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Abstract

Let (E,H, µ) be an abstract Wiener space in the sense of L. Gross. It is proved that if u
is a measurable map from E to H such that u ∈ W 2.1(H,µ) and there exists a constant α,
0 < α < 1, such that either

∑
n

∥Dnu(w)∥2H ≤ α2 a.s. or ∥u(w+h)−u(w)∥H ≤ α∥h∥H a. s. for

every h ∈ H and E
(
exp

(
108

(1−α)2

(∑
∥Dnu∥H)

)))
< ∞, then the measure µ◦T−1 is equivalent

to µ, where T (w) = w + u(w) for w ∈ E. And the explicit expression of the Radon-Nikodym
derivative (cf. Theorem 2.1) is given.
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§0. Introduction

Let (E,H, µ) be an abstract Wiener space in the sense of L. Gross, i.e., (E, ∥ · ∥E) is a

separable Banach space, (H, ∥·∥H) is a separable Hilbert space with the inner product (·, ·)H ,

H is a dense subspace of E and the inclusion map is continuous, and µ is the probability

measure on (E,BE) such that for f ∈ E∗,∫
E

exp(i f(w)) µ(dw) = exp(−1

2
∥f∥2H),

where we have used the fact that E∗ ( the dual space of E ) becomes a dense subspace of

H when we make the natural identification between H∗ and H itself.

Starting with the Cameron-Martin formula, a great effort has been devoted to the problem

of finding the Radon-Nikodym derivative of the image of µ under good nonlinear maps with

respect to µ (see [1–6]). In [6], O. Enchev and D. W. Stroock presented a very interesting

Girsanov type theorem. However, they mainly focus on the standard Wiener space of Rd-

valued Brownian paths, and it is hard to apply their method to prove this Girsanov theorem

in the case of abstract Wiener spaces. So it might be worth to make an effort of studying

this problem on general abstract Wiener spaces. That is the motivation of this paper. Now

let us describe our main ideas.

It is well known that there exist a sequence (Gn) in E∗ and an orthonormal basis (an) of

H with the property that for all n,m,∫
E

Gn(w) Gm(w) µ(dw) = δn,m, Gn(am) = δn,m.
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The system {(Gn); (an)} is called an orthogonal decomposition of (E, H, µ). Now let us fix

an orthogonal decomposition {(Gn); (an)}. A functional ϕ on E is called a smooth cylinder

functional if it is of the form

ϕ(w) = φ(G1(w), G2(w), · · · , GN (w)), w ∈ E

for some N and φ ∈ C∞
c (RN ) ( the space of infinitely differentiable functions with compact

support in RN ). We define the directional derivative of an, for any smooth cylinder functional

ϕ and for all w ∈ E, as

Danϕ(w) = lim
t→0

ϕ(w + tan)− ϕ(w)

t
.

The smallest closed extension of Dan
is denoted by Dn. As in [7], we can construct the

Ornstein-Uhlenbeck operator L and its semi-group ( Pt ) on L2(E, µ).

We first consider a cylinder map Z : E → E such that for all w ∈ E,

Z(w) = w +K(G1(w), G2(w), · · · , GN (w)),

where K is a smooth map from RN to H. Then it is easy to check that for every smooth

cylinder functional ϕ, ∫
E

ϕ(Z(w))EZ(w) µ(dw) =

∫
E

ϕ(w) µ(dw),

where

EZ(w) = det (Id + ∥DiGj(K(w))∥1≤i,j≤N )

· exp

(
−
∑
n

Gn(w)(an,K(w))H − 1

2
∥K(w)∥2H

)
.

If a map T : E → E can be approximated in µ-measure by a sequence of cylinder maps (Tn)

such that ETn converges to ET in L1(E, µ), then for every smooth cylinder functional ϕ,∫
E

ϕ(T (w))ET (w) µ(dw) =

∫
E

ϕ(w) µ(dw).

In this paper we prove that if for all w ∈ E, T (w) = w+u(w), where u is a measurable map

from E intoH and satisfies some conditions, which is similar to those given by O. Enchev and

D. W. Stroock in [6], then the preceding procedure can be applied to T . In this way we get

the generalization of Girsanov’s theorem on general abstract Wiener spaces, particularly on

the Brownian sheet sample space and the Brownian bridge path space. Finally, we present

the concept of Gaussian operators and describe the Girsanov’s theorem on the Gaussian

measure spaces corresponding to some Gaussian operator.

§1. Some Lemmas

Let (E,H, µ) be an abstract Wiener space, {(Gn); (an)} be an orthogonal decomposition

of (E,H, µ), and (Pt) be the Ornstein-Uhlenbeck semigroup on L2(E,µ).

We first introduce some notions which will be used constantly in the sequel.

Let L2(H,µ) denote the space of H-valued square integrable functions on E with the

norm

∥u∥22 =

∫
E

∥u(w)∥2Hµ(dw), u ∈ L2(H,µ).
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For u ∈ L2(H,µ), define

Ptu =
∑
n

Pt(u, an)Han, t ≥ 0.

From [8], we have

Ptu(w) =

∫
E

u(e−tw +
√

1− e−2tv) µ(dv).

If W 2,k(R1, µ) is the completion of the space of smooth cylinder functional on E with respect

to the norm

∥u∥22,k = E(|u |2) +
∑

i1,i2,··· ,ik

E(|Di1Di2 · · ·Diku|2),

where E(X) =
∫
X(w)µ(dw), we set

W 2,k(H,µ) =
{
u ∈ L2(H,µ)|u =

∑
n

(u, an)Han such that for all n,

(u, an)H ∈ W 2,k(R1, µ) and

∥u∥22,k =
∑
n

∥(u, an)H∥22,k < ∞
}
.

When u ∈ W 2,k(H,µ), we write

Di1Di2 · · ·Diku =
∑
n

Di1Di2 · · ·Dik(u, an)Han.

We are now going to prove some lemmas which will play a fundamental role in this paper.

Lemma 1.1. If u ∈ W 2,1(H,µ) and ϵ > 0, then∑
n

∥DnPϵu∥2H ≤ Pϵ

(∑
n

∥Dnu∥2H
)

a.s.

Proof. We observe that for all n,

DnPϵu = e−ϵPϵDnu.

Since Pϵ is a Markov operator ( see [8] ), we have∑
n

∥DnPϵu∥2H ≤ e−2ϵPϵ

(∑
n

∥Dnu∥2H
)

a.s.,

which proves our claim.

Lemma 1.2. Assume that u ∈ W 2,1(H,µ) and uϵ = Pϵu, ϵ > 0. Let uϵ,N = E(uϵ|ΩN ),

where ΩN is the σ-field generated by {G1, G2, · · · , GN} and E(·|ΩN ) denote the condition

expectation with respect to ΩN . Then

uϵ,N (w) = Kϵ,N (G1(w), G2(w), · · · , GN (w)),

where y 7→ Kϵ,N (y) is a C∞-map from RN to H, and∑
n

∥Dnuϵ,N (w)∥2H ≤ Pϵ

(
E
(∑

n

∥Dnu∥2H
∣∣∣ΩN

))
(w) a.s.

Proof. Straightforward.

Before studying our approximation lemmas, we introduce an operator A(u;w) correspond-

ing to u ∈ W 2,1(H,µ).
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Let u ∈ W 2,1(H,µ), define for a ∈ H,

A(u;w)(a) =
∑
n

(Dnu(w), a)Han.

Because

∥A(u;w)∥2H.S =
∑
m

∥A(u;w)am∥2H

=
∑
n

∑
m

(Dnu(w), am)2H =
∑
n

∥Dnu(w)∥2H ,

where we denote the Hilbert-Schmidt norm of an operator by ∥ · ∥H.S, for almost surely w,

A(u;w) is a Hilbert-Schmidt operator from H to H.

Lemma 1.3.[7] If u ∈ W 2,1(H,µ) and uϵ,N = E(Pϵu|ΩN ), then

E(∥A(u;w)−A(uϵ,N ;w)∥2H.S) −→ 0 as N → +∞ and ϵ ↓ 0.

and if there exists a constant α such that ∥A(u;w)∥2H.S ≤ α2 a.s. , then for all ϵ and N ,

∥A(uϵ,N ;w)∥2H.S ≤ α2 a.s.

Lemma 1.4. Suppose that u ∈ W 2,1(H,µ) and there exists a constant α, 0 < α < 1,

such that
∑
n
∥Dnu(w)∥2H ≤ α2 a.s. . Assume that uϵ,N = E(uϵ|ΩN ) (see Lemma 1.2). Then

u (resp. uϵ,N ) has µ-a.e. modification ũ (resp. ũϵ,N ) with the property that for all w ∈ E

and h ∈ H,

∥ũ(w + h)− ũ(w)∥H ≤ α∥h∥H ,

∥ũϵ,N (w + h)− ũϵ,N (w)∥H ≤ α∥h∥H ,

and we can choose ϵk ↓ 0 and Nk ↑ ∞ as k → ∞ such that for all w ∈ E

lim
k→∞

∥ũϵk,Nk
(w)− ũ(w)∥H = 0.

Proof. We have noticed that

uϵ,N (w) = Kϵ,N (G1(w), G2(w), · · · , GN (w)), a.s.,

where Kϵ,N is a C∞-map from RN to H. Since

Dnuϵ,N (w) =
( ∂

∂yn
Kϵ,N

)
(G1(w), G2(w), · · · , GN (w)) a.s. ,

we know that if µ(Ω) = 1, then the set {(G1(w), G2(w), · · · , GN (w)) |w ∈ Ω} is a dense

subset of RN . Hence for all y ∈ RN ,

N∑
n=1

∥ ∂

∂yn
Kϵ,N (y)∥2H ≤ α2

and for all w ∈ E and h ∈ H

∥uϵ,N (w + h)− uϵ,N (w)∥ ≤ α∥h∥H .

Recall that lim
ϵ↓0,N↑∞

E(∥uϵ,N − u∥2H) = 0. We can choose ϵk ↓ 0 and Nk ↑ ∞ as k → ∞ such

that

uk = uϵk,Nk
(w) → u(w) in H a.s. as k → ∞.

Let H0 be a countable dense subset of H and

Ω = {w| for all h ∈ H0, lim
k→∞

uk(w + h) exists in H}.
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Obviously, Ω is a measurable set of E and µ(Ω) = 1 and if a ∈ H and w ∈ Ω, then we obtain

that for all h ∈ H0

∥uk1(w + a)− uk2(w + a)∥ ≤ 2α∥a− h∥H + ∥uk1(w + h)− uk2(w + h)∥H .

Thus, limuk(w + a) exists in H, which means that for all a ∈ H

Ω+ a = {w + a|w ∈ Ω} ⊆ Ω.

Denote the indicator of set Ω by IΩ and define ũk = ukIΩ and ũ(w) = lim ũk(w) for w ∈ E.

Since (E \Ω) + a ⊆ E \Ω for all a ∈ H, ũ(w + a) = lim
k→∞

ũk(w + a) in H and for all w ∈ E

and a ∈ H,

∥ũ(w + a)− ũ(w)∥H ≤ α∥a∥H ,

∥ũk(w + a)− ũk(w)∥H ≤ α∥a∥H ,

lim
k→∞

∥ũ(w)− ũk(w)∥H = 0.

Lemma 1.5. If u and uk, k = 1, 2, · · · , are measurable maps from E to H with the

following properties

(1) there exists a constant α, 0 < α < 1, such that for h ∈ H and w ∈ E and all k,

∥u(w + h)− u(w)∥H ≤ α∥h∥H , ∥uk(w + h)− uk(w)∥ ≤ α∥h∥H .

(2) for every w ∈ E, lim
k→∞

∥uk(w)− u(w)∥H = 0.

Let T (w) = w + u(w) and Tk(w) = w + uk(w) for w ∈ E. Then T (E) = Tk(E) = E, and

T−1 is also a measurable map. If wk + uk(wk) = w + u(w), we have

lim
k→∞

∥wk − w∥H = 0.

Proof. For w ∈ E, we define a metric space X = {w + h|h ∈ H} with the metric

ρ(x, y) = ∥x − y∥H for x, y ∈ X. It is clear that X is a complete metric space. Let

K(x) = w − u(x) for x ∈ X. Then

ρ(K(x),K(y)) ≤ α∥x− y∥H = αρ(x, y).

Thus x = limKn(w) is the fixed point of K, this fact ensures that T (E) = E and T−1 is

also a measurable map from E to E. Similarly, the same conclusion holds for Tk. If w ∈ E

and wk + uk(wk) = w + u(w), we get

∥wk − w∥H ≤ ∥u(w)− uk(w)∥H + ∥uk(w)− uk(wk)∥H
≤ ∥u(w)− uk(w)∥H + α∥w − wk∥H .

Consequently,

∥wk − w∥H ≤ 1

1− α
∥u(w)− uk(w)∥H −→ 0 as k → ∞.

Corollary 1.1. Let λ > 0 and Aλ,k = {w : ∥uk(w)∥ < λ} and Aλ = {w : ∥u(w)∥H <

λ}. Assume that T (w) = w + u(w) and Tk(w) = w + uk(w) for w ∈ E. Then

lim
k→∞

Tk(Aλ,k) ⊇ T (Aλ).

Proof. Suppose that w ∈ T (Aλ). Then w = w0+u(w0), ∥u(w0)∥H < λ. If wk+uk(wk) =

w0 + u(w0), by Lemma 1.5, lim
k→∞

∥wk − w0∥H = 0. Thus

∥uk(wk)∥H ≤ ∥uk(wk)− uk(w0)∥H + ∥uk(w0)− u(w0)∥H + ∥u(w0)∥H
≤ α∥wk − w0∥H + ∥uk(w0)− u(w0)∥H + ∥u(w0)∥H ,
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so that there exists an integerK such that for k ≥ K, ∥uk(wk)∥H < λ, i.e, w ∈
∩

k≥K

Tk(Aλ,k).

Lemma 1.6. Suppose that u ∈ W 2,1(H,µ) and uϵ = Pϵu with ϵ > 0. Let K be a finite

subset of natural numbers N. Then

E
(∣∣∣ ∑

n∈K

(D∗
nuϵ, an)H

∣∣∣2) =
∑
n∈K

E((u, an)
2
H)

+
∑

n,m∈K

E((Dmu, an)H(Dnu, am)H).

Proof. See [7].

Corollary 1.2.
∑
n
(D∗

nuϵ, an)H converges to δ(uϵ) in L2(E, µ) and δ(uϵ) converges to

δ(u) in L2(E,µ) as ϵ ↓ 0.

Remark 1.1. δ(u) is called the Skorohod integral of u on (E,H, µ).

§2. Main Theorem

Theorem 2.1. Suppose that w 7→ u(w) is a measurable map from E to H and u ∈
W 2,1(H,µ) and there exists a constant α, 0 < α < 1, such that∑

n

∥Dnu(w)∥2H ≤ α2 almost surely.

Let T (w) = w + u(w) for w ∈ E. Then for every bounded measurable function ϕ on E, we

have ∫
ϕ(T (w))ET (w)µ(dw) =

∫
ϕ(w)µ(dw)

where

ET (w) = exp(−δ(u)− 1

2
∥u(w)∥2H − F(u;w)),

F(u;w) = Trace(A(u;w)2B(u;w)),

B(u;w) =
∑
n≥2

(−1)n−2

n
A(u;w)n−2.

Here δ(u) is the Skorohod integral of u on (E,H, µ) (see Lemma 1.6) and A(u;w) is a linear

operator from H to H defined as A(u;w)(a) =
∑
n
(Dnu(w), a)Han for all a ∈ H (see Lemma

1.3).

Proof. By Lemma 1.4, we may assume that ∥u(w + h) − u(w)∥H ≤ α∥h∥H for w ∈ E

and h ∈ H, and suppose that there exists a sequence (uk), uk = ũϵk,Nk
for k ∈ N such that

∥uk(w + h) − uk(w)∥H ≤ α∥h∥H for w ∈ E and h ∈ H. Moreover, we can assume that for

every w ∈ E,

lim
k→∞

∥u(w)− uk(w)∥H = 0,∑
n

∥Dnuk(w)∥2H = ∥A(uk;w)∥2H.S ≤ α2 a.s. for all k,

∥A(u;w)−A(uk;w)∥H.S → 0 a.s. as k → ∞.

Write Tk(w) = w+uk(w) for w ∈ E. It is easily seen that if ϕ is a smooth cylinder functional

which is of the form

ϕ(w) = φ(G1(w), G2(w), · · · , GN (w)),
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where φ ∈ C∞
c (RN ), then we deduce that∫

ϕ(Tk(w))E
Tk(w)µ(dw) =

∫
ϕ(w)µ(dw),

where

ETk(w) = exp
(
−
∑
n

Gn(w)(uk(w), an)H − 1

2
∥uk(w)∥2H

)
× det(Id + ∥Di(aj , uk(w))H∥1≤i,j≤Nk

).

Here we denote the identity by Id and we have used the fact that

Gj(uk(w)) = (aj , uk(w))H and Djuk = 0 a.s. for j > Nk.

Let P be the orthogonal projection from H to the subspace generated by {a1, a2, · · · , aNk
}.

Thus the matrix ∥Di(aj , uk(w))H∥1≤i,j≤Nk
is corresponding to the operator A(uk;w)P from

H to H. Because ∥A(uk;w)∥H.S ≤ α a.s., we know that the series
∑
n

(−1)n−1

n
(A(uk;w)P )n

converges almost surely to log(Id + A(uk;w)P ) with respect to the Hilbert-Schmidt norm.

Thus, we deduce that

det(Id +A(uk;w)) = exp
(∑

n

(Dnuk, an)H

)
exp

(∑
n≥2

(−1)n−1

n
Trace((A(uk;w)P )n)

)
.

Observe that

Trace((A(uk;w)P )n) = Trace(PA(uk;w)
n) = Trace(A(uk;w)

n).

Consequently

det(Id + ∥Di(aj , uk(w)∥1≤i,j≤Nk
) = exp

(∑
n

(Dnuk(w), an)H

)
exp(−F(uk;w)) a.s.

It follows that

ETk(w) = exp
(
− δ(uk)−

1

2
∥uk(w)∥2H − F(uk;w)

)
a.s.

since

|Trace(A(uk;w)
2B(uk;w))− Trace(A(u;w)2B(u;w))|

≤ 2∥A(uk;w)−A(u;w)∥H.S∥B(uk;w)∥H.S

+ ∥B(uk;w)−B(u;w)∥H.S∥A(u;w)∥2H.S

and

∥B(uk;w)∥H.S ≤
∑
n≥2

∥A(uk;w)∥n−2
H.S ≤ 1

1− α
a.s. ,

lim
k→∞

∥B(uk;w)−B(u;w)∥H.S = lim
k→∞

∥A(uk;w)−A(u;w)∥H.S = 0 a.s. .

Summarizing, we have obtained that ETk → ET in µ-measure as k → ∞.

The crucial point of our proof is to show that ETk converges to ET in L1(E,µ) as k → ∞.

Instead of (uk), we consider (σuk), where constant σ > 1 and σα < 1. Obviously, for all k,∫
exp

(
− σδ(uk)−

σ2

2
∥uk(w)∥2H − F(σuk;w)

)
µ(dw) = 1.

Let λ > 0 and Aλ,k = {w : ∥uk(w)∥H < λ}. Then for all k ∈ N,∫
IAλ,k

exp
(
− σδ(uk)

)
µ(dw) ≤ exp

(σ2λ2

2
+

σ2α2

1− σα

)
.
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Consequently, ∫
(IAλ,k

· ETk)σµ(dw) ≤ exp
(σ2λ2

2
+

σ2α2

1− σα
+

σα2

1− α

)
.

We know that for any δ > 0 there exists a measurable subset Ω of E such that µ(E \Ω) < δ

and lim
k→∞

∫
Ω

∣∣ETk − ET
∣∣µ(dw) = 0. Then we yield that∫

IAλ,k
ETkµ(dw) ≤ cµ(E \ Ω)

σ−1
σ +

∫
Ω

|ETk − ET | µ(dw) +
∫
Ω

ETµ(dw),

where

c = exp
(σλ2

2
+

σα2

1− σα
+

σα2

1− σα

)
.

Since for all k ∫
IAλ,k

ETkµ(dw) =

∫
ITk(Aλ,k)µ(dw),

we deduce, by Fatou’s Lemma, that for any ϵ > 0,

ϵ+

∫
E

ETµ(dw) ≥ lim
k→∞

∫
ITk(Aλ,k)µ(dw) ≥

∫
lim
k→∞

ITk(Aλ,k)µ(dw).

By Corollary 1.1,

lim
k→∞

ITk(Aλ,k) ≥ IT (Aλ),

thus for any λ > 0, we have∫
ETµ(dw) ≥ µ(T (Aλ)) −→ 1 as λ → ∞,

which means that
∫
ETµ(dw) ≥ 1. On the other hand,

∫
ETµ(dw) ≤ 1, so we conclude that∫

ETµ(dw) = 1. Now we are ready to prove that ETk converges to ET in L1(E,µ). Actually,∫
|ETk − E| µ(dw) = 2− 2

∫
ETk ∧ ETµ(dw) −→ 0 as k → ∞,

by the dominated theorem.

We can now claim that for any bounded measurable function ϕ we have∫
ϕ(T (w))ET (w)µ(dw) =

∫
ϕ(w)µ(dw).

Theorem 2.2. Suppose that w 7→ u(w) is a measurable map from E to H and u ∈
W 2,1(H,µ) and there exists a constant α, 0 < α < 1, such that for every h ∈ H

∥u(w + h)− u(w)∥H ≤ α∥h∥H a.s.,

and

E
(
exp

( 108

(1− α)2

(∑
n

∥Dnu∥2H
)))

< ∞.

Then the conclussion of Theorem 2.1 holds.

Proof. Under the assumptions

|F(uk;w)| ≤
∥A(u;w)∥2H.S.

(1− α)
,

and we can find constants σ and σ1, 1 < σ1 < σ < 1/α, such that∫
Ak,λ

exp{−σδ(uk)} exp
{
− σ2

1− σα
∥A(uk, w)∥2H.S.

}
µ(dw) ≤ e

σ2λ2

2 ,



No.1 Zhang, Y. N. GIRSANOV’S THEOREM ON ABSTRACT WIENER SPACES 43

and ∫
Ak,λ

(ETk)σ1µ(dw) ≤ c(λ, α, σ.σ1) for all k,

where c(λ, α, σ.σ1) is a constant indepent of k. Thus we may now complete the proof easily.

§3. Gaussian Operators and Girsanov’s Theorem

In this section we introduce the concept of Gaussian operators and give the Girsanov’s

theorem on Gaussian measure spaces related to some Gaussian operator.

Let Rd be the Euclidean space and T a bounded closed subset of Rd and m(dx) the

Lebesque measure on Rd and L2(T ) the space of the integrable functions on T with the

usual inner product denoted by (·, ·)2.
Definition 3.1. A densely defined linear closed operator L on L2(T ) is called a Gaussian

operator on T if there exists a strictly positive constant c such that for all u ∈ H(L)

∥Lu∥2 ≥ c∥u∥2,

where H(L) is the domain of L and ∥ · ∥2 is the norm of L2(T ).

In that case if we define an inner product on H(L) such that [u, v] = (Lu,Lv)2 for

u, v ∈ H(L), then H(L) becomes a Hilbert space, and we can find a sequence (an) ⊆
H(L) ∩ C(T ) (the space of continuous functions on T with the maximum norm) such that

(an) is an orthonormal basis of H(L) and
∑

anen(w) converges a.s. in C(T ), where (en(w))

is a sequence of i.i.d. Gaussian random variables with mean 0 and variance 1 on some

probability space (Ω,F, P ).

We set

X(w) =
∑
n

anen(w), µ(L) = P ◦X−1;

hence we get a Gaussian measure space ( C(T ),B(C(T )), µ(L) ), and the Gaussian random

field corresponding to L, W (t, w) = w(t) for t ∈ T and w ∈ C(T ), and µ(L), the Gaussian

measure of L.

In this section we will state without proofs some facts about Gaussian operators.

Proposition 3.1. Let L be a Gaussian operator on T and µ(L) the Gaussian measure

of L. Then H(L) ⊆ C(T ) and (C(T ),H(L), µ(L)) becomes an abstract Wiener space in the

sense of L. Gross.

Now let us turn to a comparison theorem about Gaussian operators.

Theorem 3.1. Suppose that L is a Gaussian operator on T and L1 be another densely

defined linear operator on L2(T ) such that the domain of L1, H(L1), is contained in H(L)

and for all u ∈ H(L1)

∥L1u∥2 ≥ ∥Lu∥2.

Then L1 is also a Gaussian operator on T .

Remark 3.1. If T = [0, 1] and L =
d

dt
and

H(L) = {u|u(0) = 0 and u is absolutely continuous on T such that u′ ∈ L2(T )},

then L is a Gaussian operator on T and the stochastic process corresponding to L is the

Wiener process on T .
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When T = [0, 1]d ⊂ Rd and L0 =
∂d

∂t1 · · · ∂td
and

H(L0) = {u|u(t) = 0 if t = (t1, · · · , td) ∈ T

such that t1 · · · td = 0 and u ∈ W 2.d(T )},

where W 2,d(T ) is the Sobolev space, then the smallest closed extension L of L0 is a Gaussian

operator and the Gaussian field corresponding to L is the Brownian Sheet on T with the

covariance function

Γ(s, t) = (t1 ∧ s1)(t2 ∧ s2) · · · (td ∧ sd)for t = (ti), s = (si) in T.

Corollary 3.1. Let T = [0, 1], and L1 =
d

dt
and

H(L1) = {u|u is absolutely continuous on T such that

u′ ∈ L2(T ) and u(0) = u(1) = 0}.
Then L1 is a Gaussian operator on T and the Gaussian process corresponding to L1 is the

Brownian bridge on T .

Corollary 3.2. Suppose that U is a bounded open subset of R2 with C2-class boundary

∂U , and ai,j(x), bj(x) ∈ C2(U) such that∑
1≤i,j≤2

ai,j(x)titj ≥ θ(t21 + t22),

where θ is a strictly positive constant. Set

L0u(x) =
∑

1≤i,j≤2

∂

∂xi

(
ai,j(x)

∂

∂xj
u(x)

)
+

2∑
j=1

bj(x)
∂

∂xj
u(x),

and

H(L0) = {u : u ∈ W 2,2(U) and u|∂U = 0}.

Then the smallest closed extension of L0 is a Gaussian operator on U .

Proposition 3.2. Let L be a Gaussian operator on T . Then there exists a function

G(t, s), t, s ∈ T , such that for each t ∈ T , G(t, ·) ∈ L2(T ) and for each φ ∈ R(L) (the range

of L), we have ∫
G(t, s)φ(s)ds ∈ H(L)

and

L
(∫

G(·, s)φ(s)ds
)
(t) = φ(t).

This function G is called the Green function of L.

Definition 3.2. If L is a Gaussian operator on T and G is its Green function, A map

T from C(T ) to C(T ) is called a drift map if it is of the form

T (w)(t) = w(t) +

∫
G(t, s)g(s, w)ds, w ∈ C(T ),

where g(s, w) ∈ L2(T × C(T ),m× µ(L)) such that for each w, g(·, w) ∈ R(L).

Remark 3.2. When T = [0, 1]d ⊂ Rd and L =
∂d

∂t1 · · · ∂td
, if L is a Gaussian operator
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with suitable domain, then the drift map is of the form

T (w)(t) = w(t) +

∫ t1

0

· · ·
∫ td

0

g(s, w)ds,

where t = (t1, · · · , td).
When L is the second order elliptic differential operator mentioned in Corollary 3.2, if G

is the Green function of L with the Dirichlet boundary condition, then the drift map is as

T (w)(t) = w(t) +

∫∫
T

G(t, s)g(s, w)ds for w ∈ C(T ).

Definition 3.3. Suppose g(s, w) ∈ L2(T ×C(T ),m×µ(L)) and for each s ∈ T , gs(w) =

g(s, w) ∈ W 2,1(R, µ(L)) and ∑
n

E
(∫

|Dngs(w)|2ds
)
< ∞.

By Lemma 1.6, we know that
∑
n

∫
T
D∗

nPϵgs(w)Lan(s) ds converges to δ(g) as ϵ → 0 in

L2(C(T ), µ(L)). δ(g) is called the Skorohod integral of g.

Theorem 3.2. Suppose that L is a Gaussian operator on T and G is its Green function.

Suppose that g is measurable on (T×C(T ),B(T )×B(C(T ))) such that g ∈ L2(T×C(T ),m×
µ(L)) and for each w ∈ C(T ), g(·, w) ∈ R(L) and for every s ∈ T , gs(w) = g(s, w) ∈
W 2,1(R, µ(L)). Furthermore, we assume that there exists a constant α, 0 < α < 1, such that∑

n

∫
|Dng(s, w)|2ds ≤ α2 a.s.

Let

T (w)(t) = w(t) +

∫
T

G(t, s)g(s, w) ds, w ∈ C(T ).

Then, for all bounded measurable function ϕ, we have∫
ϕ(T (w))ET (w)µ(dw) =

∫
ϕ(w)µ(dw),

where

ET (w) = exp

(
−δ(g)− 1

2

∫
T

|g(s, w)|2ds− Trace(A(w)2B(w))

)
.

Here A(w), w ∈ C(T ), is a linear operator from R(L) to R(L) which is

A(w)(φ)(t) =

∫
K(t, s)φ(s) ds, φ ∈ R(L),

K(t, s) =
∑
n

Dng(s, w)Lan(t),

B(w) =
∑
n≥2

(−A(w))n−2

n
.

Proof. By Proposition 3.2, we have

(u(w), an)H(L) =

∫
g(s, w)Lan(s)ds,

where u(w) =
∫
G(t, s)gsds. Hence u : C(T ) → H(L) is measurable and it is easy to check

that ∑
n

∥Dnu(w)∥2H(L) =
∑
n

∫
|Dng(s, w)|2ds ≤ α2 a.s.
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Now we deduce this theorem by Theorem 2.1 immediately.

Remark 3.3. If T = [0, 1] and L =
d

dt
and

H(L) = {u|u(0) = 0, u is an absolutely continuous

path from T to Rd and u′ ∈ L2(T )},
then we get the result due to O. Enchev and D. W. Stroock (see [6]).
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