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Abstract

Let X = {X(t), t ≥ 0} be a process with independent increments (PII) such that

E[X(t)] = 0, DX(t)
∧
= E[X(t)]2 < ∞, lim

t→∞

DX(t)

t
= 1,

and there exists a majoring measure G for the jump ∆X of X. Under these assumptions, using
rather a direct method, a Strassen’s law of the iterated logarithm (Strassen LIL) is established.

As some special cases, the Strassen LIL for homogeneous PII and for partial sum process of
i.i.d. random variables are comprised.
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§0. Introduction

Let {W (t), t ≥ 0} be a Brownian motion,

Wn(t) =
W (nt)√
2n llgn

, t ∈ [0, 1], n ≥ 1,

where llgx = log(log(x ∨ ee)). Strassen[9] proved that with probability one (Wn = {Wn(t),

t ≥ 0}, n ≥ 1) is relatively compact in C([0, 1]) endowed with uniform norm and the set of

its limit points coincides with the following K1:

K1 =
{
f : f is absolutely continuous on [0, 1] and f(0) = 0,

∫
[0,1]

[f ′(t)]2dt ≤ 1
}
.

This is also called functional law of the iterated logarithm for Brownian motion. We shall

abbreviate conclusions of this form by

{Wn} →→ K1, a.s. (0.1)

If {Vn, n ≥ 1} is a sequence of i.i.d. random variables with E[Vn] = 0, E[V 2
n ] = 1, write

Sn =
n∑

j=1

Vj , ξn(t) =
S[nt] + (nt− [nt])(S[nt]+1 − S[nt])√

2n llgn
, t ∈ [0, 1], n ≥ 1.
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Strassen[9] also used Skorokhod embedding technique to prove the following similar result

for {ξn}:

{ξn, n ≥ 1} →→ K1. a.s.

This is called the Strassen law of the iterated logarithm (in brief, Strassen LIL) or a.s.

invariance principle (cf. [1]). As an immediate consequence, if φ is any continuous functional

on C[0, 1], then with probability one {φ(ξn), n ≥ 1} is relatively compact and the set of

its limit points is φ(K1). In particular, if φ(x) = x(1), then the Hartman-Wintner law of

the iterated logarithm is just a corollary of the Strassen LIL. A vast array of other a.s.

limit results follows immediately from the Strassen LIL by choosing suitable continuous

functionals φ. Hence the Strassen LIL is one of the most important results in strong limit

theory.

By using the large deviation theorem for Brownian motion Deuschel and Stroock[3]

strengthened Strassen’s result (0.1). Let C(0,∞) be the set of continuous functions on

[0,∞) endowed with the following norm

∥x∥ = sup
t

|x(t)|
1 + t

.

Then for [0,∞) instead of [0, 1], {Wn} →→ K, a.s.

Khoshnevisan[6] established a result to embedding compound Poisson processes into a

Brownian motion. As a by-product, he also proved the Strassen LIL for compensated com-

pound Poisson process on D[0, 1] endowed with uniform norm.

In this paper, we shall establish the Strassen LIL for more general (non-homogeneous

or homogeneous) processes with independent increments (in brief, PII). As some special

cases, this result also comprises the Strassen LIL for partial sum processes of i.i.d. random

variables and for homogeneous PII. The method we used is a more direct method based

on the stochastic calculus of PII, a similar procedure is also used to discuss the asymptotic

behaviour of locally square integrable martingales[12]. The next section describes some

notations and states the main theorem. The proof will be given in §2 and §3. In the last

section, we will give some useful corollaries of main theorem.

§1. Notations and Main Theorem

In this paper we shall use the usual notations and symbols in stochastic calculus of PII

according to [4] and [5], unless stated otherwise.

The general setting of this paper is a complete probability space (Ω, F , P). Let X =

{X(t), t ≥ 0} be a PII with mean zero and E[X(t)]2 < ∞. Therefore X is a martingale

and also locally square integrable. We always take its cadlag (right continuous and with

finite left hand limits) version. Denote the continuous martingale part of X by Xc and the

predictable quadratic variation of Xc by ⟨Xc⟩ = C, where C is a deterministic increasing

continuous function. Assume that the jump measure of X is µ, i.e., µ =
∑
s
ε(s,∆X(s)), where

ε{a} is the unit measure concentrated on a. Then the dual predictable projection ν of µ is

also deterministic and ν = E[µ], Xc and µ are independent mutually and X has the following

integral representation (Lévy-Itô decomposition):

X = Xc + x ∗ (µ− ν),
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where x ∗ (µ − ν) denotes the stochastic integral of x with respect to martingale measure

µ− ν. Meanwhile, the distribution of X is determined by (C, ν) uniquely. In particular,

DX(t)
∧
= E[X(t)]2 = ⟨X⟩t = C(t) + x2 ∗ νt. (1.1)

The ν has the following canonical predictable decomposition (see, e.g., [4, p. 381]):

ν(dt, dx) = Nt(dx)DX(dt), (1.2)

where Nt(dx) is a transition σ-finite measure from (R+, B) to (R, B) with∫
R

x2Nt(dx) = 1, ∀t ∈ R+. (1.3)

Definition. For a family of σ-finite measure {Nt, t ∈ I} on R, if there exists a finite

measure G such that

Nt({x : |x| ≥ a}) ≤ G({x : |x| ≥ a}) <∞ ∀a ≥ 1, t ∈ I,

then we say that there exists a majoring measure G for the ∆X or for {Nt, t ∈ I} and

denote it by (Nt) ≺ N .

The following Lemma is evident (cf. [11]).

Lemma 1.1. 1) Suppose that for some δ > 0 {Nt} satisfies

sup
t

∫
R

|x|2+δNt(dx) = C <∞

and G(dx) = 1|x|≥1C(2(2 + δ)x3+δ)−1dx. Then (Nt) ≺ G and
∫
x2G(dx) <∞.

2) If {Nt} ≺ G and f is a nondecreasing non-negative function on R+ with f(1) = 0,

then ∫
R

f(|y|)Nt(dy) ≤
∫
R

f(|y|)G(dy), ∀t. (1.4)

In this paper we consider the PII X = {X(t), t ≥ 0} which satisfies the following more

general assumption.

Assumption A. Let X = {X(t), t ≥ 0} be a PII with EX(t) = 0, DX(t) = E[X(t)]2,

lim
t→∞

DX(t)

t
= 1, (1.5)

and there exists a majoring G for the jump ∆X of X with∫
x2G(dx) <∞. (1.6)

Since the trajectories of a PII with mean zero are cadlag, instead of the space of continuous

functions we shall consider the set of all cadlag functions on [0,∞). Let

C =

{
f : f is continuous on [0,∞), f(0) = 0, lim

t→∞

|f(t)|
1 + t

= 0

}
. (1.7)

D =

{
f :

f is right continuous and with finite left

limits on [0,∞), f(0) = 0, lim
t→∞

|f(t)|
1 + t

= 0

}
. ∥f∥D = sup

t>0

|f(t)|
1 + t

. (1.8)

Then both C and D endowed with norm ∥ . ∥D are Banach spaces. C is a closed set of D.

Let

K =
{
f :

f is absolutely continuous on [0,∞)
and f(0) = 0,

∫∞
0

[f ′(t)]2dt ≤ 1

}
. (1.9)

Similar to the case of C[0, 1] (see, e.g., [2, Lemma 1.2]), K is a compact subset of C.
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The main result of this paper is the following theorem:

Main Theorem. Suppose that X satisfies Assumption A and

ξn(t) =
X(nt)√
2n llgn

, t ≥ 0, n ≥ 1. (1.10)

Then (ξn = {ξn(t), t ≥ 0}, n ≥ 1) is relatively compact in D with probability one and almost

surely the set of its limit points is K, i.e.,

{ξn, n ≥ 1} →→ K, a.s. (1.11)

§2. The Case of Processes with Restricted Jumps

In this section we will consider the process with independent increments Y = {Y (t), t ≥
0} which satisfies the following Assumption B.

Assumption B. Let Y = {Y (t), t ≥ 0} be a process with independent increments such

that E[Y (t)] = 0, E[Y (t)]2 = D(t),

lim
t→∞

D(t)

t
= 1 (2.1)

and

sup
s≤t

|∆Y (s)| ≤ ε(t)
√
t/ llg t, ∀t > 0, a.s.

where ε(t) is a positive function with

lim
t→∞

ε(t) = 0. (2.2)

Obviously, if Y satisfies Assumption B, then Y is a locally square integrable martingale.

To begin with, we need the following inequality of probability of large deviation for

martingale in [8], it will be one of important tools in this section.

Lemma 2.1.[8,p.899] Let T be a positive number and M = {M(t), t ≥ 0} be a PII such

that

E[M(t)] = 0, E[M(T )]2 ≤ b(T ), sup
t≤T

|∆M(t)| ≤ d(T ).

Then

P
(
sup
t≤T

|M(t)| ≥ a
)
≤ 2 exp

[
− a2

2b(T )
ψ

(
ad(T )

b(T )

)]
, ∀a > 0, (2.3)

where

ψ(x) =
2

x2

∫ x

0

∫ y

0

dz

1 + z
dy =

2(1 + x) log(1 + x)− 2x

x2
, x > 0. (2.4)

From (2.4) it is easy to know that ψ is a decreasing continuous function and

ψ(x) ≤ 1, lim
x→0

ψ(x) = 1. (2.5)

For a stochastic process X, write

ω(δ, t,X) = sup
0≤u,v≤t
|v−u|≤δ

|Xv −Xu|.

From this definition it is easy to see that

ω(δ, t,X) ≤ 3 sup
j:jδ≤t

sup
jδ≤s≤(j+1)δ∧t

|X(s)−X(jδ)|. (2.6)
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We are going to establish the asymptotic behaviour of ω(δ, t, Y ) firstly.

Proposition 2.1. Let Y be a PII satisfying Assumption B. Then for each α ∈ (0, 1]

lim
t→∞

ω(αt, t, Y )√
2t llg t

≤ 3
√
α. (2.7)

Proof. Firstly, for p > 1 and positive integer n write

tj = jαpn, j = 0, 1, 2, · · · .

Due to (2.1) for given δ > 0 there exists n0 > 0 such that∣∣∣D(t)

t
− 1

∣∣∣ < δ

2([1/α] + 1)
, ∀t ≥ αpn0 .

By direct calculating it deduces that

D(tj+1)−D(tj) < (1 + δ)(tj+1 − tj), ∀j ≤ [1/α], n ≥ n0.

Consider Zj(t) = Y (t ∨ tj)− Y (tj), t ≥ tj . Then {Zj(t), t ≥ tj} is a PII, and E[Zj(t)] = 0,

E[Zj(t)]
2 = D(t)−D(tj),

E[Zj(tj+1)]
2 ≤ (1 + δ)(tj+1 − tj) = (1 + δ)αpn, ∀j ≤ [1/α], n ≥ n0,

sup
t≤pn

|∆Zj(t)| ≤ ε(pn)
√
pn/llg pn, a.s.

By Lemma 2.1 for δ > 0 we have

P
(

sup
tj≤t≤tj+1∧pn

|Y (t)− Y (tj)| ≥ (1 + δ)
√
2αpn llg pn

)
≤ 2 exp

[
− (1 + δ)22αpn llg pn

2(1 + δ)αpn
ψ

(√
2αpn llg pn

αpn
ε(pn)

√
pn

llg pn

)]
= 2 exp

[
−(1 + δ) llg pnψ

(√
2ε(pn)√
α

)]
, ∀j ≤ [1/α]. (2.8)

Next, for δ > 0 we have

P
(
ω(αpn, pn, Y ) ≥ 3(1 + δ)

√
2αpn llg pn

)
≤ P

(
sup

0≤j≤[1/α]

sup
tj≤t≤tj+1∧pn

|Yt − Ytj | ≥ (1 + δ)
√
2αpn llg pn

)
(by (2.6))

≤
([ 1
α

]
+ 1

)
sup

0≤j≤[1/α]

P
(

sup
tj≤t≤tj+1∧pn

|Yt − Ytj | ≥ (1 + δ)
√

2αpn llg pn
)

≤
([ 1
α

]
+ 1

)
2 exp

[
−(1 + δ) llg pnψ

(√2ε(pn)√
α

)]
(from (2.8))

≤ 2([1/α] + 1)

(n log p)1+δ/2
, ∀n ≥ n0 ∨ n1. (2.9)

The last inequality comes from the following facts: since p > 1, by (2.2) and (2.5)

lim
n→∞

ψ
(√2ε(pn)√

α

)
= 1.

Hence there is an n1 such that

ψ
(√2ε(pn)√

α

)
>

1 + δ/2

1 + δ
, ∀n ≥ n1.
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Now from (2.9) we have∑
n
P
(
ω(αpn, pn, Y ) ≥ 3(1 + δ)

√
2αpn llg pn

)
<∞.

Hence from Borel-Cantelli lemma and the arbitrariness of δ > 0 we get

lim
n→∞

ω(αpn, pn, Y )√
2pn llg pn

≤ 3
√
α, a.s.

At last, while pn ≤ t ≤ pn+1, from the definition of ω we have

ω(αt, t, Y ) ≤ ω(αpn+1, pn+1, Y ),
ω(αt, t, Y )√

2t llg t
≤ ω(αpn+1, pn+1, Y )√

2pn llg pn
.

Therefore

lim
t→∞

ω(αt, t, Y )√
2t llg t

≤ 3
√
αp, a.s.

Since p may be any number greater than 1, letting p ↓ 1 (2.7) comes.

Now we are going to establish a law of the iterated logarithm for
m∑
j=1

αj [Y (jt)−Y ((j−1)t)].

Proposition 2.2. Let Y = {Y (t), t ≥ 0} be a PII satisfying Assumption B, m ∈ N =

{1, 2, · · · }, α1, · · ·αm ∈ R. Then

lim
t→∞

m∑
j=1

αj [Y (jt)− Y ((j − 1)t)]

√
2t llg t

≤
√

m∑
j=1

α2
i , a.s. (2.10)

Proof. No loss of generality we can assume
m∑
j=1

α2
j = 1. From (2.1) for given η > 0 there

is a number t0 such that∣∣∣1− D(jt)−D((j − 1)t)

t

∣∣∣ < η

2
, j ≤ m, ∀t ≥ t0.

For fixed t ≥ t0, put

H(s) =
m∑
j=1

αj1](j−1)t,jt](s), U(s) = (H .Y )s,

where H .Y denotes the stochastic integral of H with respect to Y . Then U is a PII and

also a square integrable martingale,

U(mt) =
m∑
j=1

αj [Y (jt)− Y ((j − 1)t)]
∧
= S(t), (2.11)

E[U(mt)]2 =
m∑
j=1

α2
j [D(jt)−D((j − 1)t)] ≤ (1 + η/2)t,

sup
s

|∆U(s)| ≤ max
1≤j≤m

|αj |ε(mt)
√
D(mt)/llgD(mt)

≤ (1 + η)ε(mt)
√
mt/llg t, for t > t0.

Now for δ > 0 from (2.11) and Lemma 2.1 we have

P
(
|S(t)| ≥ (1 + δ)

√
(1 + η)2t llg t

)
≤ 2 exp

[
− (1 + δ)2(1 + η)2t llg t

2(1 + η)t
ψ
(√

2m(1 + η)(1 + δ)ε(mt)
)]
.
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Owing to (2.2) and (2.5) there exists t1 such that

ψ
(√

2m(1 + η)(1 + δ)ε(mt)
)
≥ 1

1 + δ
, ∀t ≥ t1.

Therefore

P
(
|S(t)| ≥ (1 + δ)

√
(1 + η)2t llg t

)
<

2

(log t)1+δ
, ∀t ≥ t0 ∨ t1.

For p > 1, put t = pk, we have
∞∑
k=1

P
(
|S(pk)| ≥ (1 + δ)

√
(1 + η)2pk llg pk

)
<∞.

By using Borel-Cantelli Lemma we have

lim
t→∞

S(pk)√
2pk llg pk

≤ (1 + δ)
√

1 + η. (2.12)

Meanwhile,

sup
pk≤t≤pk+1

|S(t)− S(pk)| ≤ 2m(max
j

|αj |) sup
1≤j≤m

sup
pk≤t≤pk+1

|Y (jt)− Y (jpk)|

≤ 2mω(m(p− 1)pk,mpk+1, Y ).

Therefore Proposition 2.1 gives

lim
k→∞

sup
pk≤t≤pk+1

|S(t)− S(pk)|√
2pk llg pk

≤ 6m
√
m(p− 1). (2.13)

Combining (2.12) and (2.13) we get

lim
t→∞

|S(t)|√
2t llg t

≤ √
p
[
(1 + δ)

√
1 + η + 6m

√
m(p− 1)

]
, a.s. (2.14)

Since δ, η may be arbitrary positive numbers and p is an arbitrary number greater than 1,

letting δ ↓ 0, η ↓ 0 and p ↓ 1 in (2.14) yields

lim
t→∞

|S(t)|√
2t llg t

≤ 1.

The proposition is proved.

In order to prove that (2.10) is an equality, we borrow a lemma from [7] (see, e.g., [7, p.

269] or [10, Lemma 1]).

Lemma 2.2. Let S be a random variable. If for some d > 0

exp
(u2
2
(1− ud)

)
≤ E(euS) ≤ exp

(u2
2

(
1 +

ud

2

))
, ∀u ∈ [0, 1/d),

then for any γ > 0, there exists numbers ε0 > 0 and η0 > 0 (both depending on γ) such that

P(S > x) > exp
[
−x

2

2
(1 + γ)

]
, ∀x ∈ (ε0, η0/d). (2.15)

Proposition 2.3. Let U = {U(t), t ≥ 0} be a PII such that EU(t) = 0, EU(t)2 = D(t)

and sup
s≤t

|∆U(s)| ≤ d(t). Then

exp
[u2
2
(1− ud(t))D(t)

]
≤ E

[
euU(t)

]
≤ exp

[u2
2
(1 + ud(t))D(t)

]
, ∀u ∈

[
0,

1

d(t)

)
. (2.16)

Proof. Let µ be the jump measure of U , ν = Eµ be the dual predictable projection of

µ and U c be the continuous local martingale part of U . Then by the stochastic integral
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representation of PII we have

E[euU(t)] =
∏

0<s≤t

(
1 +

∫
|x|≤d(t)

(eux − 1− ux)ν({s}, dx)
)

× exp

(
u2

2
E[U c(t)]2 +

∫ t

0

∫
|x|≤d(t)

(eux − 1− ux)νc(ds, dx)

)
,

(2.17)

where νc is the continuous part of ν (i.e., νc({s},R) = 0, ∀s > 0). Meanwhile,

D(t) = E[U c(t)]2 + (x2 ∗ ν)t = E[U c(t)]2 + (x21{|x|≤d(t)} ∗ νc)t +
∑
s≤t

∆D(s),
(2.18)

∆D(s) =

∫
|x|≤d(t)

x2ν({s}, dx) ≤ d(t)2, s ≤ t. (2.19)

Note that for |ux| < 1∣∣∣eux − 1− ux

u2x2
− 1

2

∣∣∣ = ∣∣∣ ∞∑
n=3

(ux)n−2

n!

∣∣∣ ≤ ∞∑
n=1

|ux|n

3n
≤ |ux|

2

and

u2

2

(
1− |ux|

2

)
≤ eux − 1− ux

x2
≤ u2

2

(
1 +

|ux|
2

)
.

Hence

u2

2

(
1− ud(t)

2

)
(x2 ∗ νc)t ≤

∫ t

0

∫
|x|≤d(t)

(eux − 1− ux)νc(ds, dx)

≤ u2

2

(
1 +

ud(t)

2

)
(x2 ∗ νc)t, ∀u ∈ [0, 1/d(t)).

(2.20)

u2

2

(
1− ud(t)

2

)
∆D(s) ≤

∫
|x|≤d(t)

(eux − 1− ux)ν({s}, dx)

≤ u2

2

(
1 +

ud(t)

2

)
∆D(s), s ≤ t, ∀u ∈ [0, 1/d(t)).

But for u ∈ [0, 1/d(t)) and s ≤ t

log
(
1 +

u2

2

(
1− ud(t)

2

)
∆D(s)

)
≥ u2

2

(
1− ud(t)

2

)
∆D(s)− u4

8
(∆D(s))2

≥ u2

2
(1− ud(t))∆D(s) (by (2.19)).

Therefore

exp
(u2
2
(1− ud(t))∆D(s)

)
≤ 1 +

∫
|x|≤d(t)

(eux − 1− ux)ν({s}, dx)

≤ exp
(u2
2

(
1 +

ud(t)

2

)
∆D(s)

)
. (2.21)

Combining (2.20), (2.21) and referring (2.17), (2.18) yield (2.16).

Proposition 2.4. Let Y be a PII satisfying Assumption B, m ∈ N , α1, · · · , αm ∈ R.

Then

lim
t→∞

m∑
j=1

αj [Y (jt)− Y ((j − 1)t)]

√
2t llg t

=

√
m∑
j=1

α2
j , a.s. (2.22)
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Proof. Without loss of generality we may suppose
m∑
j=1

α2
j = 1. For given ϑ > m put

tk = ϑk, k ≥ 1 and

H(k)(s) = α1I(mtk−1 < s ≤ tk) +
m∑
j=2

αjI((j − 1)tk < s ≤ jtk),

U (k) = {U (k)(s) = (H(k) .Y )s, s ≥ 0}.

Then U (k) is a PII, k = 1, 2, · · · , and

U (k)(mtk) =
m∑
j=2

αj [Y (jtk)− Y ((j − 1)tk)] + α1[Y (tk)− Y (mtk−1)],

EU (k)(s) = 0,

L(k) ∧
= E[U (k)(mtk)]

2 =
m∑
j=1

α2
j [D(jtk)−D((j − 1)tk)]− α2

1D(mtk−1),

lim
k→∞

L(k)

tk
= 1− m

ϑ
α2
1. (2.23)

Meanwhile, for given η > 0,

sup
s

|∆U (k)(s)| ≤ max
1≤j≤m

|αj |ε(mtk)
√
D(mtk)/ llgD(mtk)

≤ ε(mtk)(1 + η)
√
mtk/ llg tk

∧
= d(k), while tk is large enough.

Now applying (2.16) to U (k)(mtk) gives

exp

[
u2

2

(
1− u

d(k)√
L(k)

)]
≤ E

[
exp

(
u
U (k)(mtk)√

L(k)

)]
≤ exp

[
u2

2

(
1 +

u

2

d(k)√
L(k)

)]
, ∀u ∈

[
0,

√
L(k)

d(k)

)
.

Hence using Lemma 2.2 for given 0 < γ < 1/2 yields

P

(
U (k)(mtk)√

L(k)
> x

)
> exp

(
−x

2

2
(1 + γ)

)
, ∀x ∈

(
ε0, η0

√
L(k)

d(k)

)
. (2.24)

For given η > 0 if tk is large enough from (2.23) we have
√
L(k)

d(k)
≥ (1− 2η)

√
1−mα2

1/ϑ

ε(mtk)
√
m

√
llg tk.

Hence
√
2(1− 2γ) llg tk ∈ (ε0, η0

√
L(k)/d(k)) for k large enough and (2.24) yields

P

(
U (k)(mtk)√

L(k)
>

√
2(1− 2γ) llg tk

)
> exp[−(1 + γ)(1− 2γ) llg tk)]

>
C

(log tk)1−γ
=

C

k1−γ
,

where C is a constant, but it may vary in different expressions. Recall that {U (k)(mtk),

k ≥ 1} is an independent sequence of random variables, by the Borel-Cantelli lemma we

have

P

(
U (k)(mtk)√

L(k)
>

√
2(1− 2γ) llg tk i. o.

)
= 1.
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Therefore

lim
t→∞

U (k)(mtk)√
2tk llg tk

≥ (1− 2γ) lim
t→∞

√
L(k)

tk
= (1− 2γ)

√
1− mα2

1

ϑ
.

Furthermore,

lim
t→∞

m∑
j=1

αj [Y (jt)− Y ((j − 1)t)]− α1Y (mt/ϑ)

√
2t llg t

≥ (1− 2γ)

√
1− mα2

1

ϑ
.

But from (2.10) we have

lim
t→∞

|Y (mt/ϑ)|√
2t llg t

≤
√
m

ϑ
.

Hence

lim
t→∞

m∑
j=1

αj [Y (jt)− Y ((j − 1)t)]

√
2t llg t

≥ (1− 2γ)

√
1− mα2

1

ϑ
−
√
m

ϑ
.

Recall that γ > 0, ϑ > 1 may be any given numbers, now letting ϑ ↑ ∞ and γ ↓ 0 yields

lim
t→∞

m∑
j=1

αj [Y (jt)− Y ((j − 1)t)]

√
2t llg t

≥ 1.

Combining this and Proposition 2.2 gives (2.22).

From Propositions 2.1 and 2.4 it is easy to deduce the following corollary.

Corollary 2.1. Let Y be a PII satisfying Assumption B, d > 0. Then

lim
n→∞

m∑
j=1

αj [Y (jn/d)− Y ((j − 1)n/d)]

√
2n llgn

=

√
1

d

m∑
j=1

α2
j

∀m ∈ N , α1, · · · , αm ∈ R a.s. (2.25)

Now we shall state some results about the compactness in D.

For f ∈ D define a mapping T (d) as follows:

T (d)f(t) = f (d)(t)
∧
= f

( [td]
d

)
+
[
f
( [td] + 1

d

)
− f

( [td]
d

)]
(td− [td]),

C(d) = {f (d) : f ∈ D}.

Then T (d) is a continuous mapping from D onto C(d) and C(d) is a closed subset of C.
Let

K(d) = KC(d) = {g(d) : g ∈ K} =
{
g : g ∈ C(d),

∞∑
i=1

d[g((i+ 1)/d)− g(i/d)]2 ≤ 1
}
.

Similar to the case of C[0, 1] (see, e.g., [2, Lemma 2.1]), f ∈ K iff f (d) ∈ K(d) for d = 1, 2, · · · .
Let

H =

{
x = (xi, i ≥ 1) ∈ R∞ : lim

k→∞

k∑
i=1

xi

k + 1
= 0

}
, ∥x∥H = sup

k

∣∣ k∑
i=1

xi
∣∣

k + 1
, x ∈ H.

Then H endowed with norm ∥ . ∥H is also a Banach space. It is also easy to verify that the
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following mapping Qd is a homeomorphism from C(d) onto H:

Qd : C(d) ∋ f 7→
(
f
( i
d

)
− f

( i− 1

d

)
, i ≥ 1

)
∈ H.

The following results are well-known.

Lemma 2.3. A subset B in H is relatively compact iff for each k ≥ 1 {xk : x ∈ B} is

bounded and

lim
k→∞

1

k + 1
sup
x∈B

∣∣∣ k∑
j=1

xj

∣∣∣ = 0.

Proposition 2.5. Let {ϑ(n) = (ϑ
(n)
k , k ≥ 1), n ≥ 1} be a sequence in H. If for each

k ≥ 1 and α1, · · · , αk ∈ R

lim
n→∞

k∑
j=1

αjϑ
(n)
j = a

√
k∑

j=1

α2
j , lim

k→∞

1

k + 1
sup
n

∣∣∣ k∑
j=1

ϑ
(n)
j

∣∣∣ = 0,

then {ϑ(n), n ≥ 1} is relatively compact in H and the set L of its limit points is

B(a)
∧
=

{
x ∈ R∞ :

∞∑
j=1

x2i ≤ a2
}
.

For a process Y = {Y (t), t ≥ 0} satisfying Assumption B, define

ηn(t) =
Y (nt)√
2n llgn

, t ≥ 0, n ≥ 1, (2.27)

η(d)n (t) =
Y (n[td]d ) +

[
Y (n[td]+n

d )− Y (n[td]d )
]
(td− [td])

√
2n llgn

, t ≥ 0, n ≥ 1. (2.28)

Proposition 2.6. Let Y be a PII satisfying Assumption B and η
(d)
n be defined by (2.28).

Then {η(d)n , n ≥ 1} →→ K(d), a.s.

Proof. For fixed d > 0, put

ϑ
(n)
i = η(d)n

( i
d

)
− η(d)n

( i− 1

d

)
=
Y (ni/d)− Y (n(i− 1)/d)√

2n llgn
.

From (2.25) we have

lim
n→∞

k∑
j=1

αjϑ
(n)
j = lim

n→∞

k∑
j=1

αj [Y (nj/d)− Y (n(j − 1)/d)]

√
2n llgn

=

√
1

d

k∑
j=1

α2
j ,

∀α1, · · · , αk ∈ R, k ≥ 1, a.s. (2.29)

Also from (2.25) we have

lim
n→∞

|Y (n/d)|√
2n llgn

=
1√
d
, a.s.

Hence

lim
k→∞

1

k + 1
sup
n≥1

∣∣∣ k∑
j=1

ϑ
(n)
j

∣∣∣ = lim
k→∞

1

k + 1
sup
n≥1

|Y (nk/d)|√
2n llgn

≤ lim
k→∞

(1 + k)−1/4 sup
n≥1

|Y (nk/d)|√
2nk llg(nk)

≤ lim
k→∞

(1 + k)−1/4 sup
n≥k

|Y (n/d)|√
2n llg(n)

= 0, a.s.
(2.30)

Now from (2.29), (2.30) and Proposition 2.5 we get that {ϑ(n), n ≥ 1} is relatively compact

in H with probability 1 and the set of its limit points is B(1/
√
d ) almost surely. This also
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means that {η(d)n , n ≥ 1} is relatively compact in C(d) with probability 1 and the set of its

limit points is{
f ∈ C(d) :

∞∑
i=1

[
f
( i
d

)
− f

( i− 1

d

)]2
≤ 1

d

}
=

{
f ∈ C(d) :

∫ ∞

0

[f ′(s)]2ds ≤ 1
}
= K(d).

Now we are ready to prove the Strassen law of the iterated logarithm for Y .

Proposition 2.7. Let Y be a PII satisfying Assumption B and ηn be defined by (2.27).

Then {ηn, n ≥ 1} →→ K, a.s.

Proof. We adhere to the notations of the last Proposition. Similar to (2.30) we also have

lim
t→∞

1

1 + t
sup
n≥1

|Y (nt)|√
2n llgn

= 0, lim
t→∞

1

1 + t
sup
n≥1

|Y (n[td]/d)|√
2n llgn

= 0.

Hence for δ > 0 there exists a finite number T > 0 such that

sup
t≥T

1

1 + t
sup
n≥1

|Y (nt)|√
2n llgn

<
δ

3
, sup

t≥T

1

1 + t
sup
n≥1

|Y (n[td]/d)|√
2n llgn

<
δ

3
.

Now we have

lim
n→∞

∥ηn − η(d)n ∥D ≤ 2

3
δ + lim

n→∞
sup
k≤Td

sup
k/d≤t≤(k+1)/d

|Y (nt)− Y (nk/d)|√
2n llgn

≤ 2

3
δ + lim

n→∞

ω(n/d, n(T + 1/d), Y )√
2n llgn

≤ 2

3
δ + 3

√
1

d
.

Letting δ ↓ 0 yields

lim
n→∞

∥ηn − η(d)n ∥D ≤ 3
√

1/d. (2.31)

For δ > 0, take d > 9/δ2. From Proposition 2.6 {η(d)n , n ≥ 1} is relatively compact.

Therefore there exists a finite δ-net for {η(d)n , n ≥ 1} and from (2.31) there exists also a

finite 2δ-net for {ηn, n ≥ 1}. Since δ > 0 may be any positive number, {ηn, n ≥ 1} is

relatively compact in D almost surely.

Denote by L(ω) the set of all limit points of {ηn, n ≥ 1}. Then L(ω) is a closed set.

From the continuity of the mapping T (d), L(d) = T (d)L is just the set of limit points of

{η(d)n = T (d)ηn, n ≥ 1}. Therefore Proposition 2.6 shows L(d) = K(d), for all d = 1, 2, · · · .
This means that if f ∈ L, then f (d) ∈ K(d), i.e.,

f(0) = 0,
∞∑
i=1

d
[
f
( i
d

)
− f

( i− 1

d

)]2
≤ 1, d = 1, 2, · · · .

Hence f ∈ K and L ⊂ K a.s.

On the other hand, (2.31) means K(d) ⊂ L3
√

1/d =
{
y : inf

x∈L
∥y−x∥ ≤ 3

√
1/d

}
. Therefore

K ⊂ (K(d))
√

1/d ⊂ L4
√

1/d, a.s. and K ⊂
∞∩
d=1

L4
√

1/d = L, a.s. Hence the conclusion L = K

holds.

§3. The General Case

In this section we adhere to the notations of last section and consider the PII X =

{X(t), t ≥ 0} satisfying Assumption A.

The following lemma (cf. [14]) is important in the use of truncation technique.
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Lemma 3.1. Let G be a finite measure on R with
∫
y2G(dy) < ∞. Then there exists a

function ε(t) satisfying

ε(t) ↓ 0, 1 ≤ ε(t)
√
t/ llg t→ ∞, as t→ ∞ (3.1)

and ∫ ∞

0

1√
2t llg t

∫
R

|y|I
(
|y| > ε(t)

√
t

llg t

)
G(dy)dt <∞. (3.2)

Note that if X satisfies Assumption A, then X is also a locally square integrable martin-

gale and has the following integral representation: X = Xc + x ∗ (µ − ν), where Xc is the

continuous local martingale part of X, µ is the jump measure of X and ν = Eµ is the dual

predictable projection of µ. Meanwhile, Xc is also a continuous PII and

E[X(t)]2 = E[Xc(t)]2 + (x2 ∗ ν)t. (3.3)

Now we shall use the truncation technique, i.e., use the following decomposition of X:

X = Xc + x ∗ (µ− ν)

= [Xc + xI(|x| ≤ d(t)) ∗ (µ− ν)] + xI(|x| > d(t)) ∗ (µ− ν)
∧
= Y + Z, (3.4)

Y
∧
= Xc + xI(|x| ≤ d(t)) ∗ (µ− ν), (3.5)

Z
∧
= xI(|x| > d(t)) ∗ (µ− ν), (3.6)

where d(t) = ε(t)
√
t/ llg t and ε(t) is given by Lemma 3.1. Then both Y, Z are PII.

Proposition 3.1. Suppose that X = {X(t), t ≥ 0} satisfies Assumption A and Y =

{Y (t), t ≥ 0} is defined by (3.4). Then Y satisfies Assumption B.

Proof. From the integral representation (3.5), the following facts are evident:

E[Y (t)] = 0, sup
s≤t

|∆Y (s)| ≤ 2d(t) = 2ε(t)
√
t/ llg t, ∀t a.s.

To this end it suffices to prove that lim
t→∞

E[Y (t)]2/t = 1. From the definition of Y we have

E[Y (t)]2 = E[Xc(t)]2 +
(
|x|2I(|x| ≤ d( . ))

)
∗ νt −

∑
s≤t

(
∆[(xI(|x| ≤ d( . ))) ∗ ν](s)

)2
≤ E[X(t)]2,

where
∑
W denotes the summation process of a thin process W . Meanwhile,

0 ≤ E[X(t)]2 − E[Y (t)]2

= (|x|2I(|x| > d( . ))) ∗ νt +
∑
s≤t

(
∆[(xI(|x| ≤ d( . ))) ∗ ν](t)

)2
= (|x|2I(|x| > d( . ))) ∗ νt +

∑
s≤t

(
∆[(xI(|x| > d( . ))) ∗ ν](t)

)2
(by ∆[x ∗ ν] = 0)

≤ 2(|x|2I(|x| > d( . ))) ∗ νt

= 2

∫ t

0

∫
R

|x|2I(|x| > d(s)))Ns(dx)DX(ds) (by (1.2))

≤ 2

∫ t

0

∫
R

|x|2I(|x| > d(s))G(dx)DX(ds) (by (1.4)).

Owing to
∫
y2G(dy) <∞ and (3.1), we have

lim
t→∞

∫
R

x2I(|x| > d(t))G(dx) = lim
t→∞

∫
R

x2I(|x| > ε(t)
√
t/ llg t )G(dx) = 0.
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Hence

lim
t→∞

|E[X(t)]2 − E[Y (t)]2|
DX(t)

≤ lim
t→∞

1

DX(t)

∫ t

0

∫
R

x2I
(
|x| > ε(s)

√
s

llg s

)
G(dx)DX(ds) = 0.

Therefore according to (1.5) we get lim
t→∞

E[Y (t)]2/t = 1.

Proposition 3.2. Suppose that X satisfies Assumption A, Z is defined by (3.6) and

ζn(t) =
Z(nt)√
2n llgn

, t ≥ 0, n ≥ 1. (3.7)

Then

lim
t→∞

Z(t)√
2t llg t

= 0, lim
n→∞

∥ζn∥D = 0, lim
t→∞

ω(t, t, Z)√
2t llg t

= 0. (3.8)

Proof. Firstly, note that Z is a locally square integrable martingale. For the φ(t) =√
2t llg t from (3.2) we have( |x|

φ( . )
I(|x| > d( . )) ∗ ν

)
∞

=

∫ ∞

0

1

φ(t)

∫
R

|x|I(|x| > d(t))Nt(dx)DX(dt)

≤
∫ ∞

0

1

φ(t)

∫
R

|x|I(|x| > d(t))G(dx)DX(dt) <∞. (3.9)

But

E
[( |x|
φ( . )

I(|x| > d( . )) ∗ µ
)
t

]
=

( |x|
φ( . )

I(|x| > d( . )) ∗ ν
)
t
.

Hence from (3.9) the following limits exist and are finite:

lim
t→∞

[ |x|
φ( . )

I(|x| > d( . )) ∗ ν
]
t
, lim

t→∞

[ |x|
φ( . )

I(|x| > d( . )) ∗ µ
]
t
,

lim
t→∞

[ 1

φ( . )
.Z

]
t
= lim

t→∞

[ x

φ( . )
I(|x| > d( . )) ∗ ν

]
t
− lim

t→∞

[ x

φ( . )
I(|x| > d( . )) ∗ µ

]
t
.

Now the Kronecker lemma implies

lim
t→∞

Z(t)√
2t llg t

= lim
t→∞

Z(t)

φ(t)
= 0, a.s.

i.e., the first equality of (3.8) holds and it contains that for each fixed a > 0

lim
n→∞

sup
0≤t≤a

|Z(nt)|
√
2n llgn

= 0, a.s. (3.10)

Meanwhile,

∥ζn∥D ≤ 1√
2n llgn

sup
0≤t≤a

|Z(nt)|+ 1√
2n llgn

sup
t>a

|Z(nt)|
1 + t

.

This and (3.10) contain that

lim
n→∞

∥ζn∥D ≤ lim
a→∞

lim
n→∞

1√
2n llgn

sup
t≥a

|Z(nt)|
1 + t

. (3.11)

But for each ε > 0 there is an integer N such that

|Z(nt)| ≤ ε
√
2nt llg(nt) ≤ ε

√
2n llgn t3/4, ∀n ≥ N, t ≥ a ∨ ee.

This and (3.11) imply the second equality in (3.8).

At last, the third equality of (3.8) comes from ω(t, t, Z) ≤ 2 sup
s≤t

|Z(s)|.
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From Proposition 3.2 we also have the following Corollary.

Corollary 3.1. If X satisfies Assumption A, then for α ∈ [0, 1]

lim
n→∞

ω(αt, t,X)√
2t llg t

≤ 3
√
α, a.s. (3.12)

Proof. Note that ω(δ, t,X) ≤ ω(δ, t, Y )+ω(δ, t, Z), hence (3.12) comes from (2.7), (3.8).

Now we are ready to prove Main Theorem.

Proof of Main Theorem. According to (3.4),

X(t) = Y (t) + Z(t), ξn(t) = ηn(t) + ζn(t),

where ηn(t), ζn(t) are given by (2.28), (3.7) respectively. Now the conclusion comes from

Proposition 2.7 and (3.8).

§4. Some Corollaries

The Main Theorem is a rather general result, it comprises some important special cases,

here we shall list some corollaries of it.

Let C1 = {f : f is continuous on [0, 1], f(0) = 0},

D1 = {f : f is right continuous and with finite left limit on [0, 1], f(0) = 0, },

K1 =
{
f : f is absolutely continuous on [0, 1] and f(0) = 0,

∫ 1

0

[f ′(t)]2dt ≤ 1
}
.

Then C1, D1 endowed with the uniform norm are Banach spaces, K1 is a compact subset of

C1.
For f ∈ D define (Pf)(t) = f(t), 0 ≤ t ≤ 1. Then P is a continuous mapping from D

onto D1 and PK ∧
= {Pf : f ∈ K} = K1. Therefore we have the following corollary.

Corollary 4.1. let X = {X(t), t ≥ 0} be a PII satisfying Assumption A and

ξn(t) =
X(nt)√
2n llgn

, 0 ≤ t ≤ 1, n ≥ 1. (4.1)

Then ξn →→ K1 in D1, a.s.

Corollary 4.2. Let X = {X(t), t ≥ 0} be a temporally homogeneous PII with E[X(1)] =

0, E[X(1)]2 = σ2, and ξn is defined by (1.10) (or (4.1) resp.). Then

ξn
σ

→→ K in D
(ξn
σ

→→ K1 in D1 resp.
)

a.s. (4.2)

Proof. Note that E[X(t)] = 0, DX(t) = E[X(t)]2 = σ2t, ν(dt, dx) = N(dx)dt and∫
x2N(dx) = σ2 < ∞. Therefore it is evident that {X(t)/σ, t ≥ 0} satisfies Assumption A

and (4.2) comes from (1.11) and Corollary 4.1.

Corollary 4.3. Let {Vn, n ≥ 1} be a sequence of independent random variables with

E[Vn] = 0, σ2
n = E[Vn]

2 <∞ and

lim
n→∞

1

n

n∑
j=1

σ2
j = 1. (4.3)

Let Fn be the distribution of Vn. Suppose {σ−2
n Fn} ≺ G with

∫
x2G(dx) <∞ or

sup
n
σ−2
n E[V 2+δ

n ] <∞, for some δ > 0. (4.4)
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Let

ξn(t) =

[nt]∑
j=1

Vj

√
2n llgn

, ξn(t) =

[nt]∑
j=1

Vj + (nt− [nt])V[nt]+1

√
2n llgn

, t ≥ 0, n ≥ 1. (4.5)

Then

ξn →→ K in D, ξn →→ K in C a.s. (4.6)

Proof. Write X(t) =
[t]∑
j=1

Vj . Then {X(t), t ≥ 0} is a PII with E[X(t)] = 0, DX(t) =

E[X(t)]2 =
[t]∑
j=1

σ2
j . From (4.3) lim

t→∞
DX(t)

t = lim
t→∞

1
t

[t]∑
j=1

σ2
j = 1. In this case, the jump measure

µ of X is µ(dt, dx) =
∞∑
j=1

ε{j}(dt)ε{Vj}(dx), where ε{a} is a unit measure concentrate in {a}.

The dual predictable projection ν of µ is

ν(dt, dx) =
∞∑
j=1

εj(dt)FVj (dx) = σ−2
[t] F[t](dx)dDX(t). (4.7)

Thus {Nt( . )} = {σ−2
[t] F[t]( . )} ≺ G. If (4.4) holds, then from Lemma 1.1 {Nt} ≺ G holds

too. Therefore X satisfies Assumption A and (4.6) comes from Main Theorem.

Meanwhile, similar to (2.38) it is easy to show lim
n→∞

∥ξn − ξn∥D = 0. Hence ξn →→ K in

D a.s. Note that ξn ∈ C, therefore ξn →→ K in C a.s. too.

In particulr, from Corollary 4.3 we have

Corollary 4.4.Let {Vn, n ≥ 1} be a sequence of i.i.d. random variables with E[Vn] = 0,

E[V 2
n ] = σ2 <∞. Suppose that ξn(t), ξn(t) are defined by (4.5). Then

ξn
σ

→→ K, in D, ξn
σ

→→ K, in C, a.s.
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[ 7 ] Loéve, M., Probability theory (4-th ed.), Springer-Verlag, Berlin-Heideberg-New York, 1973.
[ 8 ] Shorack, G. R. & Wellner, J. A., Empirical processes with applications to statistics, Wiley, New York,

1986.
[ 9 ] Strassen, V., An invariance principle for the law of the iterated logarithm, Z. Wahrsch. verw. Geb., 3

(1964), 211-226.
[10] Tomkins, R. J., An iterated logarithm theorem for some weighted averages of independent random

variables, Ann. Math. Statist., 42 (1971), 760-763.
[11] Wang, J. G., A law of the iterated logarithm for processes with independent increments, Acta Math.

Appl. Sinica, 10 (1994), 59-68.

[12] Wang, J. G., The asymptotic behaviour of locally square integrable martingales. Ann. Probab., 23
(1995), 552-585.


