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Abstract

Exponential trichotomy theory is developed and the Fredholm Alternative Lemma is proved

for the system with exponential trichotomies. An application of these theories is also given
to obtain the persistence condition for heteroclinic orbits connecting nonhyperbolic equilibria,
which extends the corresponding result of [11].
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In this paper, we develop the theory of exponential trichotomies and show the orthogo-

nality condition associated with a system having exponential trichotomies.

Exponential trichotomy theory is an essential foundation to study the persistence and

bifurcation problems of heteroclinic orbits connecting hyperbolic or nonhyperbolic equilibria

(cf. [1-11]). But, the theory developed up to now is far from perfect to meet the needs for

solving the problems just mentioned. We will first confine ourselves to the establishment

of a theory of bounded solutions for the adjoint equation which is a key point to solve the

homoclinic and heteroclinic bifurcation problems (cf. [10, 11]).

Let us consider a linear system in Rn

ẋ = A(t)x+ h(t), (∗)

where A(t) is a continuous and uniformly bounded matrix-valued function.

When A(t) and h(t) are T -periodic, the orthogonality condition is also known as the

Fredholm Alternative Lemma which plays an important part in the theory of linear periodic

systems. Palmer[5] extended this lemma to the case where system (∗) has exponential

dichotomies on both half lines. Hale and Lin[3, Lemma 4.5] made a further extension to

the functional differential equations with so-called shifted exponential dichotomies on R+

and R−. This orthogonality condition has been extensively used to show the existence

of the bounded solutions, particularly, the existence of heteroclinic orbits connecting two

hyperbolic saddles (cf. [1,5,6,8,9]). In this paper, we prove the lemma in a still further
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generalized version which can be applied to show the existence of the bounded solutions in

case that the associated system (∗) has exponential trichotomies both inR+ andR−. Notice

that a related result (somewhat similar to, but not quite the same as our Theorem 2.1) has

been given in [2] without proof. As compared with it, ours is much refined and hence more

adaptable to the exponential trichotomy theory. Our proof follows essentially the idea of

[5], which is completely different from that of [3], and, therefore, is rather elementary.

Using this generalized orthogonality condition and the theory of bounded solutions for

the adjoint equation developed in this paper, we can easily extend the work of [6-9] (all

only concerned with hyperbolic equilibria) to the case that is associated with nonhyperbolic

equilibria. Because of the limited space, we only give one of the possible applications to get

the persistence condition for heteroclinic orbits joining nonhyperbolic equilibria, and leave

the further study to the forthcoming papers.

§1. Exponential Trichotomy and
Bounded Solutions of the Adjoint System

In this section, we first introduce the definition of the exponential trichotomy with the

version of paper [4].

Let X(t, s) be the solution map (i.e., the fundamental solution matrix with X(s, s) = I)

for the linear homogeneous equation associated with system (∗).
Definition 1.1. We say that system (∗) , or X(t,s), has an exponential trichotomy in a

time interval J if there exist projections Ps(t), Pc(t) and Pu(t) = I−Ps(t)−Pc(t) satisfying

X(t, s)Pv(s) = Pv(t)X(t, s), v = s, c, u,

for t ≥ s in J , and there are constants K ≥ 1 and α > σ > 0 such that

|X(t, s)Ps(s)| ≤ K e−α(t−s), t ≥ s in J,

|X(t, s)Pc(s)| ≤ K eσ|t−s|, t, s in J,

|X(s, t)Pu(t)| ≤ K e−α(t−s), t ≥ s in J.

The constants α and σ are called the exponents of the trichotomy, and the projection

spaces ℜPs(t), ℜPc(t), ℜPu(t) are called the stable space, centre space and unstable space,

respectively.

We say that system (∗) has an exponential dichotomy in J if it has an exponential

trichotomy with Pc(t) = 0 and Ps(t) + Pu(t) = I.

Now we consider the adjoint system of the linear homogeneous equation associated with

system (∗)

ẋ = −A∗(t)x, (1.1)

where the sign ∗ denotes the transposition.

It is well known that Y (t, s) = X∗−1(t, s) = X∗(s, t) is the solution map of system (1.1).

It turns out that, if system (∗) has an exponential trichotomy in J with constants K, α, σ,

and projections Ps(t), Pc(t) and Pu(t), then the adjoint system (1.1) also has an exponential

trichotomy in J with the same constants, and the corresponding projections P ∗
u (t), P

∗
c (t)
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and P ∗
s (t). More precisely, we have

Y (t, s)P ∗
v (s) = P ∗

v (t)Y (t, s), t ≥ s in J, v = s, c, u,

|Y (t, s)P ∗
u (s)| ≤ K e−α(t−s), t ≥ s in J,

|Y (t, s)P ∗
c (s)| ≤ K eσ|t−s|, t, s in J,

|Y (s, t)P ∗
s (t)| ≤ K e−α(t−s), t ≥ s in J.

We now consider the number of the linearly independent bounded solutions of the adjoint

system (1.1) and the space spanned by these solutions. For this, we need the following

lemma which can be verified quite easily.

Lemma 1.1. Suppose that P is a projection operator in a Hilbert space H. Then,

ℜP = (ℜ(I − P ∗))⊥. Here, the sign ⊥ denotes the orthogonal complement.

Set

E(b, J) =
{
x ∈ Co : sup

t∈J
{|x(t)|eb|t|} <∞

}
,

E(b, r, J) = {x ∈ Cr : x, · · · , x(r) ∈ E(b, J)}.

Then E(b, J) and E(b, r, J) are Banach spaces with norms

∥x∥o = sup
t∈J

{|x(t)|eb|t|} and ∥x∥r =
r∑

k=0

∥x(k)∥o,

respectively. And denote

dimℜP i
s(0) = si, dimℜP i

c(0) = ci, dimℜP i
u(0) = ui,

for i = +,−,

d = n+ c− c+ − s+ − c− − u−,

d1 = d+ c−, d2 = d+ s+ + c−,

d3 = d+ c+ + c−, d4 = d+ s+ + u−,

where the number c will be assigned different value in different cases.

Theorem 1.1. Suppose that (∗) has exponential trichotomies both in R+ and R− with

constants Ki, αi, σi and projections P i
s(t), P

i
c(t), P

i
u(t), respectively, for i = +,−. Let

α = min{α+, α−}, σ = max{σ+, σ−}. Then, the following five conclusions are valid.

(i) If dim(ℜ(P+
s (0) + P+

c (0)) ∩ ℜ(P−
c (0) + P−

u (0))) = c, then

dim(ℜP+∗
u (0) ∩ ℜP−∗

s (0)) = d, (1.2)

that is, (1.1) has exactly d linearly independent bounded solutions ψ1(t), · · · , ψd(t) in

E(α, 1,R).

(ii) If dim(ℜ(P+
s (0) + P+

c (0)) ∩ ℜP−
u (0)) = c, then

dim(ℜP+∗
u (0) ∩ ℜ(P−∗

s (0) + P−∗
c (0))) = d1, (1.3)

that is, (1.1) has exactly d1 linearly independent bounded solutions ψ1(t), · · · , ψd1(t) in

E(α, 1,R+) ∩ E(−σ, 1,R−).

(iii) If dim(ℜP+
c (0) ∩ ℜP−

u (0)) = c, then

dim(ℜ(P+∗
u (0) + P+∗

s (0)) ∩ ℜ(P−∗
s (0) + P−∗

c (0))) = d2, (1.4)
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that is, (1.1) has exactly d2 linearly independent bounded solutions ψ1(t), · · · , ψd2(t) in

E(−α, 1,R+) ∩ E(−σ, 1,R−).

(iv) If dim(ℜP+
s (0) ∩ ℜP−

u (0)) = c, then

dim(ℜ(P+∗
u (0) + P+∗

c (0)) ∩ ℜ(P−∗
s (0) + P−∗

c (0))) = d3, (1.5)

that is, (1.1) has exactly d3 linearly independent bounded solutions ψ1(t), · · · , ψd3(t) in

E(−σ, 1,R+) ∩ E(−σ, 1,R−).

(v) If dim(ℜP+
c (0) ∩ ℜP−

c (0)) = c, then

dim(ℜ(P+∗
u (0) + P+∗

s (0)) ∩ ℜ(P−∗
s (0) + P−∗

u (0))) = d4, (1.6)

that is, (1.1) has exactly d4 linearly independent bounded solutions ψ1(t), · · · , ψd4
(t) in

E(−α, 1,R).

Proof. We only show the conclusion (i). The others can be proved in a similar way. By

the fact

dim(ℜ(P+
s (0) + P+

c (0))⊕ℜ(P−
c (0) + P−

u (0))) = s+ + c+ + c− + u− − c,

we have

codim (ℜ(P+
s (0) + P+

c (0))⊕ℜ(P−
c (0) + P−

u (0))) = d.

Then, it follows from Lemma 1.1 that

dim(ℜP+∗
u (0) ∩ ℜP−∗

s (0)

= dim((ℜ(I − P+
u (0)))⊥ ∩ (ℜ(I − P−

s (0)))⊥)

= dim((ℜ(P+
s (0) + P+

c (0)))⊥ ∩ (ℜ(P−
c (0) + P−

u (0)))⊥)

= codim (ℜ(P+
s (0) + P+

c (0))⊕ℜ(P−
c (0) + P−

u (0))) = d.

Therefore, system (1.1) has exactly d linearly independent bounded solutions ψ1(t), · · · ,
ψd(t) in E(α, 1,R).

If we notice that ℜP i∗
v (t) is a linear subspace for i = +,− and v = s, c, u, and that

ℜ(P +Q) = ℜP ⊕ℜQ

for any two projections satisfying PQ = 0, then the following four propositions can be easily

deduced from Lemma 1.1 and Theorem 1.1.

Theorem 1.2. Suppose that the conditions contained in Theorem 1.1 are valid, and

dim(ℜ(P+
s (0) + P+

c (0)) ∩ ℜ(P−
c (0) + P−

u (0))) = c,

dim(ℜ(P+
s (0) + P+

c (0)) ∩ ℜP−
u (0)) = c.

Then, system (1.1) has exactly d linearly independent bounded solutions ψ1(t), · · · , ψd(t) in

E(α, 1,R), and exactly c− linearly independent bounded solutions ψd+1(t), · · · , ψd1(t) in

E(α, 1,R+) ∩ (E(−σ, 1,R−)− E(α, 1,R−)).

Moreover, we can choose ψ1(t), · · · , ψd1
(t) such that

span {ψ1(t), · · · , ψd1(t)} ⊂ ℜP+∗
u (t) = (ℜ(P+

s (t) + P+
c (t)))⊥ for t ≥ 0,

span {ψ1(t), · · · , ψd(t)} ⊂ ℜP−∗
s (t) = (ℜ(P−

c (t) + P−
u (t)))⊥ for t ≤ 0,

span {ψd+1(t), · · · , ψd1(t)} ⊂ ℜP−∗
c (t) = (ℜ(P−

s (t) + P−
u (t)))⊥ for t ≤ 0.
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Theorem 1.3. Suppose that the conditions contained in Theorem 1.1 are valid, and

dim(ℜ(P+
s (0) + P+

c (0)) ∩ ℜP−
u (0)) = c,

dim(ℜP+
c (0) ∩ ℜP−

u (0)) = c.

Then, system (1.1) has exactly d1 linearly independent bounded solutions ψ1(t), · · · , ψd1(t) in

E(α, 1,R+)∩E(−σ, 1,R−), and exactly s+ linearly independent bounded solutions ψd1+1(t),

· · · , ψd2(t) in

(E(−α, 1,R+)− E(α, 1,R+)) ∩ (E(−σ, 1,R−).

Moreover, we can choose ψ1(t), · · · , ψd2(t) such that

span {ψ1(t), · · · , ψd1(t)} ⊂ ℜP+∗
u (t) = (ℜ(P+

s (t) + P+
c (t)))⊥ for t ≥ 0,

span {ψd1+1(t), · · · , ψd2(t)} ⊂ ℜP+∗
s (t) = (ℜ(P+

c (t) + P+
u (t)))⊥ for t ≥ 0,

span {ψ1(t), · · · , ψd2(t)} ⊂ ℜ(P−∗
s (t) + P−∗

c (t)) = (ℜP−
u (t))⊥ for t ≤ 0.

Theorem 1.4. Suppose that the conditions contained in Theorem 1.1 are valid, and

dim(ℜ(P+
s (0) + P+

c (0)) ∩ ℜP−
u (0)) = c,

dim(ℜP+
s (0) ∩ ℜP−

u (0)) = c.

Then, system (1.1) has exactly d1 linearly independent bounded solutions ψ1(t), · · · , ψd1(t) in

E(α, 1,R+)∩E(−σ, 1,R−), and exactly c+ linearly independent bounded solutions ψd1+1(t),

· · · , ψd3(t) in

(E(−σ, 1,R+)− E(α, 1,R+)) ∩ (E(−σ, 1,R−).

Moreover, we can choose ψ1(t), · · · , ψd3(t) such that

span {ψ1(t), · · · , ψd1(t)} ⊂ ℜP+∗
u (t) = (ℜ(P+

s (t) + P+
c (t)))⊥ for t ≥ 0,

span {ψd1+1(t), · · · , ψd3(t)} ⊂ ℜP+∗
c (t) = (ℜ(P+

s (t) + P+
u (t)))⊥ for t ≥ 0,

span {ψ1(t), · · · , ψd3(t)} ⊂ ℜ(P−∗
s (t) + P−∗

c (t)) = (ℜP−
u (t))⊥ for t ≤ 0.

Theorem 1.5. Suppose that the conditions contained in Theorem 1.1 are valid, and

dim(ℜ(P+
s (0) + P+

c (0)) ∩ ℜ(P−
c (0) + P−

u (0))) = c,

dim(ℜP+
c (0) ∩ ℜP−

c (0)) = c.

Then, system (1.1) has exactly d linearly independent bounded solutions ψ1(t), · · · , ψd(t) in

E(α, 1,R), and exactly s+ + u− linearly independent bounded solutions ψd+1(t), · · · , ψd4(t)

in

E(−α, 1,R)− E(α, 1,R).

Moreover, we can choose ψ1(t), · · · , ψd4(t) such that

span {ψ1(t), · · · , ψd(t)} ⊂ ℜP+∗
u (t) = (ℜ(P+

s (t) + P+
c (t)))⊥ for t ≥ 0,

span {ψ1(t), · · · , ψd(t)} ⊂ ℜP−∗
s (t) = (ℜ(P−

c (t) + P−
u (t)))⊥ for t ≤ 0,

span {ψd+1(t), · · · , ψd4(t)} ⊂ ℜP+∗
s (t) = (ℜ(P+

c (t) + P+
u (t)))⊥ for t ≥ 0,

span {ψd+1(t), · · · , ψd4(t)} ⊂ ℜP−∗
u (t) = (ℜ(P−

s (t) + P−
c (t)))⊥ for t ≤ 0.
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§2. Orthogonality Conditions

We now turn our attention to the orthogonality condition associated with system (∗).
Let L be the linear operator defined by

(Lx)(t) = ẋ(t)−A(t)x(t)

for x ∈ C1(R,Rn), and L1, L2, L3 be the restrictions of L in E(−σ, 1,R), E(−σ, 1,R+) ∩
E(α, 1,R−), E(α, 1,R), respectively. Denote

Eo
1 = E(−σ,R),

Eo
2 = E(−σ,R+) ∩ E(α,R),

Eo
3 = E(α,R),

E1 = E(α, 1,R),

E2 = E(α, 1,R+) ∩ E(−σ, 1,R),

E3 = E(−σ, 1,R),

I1 = dimℜ(P+
s (t) + P+

c (t)) + dimℜ(P−
c (t) + P−

u (t))− n,

I2 = dimℜ(P+
s (t) + P+

c (t)) + dimℜP−
u (t)− n,

I3 = dimℜP+
s (t) + dimℜP−

u (t)− n.

The linear operator L is referred to as a Fredholm operator if ℜ(L) is closed and has finite

codimension. The index of L as a Fredholm operator is defined as dimN (L)− codim ℜ(L).
Theorem 2.1. Suppose that the hypotheses of Theorem 1.1 hold. Then, h ∈ ℜ(Li) if

and only if h ∈ Eo
i and ∫ ∞

−∞
ψ∗(t)h(t) dt = 0 (2.1)

for all bounded solutions ψ(t) of (1.1) in Ei. Moreover, Li is a Fredholm operator with index

Ii, i = 1, 2, 3.

Proof. We only consider the case i = 1. The proof of the other cases is similar. The

proof given below is essentially an analogue and generalization of that given by Palmer in

[5] for the case that has an exponential dichotomy.

Assume that h ∈ ℜ(L1). Then there exists an x ∈ E(−σ, 1,R) satisfying

h(t) = ẋ(t)−A(t)x(t).

So, h ∈ E(−σ,R). Now if ψ(t) is a bounded solution of (1.1) in E(α, 1,R), we have∫ ∞

−∞
ψ∗(t)h(t) dt =

∫ ∞

−∞
(ψ∗(t)ẋ(t)− ψ∗(t)A(t)x(t)) dt

=

∫ ∞

−∞
(ψ∗(t)ẋ(t) + ψ̇∗(t)x(t)) dt

= ψ∗(t)x(t)|∞−∞ = 0.

The last equality holds just because ψ∗(t)x(t) → 0 exponentially as |t| → ∞, owing to the

fact that ψ(t)eα|t| and x(t)e−σ|t| are bounded. Thus, we have shown that if h ∈ ℜ(L1), then

the orthogonality condition (2.1) holds for all bounded solutions ψ(t) of the adjoint system

(1.1) in E1 = E(α, 1,R).

Conversely, suppose that h ∈ E(−σ,R) and that (2.1) is valid for all bounded solutions

ψ(t) of (1.1) in E(α, 1,R). It should be clear that, for each ψ(t) ∈ E(α, 1,R), there exists



No.1 Zhu, D. M. & Xu, M. EXPONENTIAL TRICHOTOMY, ORTHOGONALITY CONDITION 61

a vector η ∈ Rn such that

ψ(t) =

{
Y (t, 0)P+∗

u (0)η for t ≥ 0,

Y (t, 0)P−∗
s (0)η for t ≤ 0.

(2.2)

This means P+∗
u (0)η = P−∗

s (0)η. Equivalently, we have

(I − P+∗
s (0)− P+∗

c (0))η = (I − P−∗
u (0)− P−∗

c (0))η,

that is,

(P+∗
s (0) + P+∗

c (0))η = (P−∗
u (0) + P−∗

c (0))η.

Then, we obtain

η∗(P+
s (0) + P+

c (0)− P−
u (0)− P−

c (0)) = 0. (2.3)

Substituting (2.2) into (2.1) and using Y (t, s) = X∗(s, t), we get

η∗v = 0, (2.4)

where

v =

∫ ∞

0

P+
u (0)X(0, t)h(t) dt +

∫ 0

−∞
P−
s (0)X(0, t)h(t) dt. (2.5)

By (2.3) and (2.4), it follows that there exists a vector ξ ∈ Rn satisfying

(P+
s (0) + P+

c (0)− P−
u (0)− P−

c (0))ξ = v.

Making use of (2.5) and P i
j (0)X(0, t) = X(0, t)P i

j (t) for i = +,−; j = s, u, we have

(P+
s (0) + P+

c (0))ξ −
∫ ∞

0

X(0, s)P+
u (s)h(s) ds

= (P−
u (0) + P−

c (0))ξ −
∫ 0

−∞
X(0, s)P−

s (s)h(s) ds. (2.6)

Then, it can be verified that the function x(t), defined for t ≥ 0 as

X(t, 0)(P+
s (0) + P+

c (0))ξ +

∫ t

0

X(t, s)(P+
s (s)

+ P+
c (s))h(s)ds−

∫ ∞

t

X(t, s)P+
u (s)h(s) ds

and for t ≤ 0 as

X(t, 0)(P−
u (0) + P−

c (0))ξ +

∫ t

0

X(t, s)(P−
u (s)

+ P−
c (s))h(s)ds+

∫ t

−∞
X(t, s)P−

s (s)h(s) ds

is in E(−σ, 1,R) and is a solution of the inhomogeneous linear system (∗). It means h ∈
ℜ(L1), as expected.

Now we show that the linear operator L1 is Fredholm. By (2.1), each bounded solution

ψ(t) of (1.1) in E(α, 1,R) defines a bounded linear functional on E(−σ,R) through

h→
∫ ∞

−∞
ψ∗(t)h(t) dt.

This correspondence gives an isomorphism between

ℜP+∗
u (t) ∩ ℜP−∗

s (t) = (ℜ(P+
s (t) + P+

c (t)))⊥ ∩ (ℜ(P−
c (t) + P−

u (t)))⊥
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and a finite dimensional subspace of the dual space (E(−σ,R))∗. This means that ℜ(L1) is

a subspace of E(−σ,R) with a finite codimension which is equal to

codim ℜ(L1) = dim((ℜ(P+
s (t) + P+

c (t)))⊥ ∩ (ℜ(P−
c (t) + P−

u (t)))⊥).

Due to the basic functional theory, this also means that ℜ(L1) is closed. So L1 is Fredholm.

By definition, the index of L1 is

dimN (L1)− codim ℜ(L1)

= dim(ℜ(P+
s (t) + P+

c (t)) ∩ ℜ(P−
c (t) + P−

u (t)))

− dim((ℜ(P+
s (t) + P+

c (t)))⊥ ∩ (ℜ(P−
c (t) + P−

u (t)))⊥),

= dim(ℜ(P+
s (t) + P+

c (t)) ∩ ℜ(P−
c (t) + P−

u (t)))

− codim (ℜ(P+
s (t) + P+

c (t))⊕ℜ(P−
c (t) + P−

u (t)))

= dim(ℜ(P+
s (t) + P+

c (t)) ∩ ℜ(P−
c (t) + P−

u (t)))

− n+ dim(ℜ(P+
s (t) + P+

c (t))⊕ℜ(P−
c (t) + P−

u (t)))

= dimℜ(P+
s (t) + P+

c (t)) + dimℜ(P−
c (t) + P−

u (t))− n,

as asserted.

Remark 2.1. If system (∗) has exponential dichotomies on both half lines, then, in the

above propositions, we have

P+
c = P−

c = 0, E(−σ, 1, J) = E(0, 1, J), E(−σ, J) = E(0, J)

for J = R+, R−.

Corollary 2.1.[5] Suppose that (∗) has exponential dichotomies on both half lines. Then

the linear operator

L : E(0, 1,R) → E(0,R)

is Fredholm and has index dimℜP+
s (t) + dimℜP−

u (t)− n. Moreover, h ∈ ℜ(L) if and only

if h ∈ E(0,R) and the orthogonality condition (2.1) holds for all bounded solutions ψ(t) of

the adjoint system (1.1).

§3. Application

As a simple application, we give the conditions for the persistence of heteroclinic orbits

which extends the result of [11]. Consider the following systems

ẋ = G(x, t, α, β, µ), (3.1)

ẋ = F (x), (3.2)

where x ∈ Rn, α, β ∈ R, µ ∈ Rm, G ∈ Cr, r ≥ 2, G(x, t, 0, 0, 0) = F (x), and G is

T -periodic in t.

Assume that system (3.2) has a heteroclinic orbit Γ = Γ(t) to two equilibria, p = Γ(−∞)

and q = Γ(+∞). Denote

dimW s
q = s+, dimWu

q = u+, dimW c
q = c+,

dimW s
p = s−, dimWu

p = u−, dimW c
p = c−,

where Wu
x , W

s
x and W c

x are respectively the unstable, stable and center manifolds of x. We

still need the following hypotheses.
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(H1) c+ = 1, c− ≤ 1, u− + c− ≤ u+.

(H2) dim(TΓ(t)(W
c
p ∩W c

q )) = dim(TΓ(t)W
cu
p ∩ TΓ(t)W cs

q ) = 1 for c− = 1,

dim(TΓ(t)(W
u
p ∩W c

q )) = dim(TΓ(t)W
u
p ∩ TΓ(t)W cs

q ) = 1 for c− = 0,

where W cu
p and W cs

q are the center-unstable and the center-stable manifolds of p and q,

resperctively.

(H3) p and q are transcritical equilibia of system (3.1) with control parameters α and β,

respectively.

When u−+c− > u+, we see thatW cu
p andW cs

q intersect transversally. So, it is trivial. For

the definition of control parameters, one can refer to [10,11]. Here, we may as well assume

that, when α > 0 (resp. β > 0), the equilibrium p (resp. q) splits into two T -periodic orbits.

Set A(t) = DF (Γ(t)). From [10, 11], it follows that the linear variational system

ẋ = A(t)x (3.3)

and its adjoint system (1.1) have exponential trichotomies in both R+ and R− with the

same constants K ≥ 1, α > σ > 0 and the projections

P i
s(t), P

i
c(t), P

i
u(t) and P

i∗
u (t), P i∗

c (t), P i∗
s (t) for i = +,−.

Moreover,

ℜP+
c (t) = TΓ(t)W

c
q , ℜ(P+

s (t) + P+
c (t)) = TΓ(t)W

cs
q ,

ℜP−
c (t) = TΓ(t)W

c
p , ℜ(P−

u (t) + P−
c (t)) = TΓ(t)W

cu
p .

Let d = n − s+ − c− − u−. By Theorem 1.1 (i), system (1.1) has exactly d linearly

independent bounded solutions ψ1(t), · · · , ψd(t) in E(α, 1,R).

Suppose that system (3.1) has a heteroclinic orbit Γ1 : {x(t+ to) = Γ(t) + y(t, α, β, µ) :

t ∈ R} connecting two T -periodic orbits near p and q, and satisfying y(t, 0, 0, 0) = 0. Then,

y ∈ E(−σ, 1,R), y = O(α) +O(β) +O(|µ|) and

ẏ = A(t)y + h(t, α, β, µ), (3.4)

where

h(t, α, β, µ) = αGα(z) + βGβ(z) +Gµ(z)µ+ h.o.t.,

z = (Γ(t), t+ to, 0, 0, 0).

Applying Theorem 2.1 to operator L1, we see that Γ1 exists if and only if

Ii ≡
∫ ∞

−∞
ψ∗
i (t)h(t, α, β, µ) dt = 0 (3.5)

for i = 1, · · · , d. Let

M j
i (to) =

∫ ∞

−∞
ψ∗
i (t)Gj(z) dt, (3.6)

for j = α, β, µ. Then,

Ii = αMα
i (to) + βMβ

i (to) +Mµ
i (to)µ+ h.o.t.

Thus, a direct application of the implicit function theorem yields the following result.

Theorem 3.1. Suppose that hypotheses (H1)-(H3) hold, and there exists to such that

rank((Mα
1 (to),M

β
1 (to),M

µ
1 (to)), · · · , (Mα

d (to),M
β
d (to),M

µ
d (to))) = d.
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Then, in the (α, β, µ) space, there exists an (m − d + 2)-dimensional surface H, with α >

0, β > 0 and |α| + |β| + |µ| << 1, such that (3.1) has a heteroclinic orbit near Γ when

(α, β, µ) ∈ H.

Remark 3.1. In order to make (3.6) computable, a suitable coordinates change is nec-

essary (cf. [10] and forthcoming papers). In order to obtain the transversality condition

for the persistent heteroclinic orbits, we need to analyse the structures of the perturbed

center-stable and center-unstable manifolds.
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