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Abstract

This paper introduces the new notion of (p + 0)-summable operator. It is shown that this
property is stable under small perturbation by selfadjoint operators.

Keywords p-summable Fredholm module, θ-summable Fredholm module

1991 MR Subject Classification 46L80, 46L87

Chinese Library Classification O19, O153.3

§0. Introduction

Let H be a complex Hilbert space and A be a complex unital Banach algebra acting

on H. And let D be a densely defined selfadjoint operator H. A pair (H,D) is said to be

an unbounded p-summable Fredholm module (ungraded) over A if it satisfies the following

conditions:

(α) tr (1 +D2)−
p
2 < ∞;

(β) For any element a in A, the operator [D, a] extends to a bounded operator on H.

We may replace the p-summability condition of (α) by the weaker, θ-summability condi-

tion;

(α′) tr e−tD2

< ∞, ∀t > 0.

Such a Fredholm module plays an important role in non-commutative geometry. In

[2], E. Getzler and A. Szenes have shown that the θ-summability property is stable under

perturbation by bounded selfadjoint operators. And in [1], A. Connes and H. Moscovici

have obtained the similar result in finite summable case.

In this paper, we consider the pairing (H,D), where H is a complex Hilbert space and

D is a densely defined selfadjoint operator on H. We introduce the new notion of (p + 0)-

summability. It is easy to see that each pair (H,D) which satisfies the condition (α) in above

is (p+0)-summable. We show that every (p+0)-summable is stable under small perturbation

by a selfadjoint operator which satisfies some certain conditions. For the θ-summable case,

we also obtain a similar result.

Throughout this paper, let H be a complex Hilbert space and L1 be the family of all

trace class operators on H.

Manuscript received November 14, 1994.
*Department of Mathematics, The Chinese University of Hong Kong, Shatin. N. T. Hong Kong, China.

**Project supported by the UPGC Research Grant.



32 CHIN. ANN. OF MATH. Vol.18 Ser.B

§1. Lemmas

The following lemma is slightly modified to the Connes and Moscovici’s result[1].

Lemma 1.1. Let S be a selfadjoint operator on H. Suppose that there exists λ > 0 such

that tr (λ+ S2)−
r
2 < ∞ for some r ≥ 1. Then we have

tr e−t2S2

≤ C · et
2λ2

t−r for any t > 0,

where the constant C does not depend on t. Thus we have tr e−t2S2

= O(t−r) as t → 0+.

Proof. By the Hölder’s inequality for operators, we see that we have

tr e−t2S2

= tr {(λ+ S2)−
r
2 e−t2S2

(λ+ S2)
r
2 }

≤ ∥e−t2S2

(λ+ S2)
r
2 ∥tr (λ+ S2)−

r
2 , for any t > 0.

Note that we have

∥e−t2S2

(λ+ S2)
r
2 ∥ ≤ ∥e−t2x2

(λ+ x2)
r
2 ∥∞

= sup
y≥

√
λ

e−t2(y2−λ)(y2)
r
2 where y2 = λ+ x2

≤ const.et
2λ2

sup
y≥

√
λ

yr

(t2y2)
r
2
.

Then the lemma follows.

We are now going to prove the following critical lemma in this paper.

Lemma 1.2. Let S be a selfadjoint operator on H. Let 1 ≤ p < ∞. Suppose that there

exists λ > 0 such that tr (λ+S2)−
p+ε
2 < ∞, for any ε > 0. Then we have tr (µ+S2)−

p+ε
2 < ∞,

for any µ > 0 and for any ε > 0.

Proof. Let ε and µ be arbitrary positive numbers. Recall that the Mellin transform of

e−t2(µ+S2) is formally given by∫ ∞

0

e−t2(µ+S2)tp+ε−1dt = const.(µ+ S2)−
p+ε
2 ,

where the constant depends on p and ε only.

We only need to show that the above integral is Bochner integrable in L1 (see [5]).

We see that we have∫ ∞

1

∥e−t2(µ+S2)tp+ε−1∥1dt ≤ ∥e−S2

∥
∫ ∞

1

e−t2µtp+ε−1dt < ∞.

On the other hand, by Lemma 1.1 and the assumption, we have

∥e−t2(µ+S2)∥1 ≤ const.e−t2(µ−λ)t−(p+η)

for any η > 0 and any t > 0.

Then we have∫ 1

0

∥e−t2(µ+S2)tp+ε−1∥1dt ≤ const.

∫ 1

0

e−t2(µ−λ)t−(p+η)tp+ε−1dt. (∗)

Thus if we take 0 < η < ε, then (∗) is integrable. Thus we have∫ 1

0

∥e−t2(µ+S2)tp+ε−1∥1dt < ∞ for any ε > 0.

On the other hand, by the Hölder’s inequality for operators, we see that the function

t ∈ (0,∞) → e−t2(µ+S2) ∈ L1 is continuous. Thus the integral
∫ 1

0
e−t2(µ+S2)tp+ε−1dt is

Bochner integrable in L1. Then the proof is completed.
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By the above results, we are naturally led to have the following definition.

Definition 1.1. A selfadjoint operator D on H is said to be (p + 0)-summable, where

1 ≤ p < ∞, if for any ε > 0, we have

tr (1 +D2)−
p+ε
2 < ∞.

Remark. Obviously, every unbounded p-summable operator (see [1]) is (p+0)-summable.

§2. Main Results

We first recall the definition of relative boundedness between two selfadjoint operators on

H (see [3]). Let A and B be two densely defined operators on H. B is said to be A-bounded

if the following conditions hold:

(i) Dom(A) ⊂ Dom(B) and

(ii) there exist a, b in RI such that

∥Bξ∥2 ≤ a2∥Aξ∥2 + b2∥ξ∥2, for any ξ ∈ Dom(A).

The greatest lower bound of |a| of all possible constants a in the condition (ii) is called

the relative bound of A.

On the other hand, we have to make use of the following fact: If A and B both are the

positive selfadjoint operators on H, then we have tr e−A−B ≤ tr e−B (see [4, Section 8]).

We are now in a position to prove our main result.

Theorem 2.1. Let D be a (p + 0)-summable operator on H. Let V be a D bounded

selfadjoint operator on H with D-bound less than 1. Suppose that there exists δ > 0 such

that (D+V )2− sD2 is selfadjoint, for any 0 < s < δ. Then D+V is also (p+0)-summable.

Proof. Since V has D-bound less than 1, by the Kato-Rellich Theorem (see [3, Theorem

X. 12]), D + V is also a selfadjoint operator. And there exists a constant a with 0 < a < 1

and a constant b so that ∥V ξ∥2 ≤ a2∥Dξ∥2 + b2∥ξ∥2, for any ξ ∈ DomD. Now we choose

β > 0 and γ > 0 such that a2 < β
γ < 1 and 0 < 1− β

γ + a2(1− γ
β ) < δ.

Let α be an arbitrary positive real number. Then we have

((1 + α+ (D + V )2)ξ, ξ) ≥
((

1 + α+D2 + V 2 − β

γ
D2 − γ

β
V 2

)
ξ, ξ

)
=

((
1 + α+

(
1− β

γ

)
D2 +

(
1− γ

β

)
V 2

)
ξ, ξ

)
≥

((
1 + α+

(
1− β

γ

)
D2 +

(
1− γ

β

)
(a2D2 + b2)

)
ξ, ξ

)
=

((
1 + α+

(
1− γ

β

)
b2 +

(
1− β

γ
+ a2

(
1− γ

β

))
D2

)
ξ, ξ

)
for any ξ ∈ DomD2 ∩Dom(D + V )2.

Since 0 ≤ 1− β
γ + a2(1− γ

β ) < δ, we have 0 ≤ β
γ − a2(1− γ

β ) < 1. And then we choose α

large enough so that we have α+ (1− γ
β )b

2 ≥ 0.

Now let e = 1 + α+ (1− γ
β )b

2 and f = 1− β
γ + a2(1− γ

β ).

Thus we have 1 + α+ (D + V )2 − e− fD2 is a positive selfadjoint operator.

Then by Lemma 1.1, for any η > 0, we have

tr e−t2(1+α+(D+V )2) ≤ tr e−t2(e+fD2) = O(t−(p+η)), as t → 0+.
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Thus the integral
∫∞
0

e−t2(1+α+(D+V )2)tp+ε−1dt is integrable in L1, for any ε > 0. Then

by the proof of Lemma 1.2, we see that

tr (1 + α+ (D + V )2)−
p+ε
2 < ∞, for any ε > 0.

Thus by Lemma 1.2 again, we have

tr (1 + (D + V )2)−
p+ε
2 < ∞, for any ε > 0.

The proof is finished.

By the above theorem, we can now obtain the following result immediately.

Corollary 2.1. Let D be a (p + 0)-summable operator. Let V be a selfadjoint bounded

operator. Suppose that there exists δ > 0 such that (D + V )2 − sD2 is selfadjoint, for any

0 < s < δ. Then D + V is also (p+ 0)-summable.

§3. Remarks

In the study of entire cyclic cohomology[2], we are naturally led to have the following

definition which is a generalization of the finite summability of an operator.

Definition 3.1. A selfadjoint operator D on H is said to be θ-summable if for any t > 0,

we have

tr e−t2D2

< ∞.

By Lemma 1.1, we can obtain the following proposition immediately.

Proposition 3.1. Every (p+0)-summable operator D is θ-summable, for any 1 ≤ p < ∞.

Analogous to the finite summable case, we can also obtain the following stability theorem

for θ-summable operators.

Theorem 3.1. Let D be a θ-summable operator on H. Let V be a D-bounded selfadjoint

operator with D-bound less than 1. Suppose that there exists δ > 0 such that (D+V )2−sD2

is selfadjoint, for any 0 < s < δ. Then D + V is also θ-summable.

Proof. By the proof of (2.1), we have

1 + α+ (D + V )2 ≥ e+ fD2,

for some suitable positive numbers α, e, f. Then the result follows.
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