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Abstract

The extinction of a class of superprocesses associated with general branching characteristics
and underlying Markov processes is investigated. The extinction is closely associated with the
branching characteristics and the recurrence and transience of underlying processes.
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§1. Introduction

Superprocesses, i.e., measure-valued Markov processes, have been an attractive topic in

the recent years, which can be defined as follows. Let (ξ, Px)x∈RId be a Markov process

with strong continuous Markov semigroup St (denote by A its infinitesimal operator, and

by pt(x, y) the associated transition function).

ψ : RId ×RI+ 7−→ RI+, (x, λ) → γ(x)λ1+β , 0 < β ≤ 1.

Denote by Mp the set of all Radon measures µ satisfying∫
RId

1

1 + ∥x∥p
µ(dx) <∞, p ≥ 0,

and by pC(RId) (resp. pCc(RI
d)) the set of positively continuous functions (resp. with compact

support) in RId. The so-called superprocess (X,Pµ)µ∈Mp with parameters ξ and ψ and taking

value in Mp is determined by the following Laplacian functional:

Pµ exp{−⟨Xt, f⟩} = exp{−⟨Vtf, µ⟩}, f ∈ pCc(RI
d), µ ∈Mp, (1.1)

where Vtf satisfies the following integral equation:

Vtf(x) +

∫ t

0

Ssψ(x, Vt−sf(x))ds = Stf(x), x ∈ RId (1.2)

and ⟨f, µ⟩ means the integral of f with respect to µ. See [4,7] for more general definitions.

From [10] it is not difficult to prove that if the initial measure µ ∈Mp for some p ≥ 0, then,

for any t > 0, Xt ∈Mp almost surely.
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In this paper we are interested in the extinction of a class of superprocesses. As one of

the most fundamental problems for stochastic processes, the extinction of superprocesses

has been investigated by a number of authors. Dynkin[3] and Dawson[2] had considered such

kinds of questions for different cases. More precisely, for γ ≡ C, a positive constant, Dynkin

has proved that for p = 0 ( Mp is thereby the set of all finite measures) Xt is extinct in the

sense of

⟨Xt, 1⟩ −→ 0 ( a.s. as t→ ∞), µ ∈M0, (1.3)

i.e., the total mass of Xt vanishes as time tends to infinite. Indeed, this can be easily verified

from the following simple observation. For f ≡ 1, the unique solution of equation (1.2) is

Vt = (1 + Cβt)−1/β (1.4)

which is independent of x ∈ RId. Clearly, Vt → 0 as t→ ∞, so from our following argument

we know that (1.3) holds.

On the other hand, for p > d the Lebesgue measure (denoted by L) belongs to Mp.

In this case, Dawson (1977) demonstrated for α-stable processes and α < d that Xt with

the Lebesgue measure as its initial measure is vaguely extinct in probability, i.e., for any

compact set K and ϵ > 0,

Pµ{Xt(K) > ϵ} −→ 0 as t −→ ∞

if ξ is recurrent. Some more delicate results concerning extinction are due to [5,6,9,11] and

so on. However, the above results as well as most previous others were obtained under

the condition that γ is a constant. The spatial homogeneity has played an essential role.

When γ is a general non-negative function, the corresponding superprocesses are generally

not spatially homogeneous. This destroys much of the simplicity, and we have to seek a new

way to approach our goals.

We now assume that the semigroup St satisfies:

(a) St1 = 1, i.e., ξ is conservative;

(b) for any x ∈ RId and any Borel set U whose Lebesgue measure is positive, then

St1U (x) > 0 for some t > 0.

Clearly, these assumptions make sense for very wide situations.

For p = 0, [13] studied the absolute continuity of Xt and showed that, for any fixed t > 0,

Xt on the “non-branching” set {x ∈ RId; γ(x) = 0} is almost surely absolutely continuous

with respect to Lebesgue measure. Now we turn to the investigation of the extinction of Xt

in the sense of (1.3), and show that the extinction of Xt closely depends on the recurrence

of underlying process ξ, as well as the branching characteristic γ. At first, we have

Theorem 1.1. Under the assumptions (a) and (b), suppose supp(γ) (the support of γ)

is of positive Lebesgue measure. If ξ is a recurrent Hunt process then Xt is extinct in the

sense of (1.3).

On the other hand, we shall investigate the case that ξ is transient. We have

Theorem 1.2. Suppose supp(γ) is of finite Lebesgue measure. If ξ is transient then for

any µ ∈Mp, Xt is not a.s. extinct.

To prove the above theorems, we first have to investigate a class of non-linear equations

about which very few results can be found in existing literature. In the next section we
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will find that probabilistic approach to some non-linear equations is proved to be powerful.

From above results we have the following

Corollary 1.1. Suppose the Lebesgue measure of supp(γ) is finite and positive and ξ

is α-stable process in RId (0 < α ≤ 2), then the corresponding superprocess Xt is extinct if

α ≥ d, but not if α < d.

The proof of the theorems will be carried out in Section 2. We shall give some remarks

in Section 3.

§2. Proof of Theorems

We prove the theorems through several lemmas. Consider

Vt(x) +

∫ t

0

Pxγ(ξs)V
1+β
t−s (ξs)ds = 1. (2.1)

The following lemma is about the stability of solution of integral equation (2.1).

Lemma 2.1. The convergence Vt ↓ V∞ (t −→ ∞) exists pointwise. Moreover, V∞ is an

invariant function of nonlinear semigroup Vt and Xt(RI
d)−→some random variable X∞(RId)

almost surely as t→ ∞.

Proof. Since Vt(x) ≤ 1, we have

PXse−⟨1,Xt⟩ = e−⟨Vt−s,Xs⟩ ≥ e−⟨1,Xs⟩

and therefore e−⟨1,Xs⟩ is a bounded submartingale. So

Vt(x) = − logP δxe−⟨1,Xt⟩ ↓ V∞(x)

as t→ ∞.

From this and martingale convergence theorem it is easy to prove the rest part of this

lemma.

We here approach the stability of solution of nonlinear equation (2.1) probabilistically,

which appears rather simple. In fact, such kind of questions are of special interesting for

many people who are devoted to nonlinear problems. However, because their methods

involve some abstruse knowledge in modern analysis, they are difficult for us to understand.

Lemma 2.2. If condition (b) in Section 1 holds, then either V∞ ≡ 0 or V∞ > 0 for all

x ∈ RId.

Proof. At first, to prove that “if V∞(x0) = 0 for some x0 ∈ RId, then for a.e-L x ∈ RId,

V∞(x) = 0.” If not, by Assumption (b), we have

P δx0 ⟨Xt, V∞⟩ = StV∞(x0) > 0. (2.2)

Therefore

e−V∞(x0) = e−Vt(V∞)(x0) (by Lemma 2.1) (2.3)

= P δx0 e−⟨Xt,V∞⟩ > 0,

i.e., V∞(x0) > 0. This is absurd.

Then to prove “if V∞(x) = 0 for a.e.-L, then V∞ ≡ 0.” In fact, for each x ∈ RId,

P δx⟨Xt, V∞⟩ = St(V∞)(x) = 0.

This means ⟨Xt, V∞⟩ = 0, a.s.-P δx . Therefore

V∞(x) = − logP δxe−⟨Xt,V∞⟩ = 0.
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The proof is complete.

Proof of Theorem 1.1. Since L(supp(γ))> 0, then supp(γ) is not polar set of ξ.

Because of the recurrence of ξ we know that either
∫∞
0
Pxγ(ξs)V

1+β
∞ (ξs)ds = 0 or ∞ (cf.

[1]). If V∞ > 0, then ∫ t

0

Pxγ(ξs)V
1+β
∞ (ξs)ds > 0,

therefore ∫ ∞

0

Pxγ(ξs)V
1+β
∞ (ξs)ds ≡ ∞.

By Lemma 2.1, ∫ t

0

Pxγ(ξs)V
1+β
t−s (ξs)ds ≥

∫ ∞

0

Pxγ(ξs)V
1+β
∞ (ξs)ds ≡ ∞.

Consequently

lim
t→∞

∫ t

0

Pxγ(ξs)V
1+β
t−s (ξs)ds = ∞.

On the contrary, we have that for any x ∈ RId and any t > 0,∫ t

0

Pxγ(ξs)V
1+β
t−s (ξs)ds ≤ 1.

So we get a contradiction. This means V∞ ≡ 0, and thereby X∞ = 0 a.s.

Proof of Theorem 1.2. Similarly, we only need to prove V∞ ̸≡ 0. If V∞ ≡ 0, then for

any ϵ > 0, we can find t1 large enough such that

Px

∫ ∞

t1

1supp(γ)(ξs)ds < ϵ/c∥γ∥,

i.e., for any t > t1,

Px

∫ t

t1

γ(ξs)V
1+β
t−s (ξs)ds < ϵ.

Note that, for t > t1,

Px

∫ t

0

γ(ξs)V
1+β
t−s (ξs)ds = Px

∫ t1

0

γ(ξs)V
1+β
t−s (ξs)ds+ Px

∫ t

t1

γ(ξs)V
1+β
t−s (ξs)ds.

Because of Vt ↓ 0, the monotonous convergence theorem implies that

lim
t→∞

Px

∫ t1

0

γ(ξs)V
1+β
t−s (ξs)ds = 0.

Hence

lim
t→∞

Px

∫ t

0

γ(ξs)V
1+β
t−s (ξs)ds < ϵ.

By the arbitrariness of ϵ, we have that for x ∈ RId,

lim
t→∞

Px

∫ t

0

γ(ξs)V
1+β
t−s (ξs)ds = 0.

On the other hand, from (1.2) and our assumptions we have

lim
t→∞

Px

∫ t

0

γ(ξs)V
1+β
t−s (ξs)ds = 1.

So we have a contradiction. This means that V∞ > 0 in RId, and the proof is complete.
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§3. Remarks

In this section we shall discuss the possibilities of generalizing our results. For any non-

negative bounded measurable function γ, the following Comparison Lemma make us possible

to extend our results.

Proposition 3.1 (Comparison Lemma). Suppose that f : RI+ × RId × RI+ −→ RI+ and

ū(t, x) and u(t, x) satisfy the condition that ū is a supersolution and u is a subsolution, i.e.,

˙̄u(t, x)−Aū(t, x) + f(t, x, ū) ≥ 0

and

u̇(t, x)−Au(t, x) + f(t, x, u) ≤ 0;

sup
t≤s, x∈RId

|ū(t.x)|+ |u(t, x)| <∞ for every s < T ;

ū(0, x) ≥ u(0, x) for x ∈ RId.

Then

ū(t, x) ≥ u(t, x) in (0, T )×RId.

The theorem was stated in [8] when A is a strongly elliptic operator. If the Comparison

Lemma is true for some A, an immediate result is the following proposition.

Proposition 3.2. Suppose that X1
t and X2

t are superprocesses associated with γ1 and

γ2 respectively, and γ1 ≤ γ2. If X1
t is extinct in the sense of (1.3), so is X2

t . On the other

hand, if X2
t is not a.s. extinct, neither is X1

t .

There are still some unsolved problems. An interesting question is that under the con-

dition that ξ is transient (e.g. Brownian motion for d > 2), for which kind of γ, Xt is still

extinct? We know from Section 1 that it is true when γ is a constant. However, for a general

γ this question may be not easy to answer. Anyway, we have the following

Conjecture 3.1. If for some c > 0 the set {x ∈ RId, γ(x) > c} is of infinite potential with

respective to ξ, i.e., ∫ ∞

0

St1{x∈RId,γ(x)>c}dt = ∞,

then the corresponding Xt is extinct.

A further question is whether supp(Xt) almost surely equals to ∅ for t large enough when

Xt is extinct in the sense of (1.3). Unlike the case which γ is a positive constant, the above

question has a negative answer for a general branching characteristic γ. This will be proved

in a later paper.
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