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Abstract

This work is concerned with the proof of stability of global Gevrey solution to the following

quasilinear weakly hyperbolic equation: utt−a(x, t)uxx = f(x, t, u, ux) in P × [0, T ] with initial
data u(x, 0) = u0(x) and ut(x, 0) = u1(x). Here weak hyperbolicity means that a(x, t) ≥ 0, that
is, there exist, in general, characteristic roots of variable multiplicity. One has to distinguish
between the case of spatial degeneracy and that of time degeneracy. The connection to the life

span of solutions is given.
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§1. Introduction

In the last years the theory of weakly hyperbolic equations was developed in an astonishing

way. A lot of papers have led to a general view about linear weakly hyperbolic equations

(even) of higher order. Using Gevrey analysis first success was obtained for nonlinear weakly

hyperbolic equations. In this context we remind of the general local existence theorem for

nonlinear hyperbolic equations of order m, m ≥ 2, which has been proved in [5] for local

Gevrey classes of order s ≤ j/(j−1), where j denotes the highest multiplicity of characteristic

roots.

To include Gevrey classes of order s > j/(j − 1) one has to formulate Levi conditions.

We call Levi condition any algebraic condition between lower order terms and the principal

part.

For example, if one wants to study well-posedness for the weakly hyperbolic Cauchy

problem (a(x) ≥ 0)

utt − (a(x)ux)x − b(x)ux = f(x, t), u(x, 0) = u0(x), u(x, 0) = u1(x)

in all Gevrey classes of order s > 2, the Levi condition |b(x)|2 ≤ Ca(x) (C denotes here and

in the following an universal constant) is sufficient[4,15] and necessary[3] if a(x) has a zero of

finite order.
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The authors studied in two papers[11,12] the influence of Levi conditions to some typical

problems of hyperbolic theory for quasilinear weakly hyperbolic equations of the form

utt − a(x, t)uxx = f(x, t, u, ux). (1.1)

The reason why we had to represent the results in two different papers is that the goals, meth-

ods and especially Levi conditions differ in the cases of time (a(x, t) = λ2(t)b(x, t), b(x, t) ≥
C > 0, λ(0) = λ′(0) = 0, λ′(t) > 0 for t > 0) and spatial (a(x, t) ≥ 0, Aa(x, t)− at(x, t) ≥ 0)

degeneracy.

In the case of time degeneracy[11] local existence of solutions and existence of cone of

dependence could be proved. In opposite to this type of degeneracy (if t > 0 the equation

(1.1) becomes strictly hyperbolic) in the case of spatial degeneracy not only the question

for local existence and cone of dependence, but also for global regularity of solutions[12,14]

is reasonable (if t > 0 the equation (1.1) still remains weakly hyperbolic).

From the strictly hyperbolic theory (a(x, t) ≥ C > 0 in (1.1)) it is known that growth con-

ditions of f with respect to u and ux are necessary for the global existence of solutions[6,7,10].

The situation is unchanged in the degenerate case (1.1) because this case contains a(x, t) = 0.

In this case the Levi condition implies ∂pf(x, t, u, p) ≡ 0. Consequently, the degenerate case

includes ordinary differential equations for which the blow-up behaviour of solutions is well

studied.

But one has to take into consideration the Levi conditions, too. If the Levi condition

is not satisfied, then the global existence of solutions cannot be expected. The following

example shows that for quasilinear weakly hyperbolic equations without fulfillment of Levi

condition which was proposed in [11], even stability of local existence is not valid in all

Gevrey spaces. Hence, it is necessary to seek for sharp Levi conditions depending on the

Gevrey order. This will be done in a forthcoming paper. For the linear case see [4,15,16].

Example 1.1. Let us consider the equation (b is real)

utt − t2juxx − btkux − t2j(ux)
2 + (ut)

2 = 0. (1.2)

If k < j − 1, then the Levi condition from [11] is not satisfied. Using an idea of [6] it is easy

to see that if u = u(x, t) is a solution, then v(x, t) = expu(x, t) is a solution of the following

linear equation

vtt − t2jvxx − btkvx = 0. (1.3)

We seek for real-valued solutions v(n) of this equation of the form

v(n)(x, t) = a(n)(t) cos(nx) + b(n)(t) sin(nx).

Consequently, (a(n)(t), b(n)(t)) is a solution of the system{
a
(n)
tt (t) + t2jn2a(n)(t)− btknb(n)(t) = 0,

b
(n)
tt (t) + t2jn2b(n)(t) + btkna(n)(t) = 0.

Setting c(n)(t) = a(n)(t) + ib(n)(t) this function is a solution of the equation

c
(n)
tt (t) + t2jn2c(n)(t) + ibtknc(n)(t) = 0.

Adding the initial conditions c(n)(0) = 0, c
(n)
t (0) = ρ(n) (ρ(n) is real) which are equivalent to

a(n)(0) = b(n)(0) = 0, a
(n)
t (0) = ρ(n), b

(n)
t (0) = 0, where the sequence {ρ(n)} will be chosen
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later, then according to [13] the following representation holds for c(n):

c(n)(t) = ρ(n)
2∑

m=1

am(t)n−1 exp[Cmnσ + in(−1)mtj+1/(j + 1)](1 + o(1)), (1.4)

where σ = (j − k − 1)/(2j − k), am(t) ̸= 0 and the real part of at least one Cm is positive.

Now, the function ũ(x, t) ≡ 1 is a globally defined solution of (1.2) with data ũ(x, 0) =

1, ũt(x, 0) = 0. Let us suppose that, for some n which will be chosen later,u(x, t) is a solution

of (1.2) with the datau(x, 0) = 1 andut(x, 0) = e−1ρ(n) cos (nx). Then v(x, t) = expu(x, t)

is a solution of (1.3) with initial data v(x, 0) = e and vt(x, 0) = ρ(n) cos (nx). On the other

hand the function e+v(n)(x, t) is a solution of (1.3) with the same initial values. Uniqueness

of the Cauchy problem (Holmgren’s theorem) for (1.3) implies that v(x, t) = e+ v(n)(x, t).

Furthermore, if ρ(n) = exp(−nσ1), σ1 < σ, then we have for every η > 0 and s > 1/σ1

ρ(n) sup
k∈N,x∈P

ηk | dkx cos (nx) | /ksk ≤ exp (−nσ1 + s(ηn)1/s/e).

The right hand side of the last inequality tends to 0 when n tends to infinity. At the same

time n−1ρ(n) exp (Cmnσ) tends to infinity when ReCm > 0.

Thus, by (1.4) for every time interval [0, δ] and for every ε-neighbourhood of the initial

data (1, 0) in the Gevrey space G(s)(s > 1/σ) there exist initial data from this neighbourhood

such that the solution of (1.2) does not exist in C2([0, δ];Y s
+0(P )). For the definition of the

space Y s
+0(P ) see below.

The same example can be constructed in the spaces Ck using asymptotic solutions which

have been constructed, for example, in [3,17].

If the global existence of solutions cannot be expected, as usual, after the question for

local existence that for life span is studied. The analytic case for more general quasilinear

equations than (1.1) was studied in [2]. In the analytic case Levi conditions do not appear.

But in the present paper we shall consider the stability of global Gevrey solvability to

equations of type (1.1).

Problem. “Let u(x, 0) = u0(x), ut(x, 0) = u1(x), respectively, f(x, t, u, ux) be the data,

the right hand side of (1.1), where f is defined on some interval [0, T ] with respect to

t. From the results of [11,12] the local existence and uniqueness of Gevrey solutions u =

u(x, t) is known. Let us, additionally, suppose that this solution exists globally on [0, T ].

The problem, roughly speaking, is that if other initials U0, U1 andF are sufficiently close in

suitable function spaces (see (1.6), (1.8), (1.9)) to the reference initials u0, u1 and f , then

the corresponding Cauchy problem

utt − a(x, t)uxx = F (x, t, u, ux), u(x, 0) = U0(x), ut(x, 0) = U1(x) (1.5)

has a global solution U(x, t) with respect to t, too?”

Here we shall give a positive answer to this question. We have to remark that among

other things the same answer for the three dimensional Navier-Stokes system was given in

[9].

To be precise we have to explain perturbations. We restrict ourselves to the case of

periodical solutions with respect to x. In the following we discuss only the case of spatial

degeneracy. The case of time degeneracy will be considered in Section 5.



4 CHIN. ANN. OF MATH. Vol.18 Ser.B

Let P be a bounded interval in R. Let us define the space of P -periodical functions

Y s
+0(P ) =

{
u(x) ∈ C∞(P ) : ∥∂k

xu(x)∥
ρk0
k!s

≤ Cu for all k ∈ N0

and a suitable positive ρ0

}
.

These are periodical Gevrey functions of order s, while ∥·∥ denotes the L2(P )-norm. Then

an ε-perturbation of datau0, u1 is contained in the set{
U0, U1 ∈ Y s

+0(P ) : ∥U0 − u0∥ρ0,s + ∥U1 − u1∥ρ0,s < ε
}
, (1.6)

where ∥ · ∥ρ0,s denotes one semi-norm of the space Y s
+0(P ) endowed with the inductive limit

topology.

Perturbations of f are only reasonable to study in sets of functions satisfying Levi con-

ditions which depend on the coefficient a = a(x, t).

Case of Spatial Degeneracy (see [12]):

(C1) The function a = a(x, t) is P -periodic in x and belongs to C1([0, T ];Y s
+0(P )).

Moreover, a(x, t) ≥ 0 and Aa(x, t)− at(x, t) ≥ 0 with a suitable positive constant A.

(C2) The function f is P -periodic in x and belongs to

C([0, T ];X
(s,s′,s′)
loc (P ×Ru ×Rp)), s′ < s.

Here

X
(s,s′,s′)
loc (P ×Ru ×Rp))

=
{
f(x, u, p) : for every compact set K ⊂ Ru ×Rp there exist

constants CK and MK such that

|∂i
x∂

ν1
u ∂ν2

p f(x, u, p)| ≤ CKM
s(i+ν1+ν2)
K (ν1!ν2!)

s′i!s

for all (x, u, p) ∈ P ×K
}
.

Additionally f has to satisfy the Levi conditions (l ≥ 1)

|∂l
pf(x, t, u, p)| ≤ CKM ls

K l!s
′√

a(x, t) for all (x, t, u, p) ∈ P × [0, T ]×K. (1.7)

The set of functions satisfying conditions (C1) and (C2) we denote by

C([0, T ];X
(s,s′,s′)
loc (P ×Ru ×Rp))LCx ,

where LCx stands for Levi condition with respect to x.

Now we are able to explain perturbations for f = f(x, t, u, p). Let f andF be two functions

from C([0, T ];X
(s,s′,s′)
loc (P × Ru × Rp))LCx . ThenF belongs to an ε-neighbourhood of f if

there exists a compact set K ⊂ Ru ×Rp such that

|∂i
x∂

ν1
u ∂ν2

p (f(x, t, u, p)− F (x, t, u, p))| ≤ εCKM
(i+ν1+ν2)s
K (ν1!ν2!)

s′i!s, (1.8)

|∂l
p(f(x, t, u, p)− F (x, t, u, p))| ≤ εCKM ls

K (l!)s
′√

a(x, t) (1.9)

for all (x, t, u, p) ∈ P × [0, T ]×K, l ≥ 1.

We can now state our stability result.

Theorem 1.1. Let us consider the periodical with respect to x Cauchy problem

utt − (a(x, t)ux)x = f(x, t, u, ux), u(x, 0) = u0(x), ut(x, 0) = u1(x). (1.10)
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The function a(x, t) satisfies (C1), the data belong to Y s
+0(P ). Moreover, the function f

belongs to C([0, T ];X
(s,s′,s′)
loc )LCx . Let u ∈ C2([0, T ];Y s

+0(P )) be a global solution. Then

there is a positive constant ε depending on u and f such that the Cauchy problem

utt − (a(x, t)ux)x = F (x, t, u, ux), u(x, 0) = U0(x), ut(x, 0) = U1(x) (1.11)

has a global solution U ∈ C2([0, T ];Y s
+0(P )) for all U0, U1, F from an ε-neighbourhood of

u0, u1, f (see (1.6),(1.8), (1.9)).

The paper is organized as follows. In Section 2 we shall describe the philosophy of

approach to get a better understanding of the main ideas to consider the case of spatial

degeneracy. Section 3 is devoted to summarizing the main energy estimates. Finally, the

proof of Theorem 1.1 is given in Section 4. The case of time degeneracy is sketched in

Section 5.

§2. Philosophy of Approach

Let us restrict ourselves to the case of spatial degeneracy. We suppose that u ∈ C2([0, T ];

Y s
+0(P )) is the global solution of the Cauchy problem (1.10).

For further considerations we need the energies of finite order EN (u)(t) and partial ener-

gies ej(u)(t), j,N ≥ 1,which are defined by

EN (u)(t) =
N∑
j=1

ej(u)(t)ρ(t)
j−k j

ks

j!s
, (2.1)

where k is a fixed natural number (k = 3 in one-dimensional case), ρ(t) = ρ0 exp(−Ct), ρ0 ≤
1, and

ej(u)(t) =

(∫
P

e−At(a(x, t)|∂j
xu|2 + |∂j−1

x ut|2 + j2|∂j−1
x u|2) dx

)1/2

. (2.2)

The assumption u ∈ C2([0, T ];Y s
+0(P )) implies EN (u)(t) ≤ H for all N ≥ 1 with a suitable

positive constant H. To make small data arguments possible we consider instead of (1.10)

utt − (a(x, t)ux)x = f(x, t, u, ux), u(x, 0) = U0(x), ut(x, 0) = U1(x), (2.3)

where (U0, U1) is an ε-perturbation of (u0, u1) (see (1.6) ). If U ∈ C2([0, T ];Y s
+0(P )) is a

solution, then w = U − u solves

wtt − (a(x, t)wx)x = g1(x, t, w,wx)w + g2(x, t, wx)wx,

w(x, 0) = w0(x), wt(x, 0) = w1(x),

where the data w0, w1 are an ε-perturbation of the homogeneous data. Using formula of

Hadamard gives the representations

g1(x, t, w,wx) =

∫ 1

0

fu(x, t, u+ wτ, (u+ w)x) dτ,

g2(x, t, wx) =

∫ 1

0

fp(x, t, u, ux + wxτ) dτ.

We consider the linearized equation at an arbitrary point w ∈ C1([0, T ];Y s
+0(P )) which is
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given by

Wtt − (a(x, t)Wx)x = g1(x, t, w,wx)W + g2(x, t, wx)Wx,

W (x, 0) = w0(x), Wt(x, 0) = w1(x). (2.5)

The condition (C1) together with results from linear theory[12] guarantees that to each

w ∈ C1([0, T ];Y s
+0(P )) there exists a uniquely determined solution W ∈ C2([0, T ];Y s

+0(P )) .

Especially, the uniqueness is important for the definition of a mapping Q : w 7→ W . Using

energies of finite order EN one can refine this statement. Let w be taken from the set

XD =

{
w ∈ C1([0, T ];

∞∩
N=1

WN−1
2 (P )) : EN (w)(t) ≤ D for all N

}
. (2.6)

Here WN−1
2 (P ) denotes the Sobolev space of periodical functions with exponent N − 1.

Some estimates (see Section 3) imply for the solution W of (2.5)

E′
N (W )(t) ≤ CEN (W )(t) (2.7)

with a constant C depending on D,T but independent of N . By Lemma of Gronwall from

(2.7) it follows that

EN (W )(t) ≤ EN (W )(0) exp(Ct). (2.8)

Consequently, we find the small ε-perturbation of data in EN (W )(0) . This results from

the special Cauchy problem (2.5) and enables us to study the operator Q . With a suitable

ε = ε(D,T ) the continuous operator Q maps XD into itself and is even a compact one. By

Tychonoff’s fixed point theorem there exists a fixed point w. This fixed point is a global

solution of (2.5), and U = u+ w is a global solution of (2.3).

An additional perturbation of f needs no other essential ideas. We have only to add to

the right-hand side of (2.4) the term

g(x, t, u, ux) = F (x, t, u, ux)− f(x, t, u, ux). (2.9)

Taking account of (1.8), (1.9) we will derive instead of (2.8)

EN (W )(t) ≤ (EN (W )(0) + CTε) exp(Ct). (2.10)

The term in the parenthesis can be chosen sufficiently small.

§3. Some Energy Estimates

Let us consider instead of (2.5) the linear weakly hyperbolic Cauchy problem

Wtt − (a(x, t)Wx)x = h1(x, t)W + h2(x, t)Wx + h(x, t),

W (x, 0) = w0(x), Wt(x, 0) = w1(x). (3.1)

For the derivation of energy estimates we suppose that h1, h2 and h belong to C([0, T ];

Y s
+0(P )). The function a = a(x, t) satisfies condition (C1). Consequently, one can find

positive constants D and M such that

|∂j
xh1|+ |∂j

xh2|+ |∂j
xh|+ |∂j

xa| ≤ DM jsj!s(j + 1)−ks for all (x, t) ∈ P × [0, T ]. (3.2)

Lemma 3.1. If h2 satisfies the Levi condition

|h2(x, t)| ≤ C
√
a(x, t) for all (x, t) ∈ P × [0, T ]
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and W ∈ C2([0, T ];Y s
+0(P )) is a solution of (3.1), then there exist a weight function ρ =

ρ(t) = ρ0 exp(−Ct) on [0, T ] and a suitable positive constant C1 = C1(D,M, ρ0) such that

for all N ≥ 1

E′
N (W )(t) ≤ C1 EN (W )(t) + EN (h)(t). (3.3)

Proof. For the proof see [12].

The following lemma explains how the condition (C2) is transferred to conditions for g1

and g2 from (2.5).

Lemma 3.2. Let u ∈ C2([0, T ];Y s
+0(P )) be the global solution of (1.10). The function

w ∈ XD (see (2.6)) is chosen arbitrarily. Then the function g1 which is defined by

g1(x, t, w,wx) =

∫ 1

0

fu(x, t, u+ wτ, (u+ w)x)dτ

satisfies condition (C2) without Levi condition (1.9). The function g2 which is defined by

g2(x, t, wx) =
∫ 1

0
fp(x, t, u, (u+ wτ)x)dτ satisfies the full condition (C2), the Levi condition

even for g2 itself.

Proof. Using assumptions concerning u and w there exists a positive constant

C = C(D,M) (|∂j
xu| ≤ CM jsj!s(j + 1)−ks for all (x, t) ∈ P × [0, T ])

such that (u+wτ1, (u+wτ2)x) ∈ K = [−C,C]× [−C,C] uniformly for all w ∈ XD, τ1, τ2 ∈
[0, 1]. To this compact set K there exist corresponding constants C̃K and M̃K such that

(C2) is satisfied for f . Consequently, we obtain for g2

|∂i
x∂

ν1
u ∂ν2

p g2(x, t, wx)| ≤
∫ 1

0

|∂i
x∂

ν1
u ∂ν2+1

p f(x, t, u, (u+ wτ)x)|dτ

≤ C̃KM̃
(i+ν1+ν2+1)s
K (ν1!(ν2 + 1)!)s

′
i!s

≤ CKM
(i+ν1+ν2)s
K (ν1!ν2!)

s′i!s

for all (x, t) ∈ P × [0, T ] and all w ∈ XD. The new constants CK and MK are independent

of w ∈ XD and τ ∈ [0, 1]. By the same reasoning the Levi conditions (l ≥ 0)

|∂l
pg2(x, t, wx)| ≤

∫ 1

0

|∂l+1
p f(x, t, u, (u+ wτ)x)|dτ

≤ C̃KM̃
(l+1)s
K (l + 1)!s

′√
a(x, t) ≤ CKM ls

K l!s
′√

a(x, t)

can be shown. Analogously, we get condition (C2) (without Levi condition (1.7)) for g1.

Now let us turn to the linearization (2.5). The main difficulty consists in estimating the

nonlinear terms g1 = g1(x, t, w,wx) and g2 = g2(x, t, wx).

Lemma 3.3. Let u ∈ C2([0, T ];Y s
+0(P )) be the global solution of (1.10). Then there

exists a weight function ρ = ρ(t) on [0, T ] such that for N ≥ 6

BN (w,W )(t) =
N∑
j=1

∥∂j−1
x (g1(x, t, w,wx)W + g2(x, t, wx)Wx)∥

ρ(t)j−kjks

j!s

≤ C1EN (W )(t) (3.4)

for all w ∈ XD, where C1 depends on CK ,MK ,M, ρ0, D but not on w ∈ XD.

Proof. For the proof see [12].
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Corollary 3.1. Let us consider the linearized problem (2.5), where we odd (2.9) to the

right-hand side. Here u ∈ C2([0, T ];Y s
+0(P )) is the global solution of (1.10). The function w

is an arbitrary function from XD, where ρ = ρ(t) is a sufficiently small weight function which

is taken from Lemma 3.1. Then the linearized problem has a uniquely determined solution

W ∈ C2([0, T ], Y s
+0(P )). There exists a positive constant C1 independent of w ∈ XD and

N ≥ 6 such that for all t ∈ [0, T ]

E′
N (W )(t) ≤ C1EN (W )(t) + EN (g(x, t, u, ux)). (3.5)

Proof. It is clear that for given functions u and w the nonlinear terms g1, g2 and g (see

(2.9),(3.4)) belong to C([0, T ];Y s
+0(P )). The data belong to Y s

+0(P ). From results of the

linear theory we get the global existence and uniqueness of solution W ∈ C2([0, T ];Y s
+0(P )).

The energy inequalities which are given in Lemmas 3.1 and 3.3 imply (3.5). The corollary

is proved.

The next considerations serve to estimate the energies

EN (g(x, t, u, ux))(t) = EN (F (x, t, u, ux)− f(x, t, u, ux)).

Due to Leibniz formula

∂j−1
x g(x, t, u, ux) =

∑
i+l=j−1

(j − 1)!

i!

∑
l1+l2=l

l1∑
ν1=0

l2∑
ν2=0

1

ν1!ν2!

× (F − f)(i,ν1,ν2)(x, t, u, p)
( ∑

|h|=l1,1≤hi

∂h1
x u · · · ∂hν1

x u

h1! · · ·hν1 !

)

×
( ∑

|m|=l2,1≤mi

∂m1+1
x u · · · ∂mν2+1

x u

m1! · · ·mν2 !

)
.

Let u ∈ C2([0, T ];Y s
+0(P )) be the given solution of (1.10). Then there exists a constant C(u)

such that (x, t, u, ux) belongs to

P × [0, T ]× [−C(u), C(u)]× [−C(u), C(u)].

Hence, only the behaviour of f on the compact set P× [0, T ]× [−C(u), C(u)]× [−C(u), C(u)]

is essential, and condition (C2) is satisfied with suitable constants CK and MK . If F is now

a function from

C([0, T ];X
(s,s′,s′)
loc (P ×Ru ×Rp))LCx

which satisfies condition (1.7) for the above compact set, then by the same reasoning to

prove Lemma 3.3 (see [12]) one obtains

Lemma 3.4. The energies of finite order EN (g(t, x, u, ux)) can be estimated by

EN (g(x, t, u, ux)) ≤ CKε

∞∑
j=1

(Ms
KC0(P )EN (u)(t))jj!s

′−s ≤ C1ε,

where C1 is independent of N .

§4. Proof of Theorem 1.1

Now let u ∈ C2([0, T ];Y s
+0(P )) be a global solution of (1.10). Let us consider the Cauchy

problem

utt − (a(x, t)ux)x = F (x, t, u, ux), u(x, 0) = U0(x), ut(x, 0) = U1(x). (4.1)
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If U ∈ C2([0, T ];Y s
+0(P )) is a solution, then w = U − u satisfies (see (2.9) and (2.4) with F

instead of f)

wtt − (a(x, t)wx)x = g1(x, t, w,wx)w + g2(x, t, wx)wx + g(x, t, u, ux),

w(x, 0) = w0(x), wt(x, 0) = w1(x). (4.2)

Let us consider the linearized equation

Wtt − (a(x, t)Wx)x = g1(x, t, w,wx)W + g2(x, t, wx)Wx + g(x, t, u, ux),

W (x, 0) = w0(x), Wt(x, 0) = w1(x). (4.3)

Now the function w = w(x, t) is taken arbitrarily from the set (2.6) with a fixed positive

constant D. Then there exists a positive constant C = C(D) independent of ρ = ρ(t)

on [0, T ], ρ0 ≤ 1, such that all points (u + wτ1, (u + wτ2)x) belong to the compact set

K̃ = [−C,C] × [−C,C]. Consequently, there exist constants CK̃ and MK̃ such that F

satisfies (C2) for all (x, t) ∈ P × [0, T ] and w ∈ XD.

According to MK̃ and M from (3.2) for the estimation of a = a(x, t) we can determine a

weight function ρ = ρ(t) on [0, T ] satisfying

ρ′(t)/2 + (C2 + 1)ρ(t) = 0, ρ(0) = ρ0, MK̃ρ0 < 1 and Mρ0 < 1,

where the constant C2 depends on the properties of a = a(x, t) and the initial value ρ0

depends on the data w0 and w1, too. In general we have to choose ρ0 smaller to guarantee

the energy estimates on [0, T ] from Lemmas 3.3 and 3.4. Due to Corollary 3.1 it is possible

to construct the operator Q : w → W , here the well-posedness of (3.1) with respect to

x in Y s
+0(P ) plays an important rule. Now let F be from an ε-neighbourhood of f in

C([0, T ];X
(s,s′,s′)
loc (P ×Ru×Rp))LCx (see (1.8),(1.9)), where the neighbourhood is generated

by a compact set K containing all points (u, ux), (x, t) ∈ P × [0, T ]. Then due to (3.5) and

Lemma 3.4 for N ≥ 6

E′
N (W )(t) ≤ C1EN (W )(t) + C1ε (4.4)

for all t ∈ [0, T ] and w ∈ XD, where C1 depends only on M,MK̃ ,MK , D and ρ0 but not on

N and w ∈ XD. Using Lemma of Gronwall it follows that

EN (W )(t) ≤ EN (W )(0) exp(C1t) + C1ε exp(C1t). (4.5)

Choosing the data (U0, U1) from an ε-neighbourhood of (u0, u1) (see (1.6)) then with the

fixed ρ(0) = ρ0 the energies of finite order can be estimated in t = 0 by EN (W )(0) ≤ C3ε

for all N ≥ 1, where C3 depends on M and ρ0 but not on N . Consequently,

EN (W )(t) ≤ C3ε exp(C1t) + C1ε exp(C1t).

If ε is small enough, then EN (W )(t) ≤ D for all N ≥ 1 and t ∈ [0, T ]. But this means that

Q maps XD into itself. Moreover, by (3.1) W belongs to C2
(
[0, T ];

∞∩
N=1

WN−1
2 (P )

)
. Thus

Q maps XD into

XD ∩ C2
(
[0, T ];

∞∩
N=1

WN−1
2 (P )

)
,

that is, Q is even compact. But this operator depends continuously on w ∈ XD. If a sequence

{wk} tends to w in XD, then the coefficients g1(x, t, wk, wk,x), g2(x, t, wk,x) of the linearized
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equation tend to g1(x, t, w,wx), g2(x, t, wx) respectively. Pay attention that g1 and g2 are

of Gevrey order s′ < s with respect to wk and wk,x, respectively, w and wx. The solution

W depends continuously on the coefficients. Consequently, Qw depends continuously on

w ∈ XD. By using Tychonoff’s fixed point theorem there exists a fixed point w̃ ∈ XD

belonging even to C2([0, T ];
∞∩

N=1

WN−1
2 (P )). This fixed point is a solution of

wtt − (a(x, t)wx)x = F (x, t, u+ w, (u+ w)x)− f(x, t, u, ux),

w(x, 0) = w0(x), wt(x, 0) = w1(x).

Consequently, U = u + w̃ is a solution of (4.1). But this solution is uniquely determined

with the uniqueness result from [12]. Obviously, U belongs to C2([0, T ];Y s
+0(P )). Thus, the

theorem is completely proved.

Connection to the Life Span of Solutions

Theorem 1.1 gives us the following result under the assumption that all the conditions with

respect to t are globally satisfied, especially a = a(x, t) is uniformly bounded on [0,∞)×P :

Corollary 4.1. Let u ∈ C2([0,∞);Y s
+0(P )) be a solution of (1.10). In connection to

(1.10) we consider perturbation of data of the form

U0(x) = u0(x) + εw0(x), U1(x) = u1(x) + εw1(x),

where wo and w1 are arbitrary functions belonging to Y s
+0(P ). Then there exists to each

small ε a uniquely determined solution Uε ∈ C2([0, T (ε)), Y s
+0(P )), where T (ε) → +∞ for

ε → 0.

Proof. The given solution u belongs to C2([0, T ];Y s
+0(P )) for all T > 0. By Theorem

1.1, there exists ε̃ = ε̃(T ) such that (1.10) has a global solution Uε ∈ C2([0, T ], Y s
+0(P )) for

all ε ≤ ε̃(T ). Hence, to a given small ε there exists a solution Uε ∈ C2([0, T (ε));Y s
+0(P )),

where T (ε) tends to infinity if ε tends to 0. Otherwise, we could find a constant T0 such

that (1.10) has no solution Uε ∈ C2([0, T0];Y
s
+0(P )) with ε → 0 for data U0 and U1. This is

impossible by Theorem 1.1.

Remark 4.1. The life span Tε can be estimated by Tε ≥ µ log 1
ε for small ε. This

follows from the fact that the constant C1 from (4.5) depends only on M,MK ,MK̃ , D and

ρ0. Consequently,

EN (W )(0) exp(C1t) ≤ C3ε exp(C1T ) ≤ D

implies the above estimate.

§5. The Case of Time Degeneracy

In this section we only want to sketch the considerations which lead to a corresponding

result to Theorem 1.1 in the case of time degeneracy. Let us consider

utt − λ2(t)a(x, t)uxx = f(x, t, u, ux), u(x, 0) = u0(x), ut(x, 0) = u1(x). (5.1)

Instead of (C1) and (C2) we have to assume:

(C3) The coefficient b(x, t) = λ2(t)a(x, t) belongs to C∞([0, T ];Y s
+0(P )), where a(x, t) ≥

C > 0 for all (x, t) ∈ P × [0, T ] and

|∂k
t ∂

i
xa(x, t)| ≤ CkM

is
k i!s(λ(t)/Λ(t))k for all t > 0 and i, k ≥ 0.
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Here Λ(t) =
∫ t

0
λ(τ)dτ . For λ = λ(t) we need the additional conditions

λ(0) = λ′(0) = 0, λ′(t) > 0 for t > 0, λ(t) ∈ C∞([0, T ]), λ2Λ−1 ∈ C∞([0, T ]),

cλ(t)/Λ(t) ≤ λ′(t)/λ(t) ≤ c0λ(t)/Λ(t) for all t > 0, c > 1/2 and c0 are positive constants,

|λ(k)(t)| ≤ ck(λ
′(t)/λ(t))k−1λ′(t) for all t > 0 and k ≥ 1.

(C4) The function f = f(x, t, u, p) is P -periodic in x and belongs to

C∞([0, T ];X
(s,s′,s′)
loc (P ×Ru ×Rp)).

Additionally, f has to satisfy the Levi conditions (i, ν1 ≥ 0, ν2 ≥ 1)

|∂i
x∂

ν1
u ∂ν2

p f(x, t, u, p)| ≤ CKM
(i+ν1+ν2)s
K i!s(ν1!ν2!)

s′λ2(t)/Λ(t)

for all (x, t, u, p) ∈ P × [0, T ]×K.

The set of functions satisfying condition (C4) we denote by

C∞([0, T ];X
(s,s′,s′)
loc (P ×Ru ×Rp))LCt ,

where LCt stands for Levi condition with respect to t.

Remark 5.1. We underline that the conditions for λ and a and their derivatives ex-

clude rapid oscillations with respect to t. Such oscillations can lead to non-uniqueness of

solutions[1].

Let f and F be two functions from

C∞([0, T ];X
(s,s′,s′)
loc (P ×Ru ×Rp))LCt

.

Then F belongs to an ε-neighbourhood of f if there exist a compact set K ⊂ Ru ×Rp and

a nonnegative integer n0 such that

|∂k
t ∂

i
x∂

ν1
u ∂ν2

p (f(x, t, u, p)− F (x, t, u, p))| ≤ ε CK,n0M
(i+ν1+ν2)s
K,n0

i!s(ν1!ν2!)
s′ , (5.2)

|∂i
x∂

ν1
u ∂ν2

p (f(x, t, u, p)− F (x, t, u, p))| ≤ ε CKM
(i+ν1+ν2)s
K i!s(ν1!ν2!)

s′(λ2/Λ)(t) (5.3)

(in (5.3) ν2 ≥ 1) for all (x, t, u, p) ∈ P × [0, T ]×K, 0 ≤ k ≤ n0 and i, ν1, ν2 ≥ 0.

Remark 5.2. Later it remains to choose F from an ε-neighbourhood of f which is

generated by n0 = 0 and a suitable compact set K.

Now we devote to the perturbed problem

utt − λ2(t)a(x, t)uxx = F (x, t, u, ux), u(x, 0) = U0(x), ut(x, 0) = U1(x) (5.4)

and suppose that (5.1) has a global solution u ∈ C∞([0, T ];Y s
+0(P )). Without loss of

generality we can suppose in (5.1) homogeneous data, this implies U0 and U1 are sufficiently

small.

In opposite to the case of spatial degeneracy it seems to be impossible to study (5.4)

directly. If F would have an improved asymptotical behaviour for t → 0, then we are able

to find energy estimates leading to an existence result.

Let us consider the following Cauchy problem:

u
(0)
tt = F (x, t, u+ u(0), ux)− utt + λ2(t)a(x, t)uxx,

u(0)(x, 0) = U0(x), u
(0)
t (x, 0) = U1(x). (5.5)

Lemma 5.1. If (F,U0, U1) belongs to an ε̃-neighbourhood of (f, 0, 0), ε̃ is sufficiently

small, then there exists a global solution u(0) ∈ C2([0, T ];Y s
+0(P )), where u(0) → 0 if ε̃ → 0

in C2([0, T ];Y s
+0(P )).
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Proof. If we replace F by f , then (5.5) has the global solution u(0) ≡ 0. Now let us

choose F from an ε̃-neighbourhood of f which is generated by n0 = 0 and a compact set K

containing all points (u, ux), (x, t) ∈ P×[0, T ] (see (5.2), (5.3)). We are able to interpret (5.5)

as a weakly hyperbolic equation with spatial degeneracy (a(x, t) = 0, right hand side does

not depend on p). But the conditions (5.2), (5.3) imply (1.8),(1.9), this gives the statement

of this lemma. Moreover u(0) belongs to an ε-neighbourhood of 0 in C2([0, T ];Y s
+0(P )).

Now let us consider the following system of nonlinear ordinary differential equations which

can be interpreted as a system of weakly hyperbolic equations with spatial degeneracy:

u
(1)
tt = F (x, t, u+ u(0) + u(1), ux + u(0)

x )− F (x, t, u+ u(0), ux) + λ2(t)a(x, t)u(0)
xx ,

and in general for i = 2, · · · , n

u
(i)
tt = F (x, t, u+ u(0) + · · ·+ u(i), ux + u(0)

x + · · ·+ u(i−1)
x )

− F (x, t, u+ u(0) + · · ·+ u(i−1), ux + u(0)
x + · · ·+ u(i−2)

x )

+ λ2(t)a(x, t)u(i−1)
xx (5.6)

with homogeneous initial conditions u(i)(x, 0) = u
(i)
t (x, 0) = 0, i = 1, · · · , n. Then one can

prove the following

Lemma 5.2. The above system of nonlinear ordinary differential equations possesses

uniquely determined solutions u(i) ∈ C2([0, T ];Y s
+0(P )), i = 1, 2, · · · , n, for all F belonging

to some sufficiently small ε̃-neighbourhood of f . Moreover,

EN (u(i))(t) ≤ Ci,ε̃λ
i(t) (5.7)

for all t ∈ [0, T ] and N ≥ 0, where Ci,ε̃ → 0 if ε̃ → 0.

Keeping in mind these functions u(i) we seek for a function v = v(x, t) as a solution of

the problem

vtt − λ2(t)a(x, t)vxx = Gn(x, t, v, vx), v(x, 0) = vt(x, 0) = 0, (5.8)

where

Gn(x, t, v, vx) = F (x, t, u+ u(0) + · · ·+ u(n) + v, ux + u(0)
x + · · ·+ u(n)

x + vx)

− F (x, t, u+ u(0) + · · ·+ u(n), ux + u(0)
x + · · ·+ u(n−1)

x )

+ λ2(t)a(x, t)u(n)
xx ,

especially, EN (Gn(x, t, 0, 0)) ≤ Cn,ε̃λ
n(t) due to (5.7). We study the linearized equation

Vtt − λ2(t)a(x, t)Vxx = h1(x, t, v, vx)V + h2(x, t, v, vx)Vx +Gn(x, t, 0, 0),

V (x, 0) = Vt(x, 0) = 0. (5.9)

Applying results of [8,16] to this equation gives instead of (4.4)

E′
N (V )(t) ≤ q

λ′(t)

λ(t)
EN (V )(t) + EN (Gn(x, t, 0, 0))

for all t ∈ [0, T ] and v ∈ XD, where a sufficiently small ε̃ in Lemma 5.2 guarantees that

q depends only on the given solution u and the coefficient λ2(t)a(x, t). Using Lemma of

Nersesian[8] we arrive from this differential inequality with a singular coefficient at

EN (V )(t) ≤ λq(t)

∫ t

0

λn−q(τ)λ−n(τ)EN (Gn(x, τ, 0, 0))dτ ≤ Cn,ε̃Tλ
n(t),
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where Cn,ε̃ is independent of N . Hence, one can find a sufficiently small ε̃ > 0 such that the

operator Q : v → V maps{
v ∈ C1

(
[0, T ];

∞∩
N=1

WN−1
2 (P )

)
: EN (v)(t) ≤ D

}
into

{
v ∈ C2

(
[0, T ];

∞∩
N=1

WN−1
2 (P )

)
: EN (v)(t) ≤ D and

EN (v)(t) = O(λn(t)) for t → 0
}
.

As in the case of spatial degeneracy this leads to a globally defined solution V of (5.9). But

then U = u +
n∑

i=0

u(i) + V is a globally defined solution of (5.4), where U belongs to an

ε-neighbourhood of u in C2([0, T ];Y s
+0(P )).

Thus, we have proved the following result.

Theorem 5.1. Let us consider the periodical with respect to x Cauchy problem

utt − λ2(t)a(x, t)uxx = f(x, t, u, ux), u(x, 0) = u0(x), ut(x, 0) = u1(x).

The functions λ = λ(t) and a = a(x, t) satisfy (C3), the data belong to Y s
+0(P ). Moreover,

f belongs to C∞([0, T ];X
(s,s′,s′)
loc (P ×Ru ×Rp))LCt . Let u ∈ C∞([0, T ];Y s

+0(P )) be a global

solution. Then there is a positive constant ε depending on u, f, λ, and a such that

utt − λ2(t)a(x, t)uxx = F (x, t, u, ux), u(x, 0) = U0(x), ut(x, 0) = U1(x)

has a global solution U ∈ C∞([0, T ];Y s
+0(P )), too, for all U0, U1 and F from an

ε-neighbourhood of u0, u1, f (see (1.6), (5.2),(5.3)).

The connection between Theorem 5.1 and the life span of solutions can be drawn in the

same way as in the case of spatial degeneracy (see Corollary 4.1. and Remark 4.1).

Remark 5.3. In [11] we have proved a local existence result for

utt − λ2(t)a(x, t)uxx = f(x, t, ux), u(x, 0) = ut(x, 0) = 0

under the Levi conditions

|∂i
x∂

ν2
p f(x, t, p)| ≤ CK M

(i+ν2)s
K i!sν2!

s′o(λ2/Λ).

If we know the existence of a global solution u for (5.1), then the global existence of solutions

for the perturbed problems (5.4) can be proved under the weaker Levi condition (C4).
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