(G) ∩ A, then f satisfies the conditions required in Theorem 3.1.

So Proposition 1.1 (the known result) can be viewed as a corollary of our Theorem 3.1.
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