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STABILITY OF GLOBAL GEVREY SOLUTION
TO WEAKLY HYPERBOLIC EQUATIONS
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Abstract

This work is concerned with the proof of stability of global Gevrey solution to the following
quasilinear weakly hyperbolic equation: u —a(x, t)uge = f(z,t, u, ug) in P x [0, T] with initial
data u(z,0) = up(x) and u¢(x,0) = ui(x). Here weak hyperbolicity means that a(x,t) > 0, that
is, there exist, in general, characteristic roots of variable multiplicity. One has to distinguish
between the case of spatial degeneracy and that of time degeneracy. The connection to the life
span of solutions is given.
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¢1. Introduction

In the last years the theory of weakly hyperbolic equations was developed in an astonishing
way. A lot of papers have led to a general view about linear weakly hyperbolic equations
(even) of higher order. Using Gevrey analysis first success was obtained for nonlinear weakly
hyperbolic equations. In this context we remind of the general local existence theorem for
nonlinear hyperbolic equations of order m, m > 2, which has been proved in [5] for local
Gevrey classes of order s < j/(j—1), where j denotes the highest multiplicity of characteristic
roots.

To include Gevrey classes of order s > j/(j — 1) one has to formulate Levi conditions.
We call Levi condition any algebraic condition between lower order terms and the principal
part.

For example, if one wants to study well-posedness for the weakly hyperbolic Cauchy
problem (a(z) > 0)

ug — (a(2)ug)r — b(@)u, = f(x,t), u(x,0) =ug(x),u(z,0) =ui(x)
in all Gevrey classes of order s > 2, the Levi condition |b(x)|? < Ca(z) (C denotes here and
in the following an universal constant) is sufficient!*%] and necessary®! if a(z) has a zero of
finite order.
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The authors studied in two papers!'>'2] the influence of Levi conditions to some typical
problems of hyperbolic theory for quasilinear weakly hyperbolic equations of the form

gy — a(x, gy = [, t,u,uy). (1.1)
The reason why we had to represent the results in two different papers is that the goals, meth-
ods and especially Levi conditions differ in the cases of time (a(z,t) = A\2(t)b(x, 1), b(x,t) >
C >0, A(0) = N (0) =0, N (t) > 0fort > 0) and spatial (a(z,t) > 0, Aa(z,t) — ar(x,t) > 0)
degeneracy.

In the case of time degeneracy'! local existence of solutions and existence of cone of
dependence could be proved. In opposite to this type of degeneracy (if ¢ > 0 the equation
(1.1) becomes strictly hyperbolic) in the case of spatial degeneracy not only the question
for local existence and cone of dependence, but also for global regularity of solutions!*2:14
is reasonable (if ¢ > 0 the equation (1.1) still remains weakly hyperbolic).

From the strictly hyperbolic theory (a(z,t) > C > 0in (1.1)) it is known that growth con-
ditions of f with respect to u and u, are necessary for the global existence of solutions®7:10,
The situation is unchanged in the degenerate case (1.1) because this case contains a(x,t) = 0.
In this case the Levi condition implies 0, f(x,t,u,p) = 0. Consequently, the degenerate case
includes ordinary differential equations for which the blow-up behaviour of solutions is well
studied.

But one has to take into consideration the Levi conditions, too. If the Levi condition
is not satisfied, then the global existence of solutions cannot be expected. The following
example shows that for quasilinear weakly hyperbolic equations without fulfillment of Levi
condition which was proposed in [11], even stability of local existence is not valid in all
Gevrey spaces. Hence, it is necessary to seek for sharp Levi conditions depending on the
Gevrey order. This will be done in a forthcoming paper. For the linear case see [4,15,16].

Example 1.1. Let us consider the equation (b is real)

g — 1P Uy — btFu, — 27 (uy)? 4 (ug)? = 0. (1.2)

If k < j — 1, then the Levi condition from [11] is not satisfied. Using an idea of [6] it is easy
to see that if u = u(x,t) is a solution, then v(xz,t) = expu(x,t) is a solution of the following
linear equation

v — t 0y, — btFv, = 0. (1.3)
We seek for real-valued solutions v(™ of this equation of the form
™ (z,t) = a™(t) cos(nz) + b™ (t) sin(nz).
Consequently, (a(™ (t),b(™ (1)) is a solution of the system
al? () + t27n%a ™ (t) — btFnd™ (1) = 0,
{ B () + 127026 (£) + btFna™ (t) = 0.
Setting ¢(™ (t) = a(™(t) 4 b (t) this function is a solution of the equation
cgl) (t) 4+ t2n2e™ () + ibtFne™ (1) = 0.

Adding the initial conditions ¢{™)(0) = 0, cﬁ”)(o) = p(™ (p(™) is real) which are equivalent to
a™(0) = b™(0) = 0, at") (0) = p(™), b§") (0) = 0, where the sequence {p(™} will be chosen
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later, then according to [13] the following representation holds for e

2
() = p!" > " am(t)n " exp[Crun” +in(—1)" T /(G + D1+ o(1)),  (1.4)
m=1
where 0 = (j — k —1)/(2§ — k), am(t) # 0 and the real part of at least one C,, is positive.

Now, the function @(z,t) = 1 is a globally defined solution of (1.2) with data 4(x,0) =
1, @ (x,0) = 0. Let us suppose that, for some n which will be chosen later, u(z, t) is a solution
of (1.2) with the datawu(z,0) = 1andu,(x,0) = e~ p™ cos (nz). Then v(z,t) = expu(z,t)
is a solution of (1.3) with initial datav(z,0) = eandv,(z,0) = p(™ cos (nz). On the other
hand the function e+v(™ (z,t) is a solution of (1.3) with the same initial values. Uniqueness
of the Cauchy problem (Holmgren’s theorem) for (1.3) implies that v(x,t) = e + v(™ (,1).

Furthermore, if p(®) = exp(—n*), 0, < o, then we have for every n > 0 and s > 1/0;

P sup 9P | d¥cos (nx) | Jk*F < exp (—nt + s(nn)'/* Je).
keN,zeP
The right hand side of the last inequality tends to 0 when ntends to infinity. At the same
time n~!p(™ exp (C,,n?) tends to infinity when Re C,, > 0.

Thus, by (1.4) for every time interval [0, d] and for every e-neighbourhood of the initial
data (1,0) in the Gevrey space G(*)(s > 1/0) there exist initial data from this neighbourhood
such that the solution of (1.2) does not exist in C?([0,d]; Y3, (P)). For the definition of the
space Y[ ,(P) see below.

The same example can be constructed in the spaces C* using asymptotic solutions which
have been constructed, for example, in [3,17].

If the global existence of solutions cannot be expected, as usual, after the question for
local existence that for life span is studied. The analytic case for more general quasilinear
equations than (1.1) was studied in [2]. In the analytic case Levi conditions do not appear.
But in the present paper we shall consider the stability of global Gevrey solvability to
equations of type (1.1).

Problem. “Let u(x,0) = ug(z),ut(x,0) = uy(z), respectively, f(z,t,u,u,) be the data,
the right hand side of (1.1), where f is defined on some interval [0,7] with respect to
t. From the results of [11,12] the local existence and uniqueness of Gevrey solutions u =
u(x,t) is known. Let us, additionally, suppose that this solution exists globally on [0, T].
The problem, roughly speaking, is that if other initials Uy, U; and F are sufficiently close in
suitable function spaces (see (1.6), (1.8), (1.9)) to the reference initials wug,uq and f, then
the corresponding Cauchy problem

Ut — a(T, t)ugy = Fx,t,u,uy), u(x,0) = U(z),us(z,0) = Ui(x) (1.5)

has a global solution U(x,t) with respect to ¢, too?”

Here we shall give a positive answer to this question. We have to remark that among
other things the same answer for the three dimensional Navier-Stokes system was given in
[9].

To be precise we have to explain perturbations. We restrict ourselves to the case of
periodical solutions with respect to x. In the following we discuss only the case of spatial
degeneracy. The case of time degeneracy will be considered in Section 5.
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Let P be a bounded interval in R. Let us define the space of P-periodical functions
k
Yi(P) = {u(x) € C®(P) : Hé)fu(:ﬂ)”% <C, forall ke N,
and a suitable positive po}.

These are periodical Gevrey functions of order s, while || - || denotes the Ly(P)-norm. Then

an e-perturbation of data ug, u; is contained in the set
{Uo, U € Yo (P) = [[Ug = uollpg,s + 101 = urllpo.s <}, (1.6)

where | - || 5,5 denotes one semi-norm of the space Y,(P) endowed with the inductive limit
topology.

Perturbations of f are only reasonable to study in sets of functions satisfying Levi con-
ditions which depend on the coefficient a = a(x,t).

Case of Spatial Degeneracy (see [12]):

(C1) The function a = a(z,t) is P-periodic in z and belongs to C*([0,T]; Y, (P)).
Moreover, a(x,t) > 0 and Aa(z,t) — a;(x,t) > 0 with a suitable positive constant A.

(C2) The function f is P-periodic in 2 and belongs to

C([0,7): X2 (P x R, x Ry)), & <s.

loc

Here

X3 (P x Ry, x Ry))

loc
= {f(x, u,p) : for every compact set K C R, X R, there exist

constants Cx and Mg such that
02011 0% f(x,u, p)| < Cre M2 (gl it
for all (z,u,p) € P x K}

Additionally f has to satisfy the Levi conditions (I > 1)

\81l,f(a?,t,u,p)| < C M \Ja(z,t) forall (z,t,u,p) € Px[0,T] x K. (1.7)
The set of functions satisfying conditions (C1) and (C2) we denote by
C(0,T): X5 (P x Ry x Ry))1c.,

loc
where LC, stands for Levi condition with respect to x.
Now we are able to explain perturbations for f = f(z,t,u,p). Let f and F be two functions
from C([O,T];Xl(jc’s * )(P X Ry X Rp))rc,. Then F belongs to an e-neighbourhood of fif

there exists a compact set K C R, X Rpsuch that

02011 %2 (f (2, t,u, p) — F(@,t,u,p))| < eCx MET 5 (1 1p1) i1, (1.8)
|6;,(f(:c,t,u,p) — F(z,t,u,p))| < 5C’KM}§(ZI)S' a(x,t) (1.9)

for all (x,t,u,p) € P x [0,T] x K,l > 1.
We can now state our stability result.
Theorem 1.1. Let us consider the periodical with respect to x Cauchy problem

uge — (a(x, t)ug)e = fz,t,u,uy), u(z,0) = up(x), ue(z,0) = uy (). (1.10)
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The function a(x,t) satisfies (C1), the data belong to Y,(P). Moreover, the function f
belongs to C’([O,T};Xl(jc’s * ))ch- Let uw € C*([0,T);Yo(P)) be a global solution. Then
there is a positive constant € depending on u and f such that the Cauchy problem

uge — (a(, O)ug) s = F(z,t,u,uy), u(z,0) = Up(z), us(z,0) = Uy (x) (1.11)

has a global solution U € C’Z([O,T];YjO(P))for all Uy, Uy, F from an e-neighbourhood of
ug, u1, f (see (1.6),(1.8), (1.9)).

The paper is organized as follows. In Section 2 we shall describe the philosophy of
approach to get a better understanding of the main ideas to consider the case of spatial
degeneracy. Section 3 is devoted to summarizing the main energy estimates. Finally, the
proof of Theorem 1.1 is given in Section 4. The case of time degeneracy is sketched in
Section 5.

§2. Philosophy of Approach

Let us restrict ourselves to the case of spatial degeneracy. We suppose that u € C%([0, T);
Y7o(P)) is the global solution of the Cauchy problem (1.10).

For further considerations we need the energies of finite order En(u)(t) and partial ener-
gies e;(u)(t), 7, N > 1, which are defined by

N ) -ks
En(u)(t) =3 ej(u)(t)p(t) (2.1)

j=1 av
where k is a fixed natural number (k = 3 in one-dimensional case), p(t) = pg exp(—C't), po <
1,and
. , , 1/2
e;(u)(t) = (/ e M(a(x, )|0dul® + |05 Mgl + 53105 ul?) dm) : (2.2)
P

The assumption u € C?([0,T]; Y, (P)) implies En(u)(t) < H for all N > 1 with a suitable
positive constant H.To make small data arguments possible we consider instead of (1.10)

uy — (a(z, t)ug). = f(z,t,u,uy,), ul(z,0) = Uy(z), u(z,0) = Up(x), (2.3)

where (Up,Uy)is an e-perturbation of (ug,u1) (see (1.6) ). If U € C*([0,T];Yi,(P))is a
solution, then w = U — usolves

wiy — (a(, D)wz)e = g1(2, 1, w, we)w + go (2, t, We )Wy,
w(x,0) = wo(z), w(z,0)=wi(x),

where the data wg,w; are an e-perturbation of the homogeneous data. Using formula of
Hadamard gives the representations

1
q1(z,t,w,wy) :/ fulz, t,u + wr, (u+ w),) dr,
0

1
g2z, t,wy) = / fp(m, b, u, uy + wyT) dT.
0

We consider the linearized equation at an arbitrary point w € C*([0,T]; Y;((P)) which is
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given by
Wi — (a(z, )W) = g1 (2, 6w, we )W + go(x, t, wy, )Wy,
W(z,0) = wo(z), Wi(z,0)=w(z). (2.5)
The condition (C1) together with results from linear theory’?! guarantees that to each
w € CY([0,T); Y5, (P)) there exists a uniquely determined solution W e C*([0, T); Y, (P)) .

Especially, the uniqueness is important for the definition of a mapping @ : w — W. Using
energies of finite order F one can refine this statement. Let w be taken from the set

Xp = {w e C*([0,T7; ﬁ W HP)): Enx(w)(t) <D for allN}. (2.6)

Here W3'~!(P) denotes the Sobolev space of periodical functions with exponent N — 1.
Some estimates (see Section 3) imply for the solution W of (2.5)

Ex(W)(t) < CEx(W)(t) (2.7)
with a constant C depending on D, T but independent of N. By Lemma of Gronwall from
(2.7) it follows that

Ex(W)(t) < Ex(W)(0) exp(Ct). (2.8)
Consequently, we find the small e-perturbation of data in Exn(WW)(0) . This results from
the special Cauchy problem (2.5) and enables us to study the operator @ . With a suitable
e = e(D,T) the continuous operator @) maps Xp into itself and is even a compact one. By
Tychonoft’s fixed point theorem there exists a fixed point w. This fixed point is a global
solution of (2.5), and U = u + w is a global solution of (2.3).
An additional perturbation of f needs no other essential ideas. We have only to add to
the right-hand side of (2.4) the term

g(z, t,u,uy) = F(z,t,u,u,) — f(z,t, u, ug). (2.9)
Taking account of (1.8), (1.9) we will derive instead of (2.8)
Ex(W)(t) < (Exn(W)(0) 4+ CTe) exp(Ct). (2.10)

The term in the parenthesis can be chosen sufficiently small.

§3. Some Energy Estimates

Let us consider instead of (2.5) the linear weakly hyperbolic Cauchy problem
Wit — (a(z, )W) = hi(x, )W + ho(z, t)W, + h(z,t),
W(x,0) = wo(z), Wi(z,0)=wi(z). (3.1)
For the derivation of energy estimates we suppose that hq,hy and h belong to C([0,T7;

Y7?o(P)). The function a = a(x,t) satisfies condition (C1). Consequently, one can find
positive constants D and M such that

|02h1| + |02ha| + |82h| + |02a] < DMP*§1%(j +1)7F for all (2,t) € P x [0,T]. (3.2)
Lemma 3.1. If hy satisfies the Levi condition

[ha(x,t)] < Cy/a(z,t) for all (z,t) € P x [0,T]
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and W € C%([0,T}; Yo (P)) is a solution of (3.1), then there exist a weight function p =
p(t) = poexp(—Ct) on [0,T] and a suitable positive constant C1 = C1(D, M, po) such that
forall N > 1

EN(W)(t) < C1 En(W)(t) + En(h)(2). (3.3)
Proof. For the proof see [12].

The following lemma explains how the condition (C2) is transferred to conditions for g;
and go from (2.5).

Lemma 3.2. Let u € C?([0,T]; Y}, (P)) be the global solution of (1.10). The function
w € Xp (see (2.6)) is chosen arbitrarily. Then the function g1 which is defined by

1
gl(‘r7t7w7w$):/ fu(I7t,U+w7', (u+w)3¢)d7—
0

satisfies condition (C2) without Levi condition (1.9). The function gs which is defined by
g2z, t,wy) = fol fp(z, t,u, (w4 wr)z)dr satisfies the full condition (C2), the Levi condition
even for go itself.

Proof. Using assumptions concerning v and w there exists a positive constant

C = C(D, M) (|0%u] < CMI*j15(j 4+ 1)7* for all (x,t) € P x [0,T))

such that (u+ wr, (u+wme),) € K = [-C,C] x [-C, C] uniformly for all w € Xp, 71,72 €
[0,1]. To this compact set K there exist corresponding constants Cx and My such that
(C2) is satisfied for f. Consequently, we obtain for go

1
105021022 g (i, 1, w,) | g/o 0L 0 D f (8w, (u+ wr),)|dr

< 5KMI(§+V1+U2+1)S(V1!(V2 + 1)!)8/2'!8
< O M (m i) it

for all (x,t) € P x [0,T] and all w € Xp. The new constants Cx and Mg are independent
of w e Xp and 7 € [0,1]. By the same reasoning the Levi conditions (I > 0)

1
10 ga (e tw,)]| < / 101 f (1w, (- wr))dr
0

< Cr MUV (1 4+ 1) a(z, t) < CxMED /a(z, 1)

can be shown. Analogously, we get condition (C2) (without Levi condition (1.7)) for g;.
Now let us turn to the linearization (2.5). The main difficulty consists in estimating the
nonlinear terms g1 = g1 (z, ¢, w, w;) and g = go(x, t, wy).
Lemma 3.3. Let u € C?([0,T];Y;,(P)) be the global solution of (1.10). Then there
exists a weight function p = p(t) on [0,T] such that for N > 6

N j—k ks
B W)(0) = 3107 (1ot gt )| 20
< BN ()1 (3.4

for allw € Xp, where Cy depends on Cg, My, M, pg, D but not on w € Xp.
Proof. For the proof see [12].
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Corollary 3.1. Let us consider the linearized problem (2.5), where we odd (2.9) to the
right-hand side. Here uw € C*([0,T]; Yo (P)) is the global solution of (1.10). The function w
is an arbitrary function from X p, where p = p(t) is a sufficiently small weight function which
is taken from Lemma 3.1. Then the linearized problem has a uniquely determined solution
W e C*([0,T),Y{o(P)). There exists a positive constant Cy independent of w € Xp and
N > 6 such that for allt € [0,T]

En(W)(t) < CLEn(W)(t) + En(g9(2,t,u, us)). (3.5)

Proof. It is clear that for given functions v and w the nonlinear terms g, g2 and g (see
(2.9),(3.4)) belong to C([0,T];Y,(P)). The data belong to Y,(P). From results of the
linear theory we get the global existence and uniqueness of solution W € C2([0,T7]; Y3 (P)).
The energy inequalities which are given in Lemmas 3.1 and 3.3 imply (3.5). The corollary
is proved.

The next considerations serve to estimate the energies

En(g(z,t,u,uy))(t) = En(F(x, t,u,uy) — f(x,t,u,uy)).

Due to Leibniz formula
2

- ) 1 1
8; 19(I7t7u7um) = Z (] 2! ) Z Z Z V1!l/2!

iHl=j—1 : li+1la=lv1=0v2=0

1,01,V 821u~-~8£”1u
<(F=pe @ tup) (Y, E)
hl=tii<h, 0T

My, +1
« Z 8;”1+1u-~-<9x 2 U)

m1!~-~ml,2!

Im|=l2,1<m;
Let u € C2([0,T]; Y4 (P)) be the given solution of (1.10). Then there exists a constant C(u)
such that (x,t,u,u,) belongs to

P[0, T] x [=C(u), C(w)] x [-C(u), C(u)].
Hence, only the behaviour of f on the compact set P x [0, T] x [—C(u), C(u)] x [-C(u), C(u)]
is essential, and condition (C2) is satisfied with suitable constants Cx and M. If F' is now

a function from

C((0,7); Xjo (P x Ry x Ry))zc,
which satisfies condition (1.7) for the above compact set, then by the same reasoning to
prove Lemma 3.3 (see [12]) one obtains

Lemma 3.4. The energies of finite order En(g(t, z,u,u,)) can be estimated by

(oo}
En(g(x,t,u,u,)) < Cie Y (M Co(P)En(u) (1)) 41" ~* < Che,
j=1
where C is independent of N.

¢4. Proof of Theorem 1.1

Now let u € C?([0,T]; Y;,(P)) be a global solution of (1.10). Let us consider the Cauchy
problem

upr — (a(x, t)ug)e = F(x,t,u,ug ), u(z,0) = Up(x), ur(z,0) = Uy (x). (4.1)
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If U € C%([0,T); Yo (P)) is a solution, then w = U — u satisfies (see (2.9) and (2.4) with F
instead of f)

wy — (a(z, wy) e = g1(x, t, w, we)w + ga(z, t,w,)w, + glx, t,u, uy),
w(z,0) = wo(x), w(z,0)=wi(x). (4.2)
Let us consider the linearized equation
Wi — (a(x, ) W,) e = g1(z, tyw, we )W + go(z, t, we )Wy + g(z, 6, u, uy),
W(z,0) = wo(z), Wi(x,0)=wi(z). (4.3)

Now the function w = w(x,t) is taken arbitrarily from the set (2.6) with a fixed positive
constant D. Then there exists a positive constant C = C(D) independent of p = p(t)
on [0,7T], po < 1, such that all points (u + wy, (v + wT2),) belong to the compact set
K = [-C,C] x [-C,C]. Consequently, there exist constants Cg and My such that F'
satisfies (C2) for all (x,t) € P x [0,T] and w € Xp.

According to M and M from (3.2) for the estimation of a = a(x,t) we can determine a
weight function p = p(t) on [0, 7] satisfying

pI(t)/2+ (C2+ 1p(t) =0, p(0) =po, Mgpo<1 and Mpy <1,

where the constant Co depends on the properties of a = a(z,¢) and the initial value pg
depends on the data wy and wi, too. In general we have to choose py smaller to guarantee
the energy estimates on [0, 7] from Lemmas 3.3 and 3.4. Due to Corollary 3.1 it is possible
to construct the operator @ : w — W, here the well-posedness of (3.1) with respect to
x in Y} (P) plays an important rule. Now let F' be from an e-neighbourhood of f in
c([0,T]; Xl(;c’,sl’s/)(P X Ry, %X Rp))rc, (see (1.8),(1.9)), where the neighbourhood is generated
by a compact set K containing all points (u,uy), (z,t) € P x [0,T]. Then due to (3.5) and
Lemma 3.4 for N > 6

EN(W)(t) < CtEN(W)(t) + Cre (4.4)
for all t € [0,7] and w € Xp, where C; depends only on M, Mz, My, D and py but not on
N and w € Xp. Using Lemma of Gronwall it follows that

Ex(W)(t) < Exn(W)(0) exp(C1t) + Cre exp(Cit). (4.5)

Choosing the data (Up,U;) from an e-neighbourhood of (ug,u;) (see (1.6)) then with the
fixed p(0) = po the energies of finite order can be estimated in t = 0 by Ex(W)(0) < Cse
for all N > 1, where C'5 depends on M and py but not on IN. Consequently,

En(W)(t) < Cseexp(Cyt) + Cre exp(Cht).
If ¢ is small enough, then Ex(W)(t) < D for all N > 1 and ¢ € [0,T]. But this means that

Q maps Xp into itself. Moreover, by (3.1) W belongs to C? ([O,T}; N WQN_l(P)). Thus
N=1
@ maps Xp into

o0
Xpnc2(jo. 1) () Wi H(p)),
N=1
that is, @ is even compact. But this operator depends continuously on w € Xp. If a sequence
{wy} tends to w in X p, then the coefficients g1 (x, ¢, wi, Wk ), g2(z, t, Wi 4) of the linearized
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equation tend to g1 (z,t, w,w,), g2(x,t, w,) respectively. Pay attention that g; and gy are
of Gevrey order s’ < s with respect to wy, and wy 4, respectively, w and w,. The solution
W depends continuously on the coefficients. Consequently, Qw depends continuously on
w € Xp. By using Tychonoff’s fixed point theorem there exists a fixed point w € Xp

belonging even to C2([0,T]; () W' ~!(P)). This fixed point is a solution of
N=1

wy — (a(z, )we)s = F(z,t,u+w, (u+w)y) — fz,t,u,uy),
w(x,0) = wo(z), w(z,0)=wi(x).
Consequently, U = u + @ is a solution of (4.1). But this solution is uniquely determined
with the uniqueness result from [12]. Obviously, U belongs to C?([0,T]; Y, (P)). Thus, the
theorem is completely proved.

Connection to the Life Span of Solutions

Theorem 1.1 gives us the following result under the assumption that all the conditions with
respect to t are globally satisfied, especially a = a(z, t) is uniformly bounded on [0, c0) x P:

Corollary 4.1. Let u € C*([0,00); Y5, (P)) be a solution of (1.10). In connection to
(1.10) we consider perturbation of data of the form

Uo(x) = up(x) + ewp(z), Ui(x) =ui(x) + ewy(z),
where w, and wy are arbitrary functions belonging to Yo(P). Then there exists to each
small € a uniquely determined solution U. € C*([0,T(¢)),Yo(P)), where T(g) — 400 for
e —0.

Proof. The given solution u belongs to C?([0,T]; Y((P)) for all T > 0. By Theorem
1.1, there exists € = £(T) such that (1.10) has a global solution U. € C*([0,T], Y}y (P)) for
all e < &(T). Hence, to a given small ¢ there exists a solution U, € C?([0,T(¢)); Y (P)),
where T'(¢) tends to infinity if ¢ tends to 0. Otherwise, we could find a constant T such
that (1.10) has no solution U, € C?([0, Ty]; Yo (P)) with e — 0 for data Uy and U;. This is
impossible by Theorem 1.1.

Remark 4.1. The life span 7. can be estimated by T, > ulog% for small €. This
follows from the fact that the constant Cy from (4.5) depends only on M, Mg, Mz, D and
po- Consequently,

En(W)(0) exp(Cit) < Czeexp(CiT) < D

implies the above estimate.

¢5. The Case of Time Degeneracy

In this section we only want to sketch the considerations which lead to a corresponding
result to Theorem 1.1 in the case of time degeneracy. Let us consider

gy — N (H)a(z, Ouge = fz,t,u,uz),  u(z,0) =ug(z), u(x,0)=u(x). (5.1)

Instead of (C1) and (C2) we have to assume:
(C3) The coefficient b(z,t) = A?(t)a(z,t) belongs to C*°([0,T]; Yy (P)), where a(z,t) >
C > 0 for all (z,t) € P x [0,7T] and

|OF 0% a(z,t)| < Cp Ml (N(t)/A(t))* for all t > 0 and 4,k > 0.
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Here A(t) = f A(T)dr. For A = A\(t) we need the additional conditions
AO0)=XN(0)=0, N(t)>0 fort>0, At)eC>(0,T]), NA~'ecC>(0,T)),
eA()/AE) < N(#)/A(t) < coA(t)/A(t) for all t >0, ¢ > 1/2 and ¢q are positive constants,
INEY )| < ep (N (#)/AE)FIN(t) for all t > 0 and k > 1.
(C4) The function f = f(x,t,u,p) is P-periodic in « and belongs to
([0, T); X2V (P x R, x Ry)).

loc

Additionally, f has to satisfy the Levi conditions (¢,17 > 0, vo > 1)
0504 02 f(x,t,u,p)| < Cre M 2505 (g o)™ N2 (1) /A1)
for all (x,t,u,p) € P x [0,T] x K.
The set of functions satisfying condition (C4) we denote by

([0, T]; X2 (P x Ry x R,))rc,,

loc
where LC; stands for Levi condition with respect to t.

Remark 5.1. We underline that the conditions for A and a and their derivatives ex-
clude rapid oscillations with respect to t. Such oscillations can lead to non-uniqueness of
solutions!.

Let f and F' be two functions from

([0, T]; X**) (P x Ry x R,)) 1,

loc
Then F' belongs to an e-neighbourhood of f if there exist a compact set KX C R, x R, and
a nonnegative integer ng such that

|8k8i8”18”2(f(m,t,u,p) — F(z,t,u,p))| <& Ckny I(;J;Zﬁl”)sz's( !1/2!)‘47 (5.2)
002 02 (f (2,1, p) = F,t,u,p))| < & CieM %000 () (A2/A) (8) (5.3)

(in (5.3) o > 1) for all (z,t,u,p) € Px[0,T] x K, 0 <k <ng and 4,v,v5 > 0.
Remark 5.2. Later it remains to choose F' from an e-neighbourhood of f which is

generated by ng = 0 and a suitable compact set K.
Now we devote to the perturbed problem
g — AN (H)a(x, gy = F(z,t,u,ug),  u(z,0) = Us(z), wu(x,0)=U(x) (5.4)
and suppose that (5.1) has a global solution u € C*([0,T];Y(P)). Without loss of
generality we can suppose in (5.1) homogeneous data, this implies Uy and U; are sufficiently
small.

In opposite to the case of spatial degeneracy it seems to be impossible to study (5.4)
directly. If F' would have an improved asymptotical behaviour for ¢ — 0, then we are able
to find energy estimates leading to an existence result.

Let us consider the following Cauchy problem:

uﬁ?) = F(x,t,u+u'® uy) — ugy + N ()alz, )uge,
u(z,0) = Up(z), u'\”(z,0)=U,(x). (5.5)
Lemma 5.1. If (F,Uy,U;) belongs to an £-neighbourhood of (f,0,0),¢ is sufficiently

small, then there exists a global solution u® € C2([0,T); Y3, (P)), where u(® — 0 if € — 0
in C2(0,T); Y1y(P)).
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Proof. If we replace F by f, then (5.5) has the global solution u(®) = 0. Now let us
choose F from an é-neighbourhood of f which is generated by ng = 0 and a compact set K
containing all points (u, u,), (z,t) € Px[0,T] (see (5.2), (5.3)). We are able to interpret (5.5)
as a weakly hyperbolic equation with spatial degeneracy (a(z,t) = 0, right hand side does
not depend on p). But the conditions (5.2), (5.3) imply (1.8),(1.9), this gives the statement
of this lemma. Moreover u(?) belongs to an e-neighbourhood of 0 in C2([0, T]; Yo (P)).

Now let us consider the following system of nonlinear ordinary differential equations which
can be interpreted as a system of weakly hyperbolic equations with spatial degeneracy:

uﬁ}) = F(z, t,u+u® +u® uy +u0) = Fe,t,u+u® uy) + X2 (H)alz, t)ul?

and in general for i =2,--- . n
ulf) = Flatyu+u® 4 a® gy 4@ )

— F(z,t,u+ ACUTNS u(ifl),um + u(zo) R u;i*Q))

+ X2 (t)a(z, t)uliV (5.6)
with homogeneous initial conditions u(? (x,0) = u,(gi)(a:,O) =0,i =1,---,n. Then one can
prove the following

Lemma 5.2. The above system of nonlinear ordinary differential equations possesses
uniquely determined solutions u® e C*([0,T]; Yo (P)), i =1,2,--+ ,n, for all F belonging
to some sufficiently small é-neighbourhood of f. Moreover,

En(u)(t) < Cp e\ (t) (5.7)

for allt € [0,T] and N > 0, where C; s — 0 if ¢ = 0.
Keeping in mind these functions u(? we seek for a function v = v(z,t) as a solution of
the problem

v — N2 (t)a(x, )V = Gl t,0,0,), v(x,0) =v:(z,0) =0, (5.8)
where
Gu(z, t,v,0,) = F(z, t,u+u® + -+ u™ 40 u, + 0l + -+ 0™ +0,)
— F(z, t,u+u® + - u™ oy + 0O D)
+ X (t)ala, thuly),
especially, En(Gp(z,t,0,0)) < C, zA"(t) due to (5.7). We study the linearized equation
Vit — N2(t)a(x,t)Ver = hi(z,t,0,0,)V + ha(z,t,v,0,)Vy + Gp(z,t,0,0),
V(z,0) = Vi(z,0) = 0. (5.9)

Applying results of [8,16] to this equation gives instead of (4.4)
N ()

EN(V)() <
KO0 < a5

for all ¢ € [0,7] and v € Xp, where a sufficiently small £ in Lemma 5.2 guarantees that

q depends only on the given solution u and the coefficient A\?(t)a(x,t). Using Lemma of
Nersesian!®! we arrive from this differential inequality with a singular coefficient at

En(V)(t) < X(t) /Ot AU T)AT(T)EN (G2, 7,0,0))dr < Cn £TA™ (),
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where C,, ¢ is independent of N. Hence, one can find a sufficiently small € > 0 such that the
operator @ : v — V' maps

{v € 01([0,T]; ﬁ W2N*1(P)) L Ex(v)(t) < D} into

{v € 02([0,T]; ﬁ W2N*1(P)) . Ex(v)(t) < D and
N=1

Ex(v)(t) = O\ (1)) for t — o}.
As in the case of spatial degeneracy this leads to a globally defined solution V' of (5.9). But
then U = u + > u(” 4+ V is a globally defined solution of (5.4), where U belongs to an

=0

e-neighbourhood of w in C2([0,T]; Y, (P)).

Thus, we have proved the following result.

Theorem 5.1. Let us consider the periodical with respect to x Cauchy problem

e — N (V)a(x, uge = flo,t,u,ug), w(z,0) =ug(x), u(z,0)=u(z).

The functions A = A(t) and a = a(x,t) satisfy (C3), the data belong to Yiy(P). Moreover,
£ belongs to C=([0,T); X% (P x Ry x Ry))rc,. Letu € C=([0,T};Y3o(P)) be a global
solution. Then there is a positive constant € depending on u, f, \, and a such that

Ut — )\2(t)a(x,t)uzz = F(xatvuvum)a U(ZL'70) = Ug(.’t), ut(x,O) = Ul(x)

has a global solution U € C*<([0,T];Y;y(P)), too, for all Uy,U; and F from an
e-neighbourhood of ug,u1, f (see (1.6), (5.2),(5.3)).
The connection between Theorem 5.1 and the life span of solutions can be drawn in the
same way as in the case of spatial degeneracy (see Corollary 4.1. and Remark 4.1).
Remark 5.3. In [11] we have proved a local existence result for

Upp — )\2(t)a(aﬁ,t)um = f(z,t,uz), u(z,0)=u(z,0)=0
under the Levi conditions
02022 f (2, t,p)| < Crx MET%it51515 0(A2/A).

If we know the existence of a global solution u for (5.1), then the global existence of solutions
for the perturbed problems (5.4) can be proved under the weaker Levi condition (C4).
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