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ON TAYLOR’S CONJECTURE ABOUT THE PACKING
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Abstract

It is proved that if E C R, F C R"™, then P(E X F,p192) < ¢-P(E,¢1)P(E, p2), where
P(-, ) denotes the p-packing measure, ¢ belongs to a class of Hausdorff functions, the positive
constant ¢ deponds only on ¢1, 2 and n.
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¢1. Introduction

In the geometry of fractals, Hausdorff measure and dimension play a very important
role. On the other hand, the recent introduction of packing measures has led to a greater
understanding of the geometric theory of fractals, as packing measures behave in a way that is
‘dual’ to Hausdorff measures in many respects(?l. For example, denoting Hausdorff dimension
and packing dimension by dim and Dim respectively, we have dim(E x F) > dimFE + dimF’,
while Dim(E x F') < DimFE + DimF. Tt is well-knowen that if E C R™, F C R", then

H(E X F,p192) 2 b-H((E, 1) H(F, p2)

for some Hausdorff functions and constant b, where #(-, ¢) denotes the p-Hausdorff measure.
Taylor conjectures that we should have

P(E X F7g01g02) <c- P(E,(,D1)P(F, (pg).

In this paper, it is shown that if F or F is a subset of R, then the conjecture is correct.

§2. Packing Premeasure

We restrict our attention to subsets of Euclidean space R%(d > 1). The Cartesian product
of sets E C R™ and F C R" is denoted by E x F. We use |E| to denote the diameter of
E and ||z|| to denote the distance from 0 to € R™. The open ball with center at z and
radius 7 > 0 is denoted by

Br(z) = {y e R": [l —y[| <7}.

Q2 stands for the class of balls:

QE)={B,(z):r> 0,2 € E}.
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I'* stands for the class of dyadic cubes in R, C' € I'* if it has side length 27", n €
N, and each of its projections proj;C on the ith axis is a half-open interval of the form
[ki27™, (ki +1)27") with k; € Z. uy,(z) denotes the unique cube which is in I'* and contains
x with side legnth 27".

I'(E) = {un(z) : x € E,n € N}.

I'** stands for the class of semidyadic cubes in R, C' € I'** if it has side legnth 27"
and proj;,C = [2k;27", (1k; + 1)27") with k; € Z. v,(z) is the unique cube in I'** of
side legnth 27" such that on the i-th axis the complement of proj;C is at distance 2772
from w,42(proj;z) C R. It is not difficult to see that if x € R™™ and n € N, then
projrn (vn(x)) = v, (projgn), where v, (projg~x) is in R™.

' ={v,(z):z € E,n € N}.
® denotes the class of functions ¢ : [0, +00) — R which are increasing, continous with
©(0) =0 and
1
©(2x) < cop(x) for some ¢g >0 and 0<z < 3 (2.1)

We use B(R"™) to denote the family of bounded subsets of R". For R C B(R"), put
IR| = sup{|E|: E € R} and

p(R) = > o(B]). (2.2)

ReR
We say R C B(R") is a packing of E if for all F € R,ENF # (), and the sets in R are
disjoint. Put

T(E,p,e) =sup{p(R) : |R|| <&, R is a packing of E}. (2.3)

Particularly, if R C Q(E) or R C I'*(E), the corresponding 7(F, p,e) is denoted by
P(E,p,¢e) or P**(E, @,¢).
Obviously 7(E, ¢, ) is an increasing function of €. Let

T(E,¢) = lim 7(E, ¢, ),
P(E,p) = lim P(E, ¢,¢),
P*(E, @) = lim P*(E, 9,2). (2. 4)

83. Packing Measure
For E C R", let
P(E,¢) = inf{)_ P(Ei,¢): E; € BR"),E C UE,}, (3.1)
P**(E,¢) = inf{)_ P*™(E;¢): E; € BR"),E C UE;}. (3.2)
Then they are two outer measures. We call P(FE, ¢) the ¢-packing measure of E.

84. Packing Measures of Cartesian Product Sets

Lemma 4.1.B! Let E € R™. Then there exist 0 < ¢1 < ¢ < 400 such that
aP(E,p) < P™(E,p) < coP(E, p). (4.1)
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c1 and co depend only on ¢ and n.
Proof. From the definition of v;(z), we can get By-i-2(x) C vi(x) C B,.o-i(x), where
i€ N,and p=nz. So according to (2.3) and (2.4), the results is obvious.
Corollary 4.1.B] Let E ¢ R™. Then there exist 0 < ¢; < ¢y < +00 such that
clP(Ev 90) < P**(E, 90) < CQP(E7 90)'
c1 and ¢y depend only on ¢ and n.
Proof. Use (3.1), (3.2) and Lemma 4.1.
Lemma 4.2. Let E C [a,b],—00 < a < b < +oo,u ={U;,i =1,2,3,---} Cc I™*(E). U;
and U; may be the same set when i # j,q > 0, ||u|| < q. For all z € [a,b],
Z xu; () <n, neN, (4.2)
U;cu
where xu,(x) is the characteristic function of U;. Then
> e(Uil) <n-P™(E,p,q). (4.3)
U,Eu
Proof. Use mathematical induction.
If n = 1, then from (4.2) we know that u is a packing of E, so
> e(|Uil) < P(E, ¢, q).
U;Eu
Suppose that the lemma is true when n = k — 1. Let n = k. Let v/ = {U,Us,---Un}.

Then
S @< Y v @) <k w€lab). (4.4)

U;cu’ U;cu
Let U; = [a;,b;),i = 1,2,--- N. We can assume that a1 < as < --- < ay_1 < ay. Let
Ur, = la1,01),Ur, = [ar,, 2)7 where 74 is the smallest number which satisfies a,, > b;.

Also we can get Ur3 [@rs,bry), where r3 is the smallest number such that a,, > b,,. In

such a way, we can get
Up Upgy - Uy, 1=r1<rg<--- <1 <N.

Let @ = {U,,Up,, -+ , Uy, },u” = u/\G. Then @ is a packing of E, so

l
> el < P(E, p,q). (4.5)
i=1
We need to prove
Z xu; () <k-1, xz€a,b]. (4.6)
Ueu”

l
Ifzx e U U,,, then (4.6) is obviously correct.

=1

If ¢ U U,,, then there must exist r; such that = € [b.,a,,,) (If i = [, then let

Qrppy = b) SO if z € U; € v, then U; must satisfy U; ([ar,, br,) # 0; otherwise U; should
have been selected into @ before [a,_ ,,br,,,). So if there are more than k — 1 sets containing
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x in u”, we can find a point b, in the left neighborhood of b,, such that
Yooxw) =Y xw )+ Y xwb) > 1+ (k=1) =k, (4.7)
U,eu’ U;en U;eu’’
which contradicts (4.4). So we have
U;eu’
and (4.6) is correct. So
U; e’
and
Yooelu) =Y eUi)+ Y @Ui) < k- P™(E,¢,q).
U;eu’ U,ea U;eu’’
Letting N — +o00. we complete the proof.
Lemma 4.3. If EC R, FF C R"”, then

P(E X F,o102) < c- P7(E, 1) - P (F, 2), (4.8)
where 0 < ¢ < 4+00. ¢ depends only on p1,p2 and n.
Proof. If E or F is an unbounded set, then P**(E, ¢1) = +00 or P**(F, p3) = +00 and
(4.8) holds. So we need only to consider the case that both E and F' are bounded sets.
Let u={U;} CT*(E x F), ||u|| < ¢ and u be a packing of E x F. Put
P1(U;) = projr (Ui), P2(Us) = projgra (Us), wr = {Pi(U;) : U; € u}
and us = {P2(U;) : U; € u}. Then
up CT"(E), ua CT*(F), |lui]] < ¢ and |usz| <gq.
Suppose E C [a,b], —00 < a < b < 4oc0. For any fixed z € [a,b], {P2(U;) : © € Py (U;)} is
a packing of F. So
Y e2(IPa(Un)) - xpywy (@) < P (Fy,q), @ € [a,b)]. (4.9)
U;eu
For u we have

> (Ui = > er(|Uil) - ea(|Ui)

U;eu U;eu
n+1
= Z e1(Vn+ 1 [Pi(U;)]) - pal NG |P(Ui)])- (4.10)
U,eu
Let v/ = {Ul,UQ,"- 7(]]\/}. Then
Y e2(|BU)) - xpwa (@) < P (Frp2,q). (4.11)
U;eu’

Let oo(|P(U;)|) = fi,i = 1,2,--- N, and P**(F,p2,q) = g. f; and g can be approxi-
mated by rational numbers d; and h so that

Sgéh éflgdla ZZl,QaaNa

1+e T ol+4e
where € is also a rational number. Then
Z di : XPI(Ui)(x) < (1 + E)h
U;eu’
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Let M be the common demoninator of ¢,h and d;,i =1,2,--- ,N,d; = % Then

> Mk - xpwy(@) < (1+e)hM>.
U,eu’

Put (1 +¢)hM? = K. Then K € N. Using Lemma 4.2 we get
> Mk (|P(U)|) < K - P*(E,¢1,q).

U;,eu’
So
> di- o1 (|PUU)]) < (14 )b P (B, ¢1,0),
U,eu’
Y fee(PUU) < (1+2) g P (1, 0).
U,eu’
> ea(|PU))) - e1(|PLU)]) < (1+2)* P (F,p2,q) - P (E, ¢1,q).
U;eu’
Let e = 0 and then N — 400. We get
Z 02(|P2(Uy)]) - o1 (|PL(Us)|) < P (F, ¢2,q) - P™(E, 1,9). (4.12)
U,Eu

From (4.12),(4.10) and (2.1) we get
D erea(|Uil) < D7 012 Pu(UL)]) - pa2(2] Pa(U3)])

U;Eu U;€u

< Y ae(IPU) - cxpa(| Po(US)))
U,Eu

SC'P**(Eagolvq)'P**(FﬂDQv(I)a (413)

where ¢ = ¢1™ - ¢o depends only on @1, p2 and n. (4.13) is valid for any packing v of E x F
on the condition that u € IT**(E x F), ||u|| < ¢ and ¢ is small enough. So we have

P (E x F,p192,q) < c- P (E, ¢1,q) - P*(F, ¢2,9). (4.14)
Let ¢ — 0. We get

P (E x F,p192) < ¢ P™(E, 1) - P*(F, p2).
Corollary 4.2. If EC R, F C R", then
P(E X F,p1p2) < '+ P(E, 1) - P(F, ¢2), (4.15)

where 0 < ¢ < +o0, ¢ depends only on p1,p2 and n.
Proof. Use Lemma 4.1 and Lemma 4.3.
Now we can prove the main result.
Theorem 4.1. If E C R, F C R", then

P(E x Fyp192) < ¢ P™(E, 1) - P (F, p2), (4.16)

where 0 < ¢ < +00. ¢ depends only on p1,ps and n.
Proof. According to (3.2), for any € > 0 there exist {F;,i = 1,2,---} such that F; C
B(R),E C UE; and

P (B, p1) <Y P(E) <P™(E, 1) +e.
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We can also get {F;,i =1,2,---} so that F; C B(R™),F C UF; and
P (F,p2) <Y P*(F;) <P (F,p2) +e.

Let u = {E; x Fj,i,j =1,2,---}. Then E; x F; C BR xR") and E x F' C UU E; x F}.

So o
P (E X F,1¢02) < ZZP**(EZ X Fj, p192).
From Lemma 4.3, we have J
P™(E; x Fj,p102) < ¢- P (E;, 1) - P*™(F}, ¢2).
So
P(E x Foprga) < 33 e P(Biy 1) - P (Fy, )

? J

<c- (PT(E,¢1) +¢)- (P7(F, p2) +¢).
Let ¢ — 0. We get
P (E X F,p192) < ¢ PY(E, 1) - P (F, p2).
Theorem 4.2. If E C R, FF C R", then
P(E x F,p102) < -P(E,¢1) - P(F, ¢2),

where 0 < ¢ < 400, ¢ depends only on 1,2 and n.
Proof. Use Theorem 4.1 and Corollary 4.1.
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