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Abstract

Judice and Pires developed in recent years principal pivoting methods for the solving of
the so-called box linear complementarity problems (BLCPs) where the constraint matrices are
restrictedly supposed to be of P–matrices. This paper aims at presenting a new principal

pivoting scheme for BLCPs where the constraint matrices are loosely supposed to be row
sufficient. This scheme can be applied to the solving of convex quadratic programs subject to
linear constraints and arbitrary upper and lower bound constraints on variables.
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§1. Introduction

Judice and Pires developed in recent years principal pivoting methods[9−11] for solving

the so-called box linear complementarity problems (BLCPs) where the constraint matrices

are restrictedly supposed to be of P–matrices. (A P–matrix is defined as a square ma-

trix whose principal minors are all positive). The prototype of their methods is Murty’s

bard–type scheme[14,15], for linear complementarity problems (LCPs), which is known to be

characterized in that its pivoting rule is free of minimum–ratio–test and runs mainly on the

least–index principle[1−3]. Recently, Murty’s scheme was greatly improved by Hertog, Roos

and Terlaky in [8], where the constraint matrices of the LCPs concerned are loosely supposed

to be sufficient. In [18], we gave out a unified extension of both of the results gained in [11]

and [8], and produced a scheme that is free of minimum–ratio–test and is capable of dealing

with BLCPs whose constraint matrices are loosely supposed to be sufficient[5,7,8,12,16]. In

this paper we are going to present another principal pivoting scheme for BLCPs. Although

this scheme is no longer free of minimum–ratio–test, it is capable of tackling BLCPs whose

constraint matrices are more loosely supposed to be row sufficient (A square matrix M is

defined to be row sufficient, if (u⊤M)iui ≤ 0 for all i implies (u⊤M)iui = 0 for every i; M

is defined to be column sufficient, if M⊤ is row sufficient; and M is defined to be sufficient if

it is both row and column sufficient. P–matrices and positive semi–definite matrices are all

examples of sufficient matrices[5,6]). Computational tests on this scheme demonstrate that

the computational behaviour of this scheme is far superior to that of the scheme proposed

in [18].
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Cottle indicated in [5], while revisiting his principal pivoting method[4] in the light of

row sufficiency, that Lemke’s scheme I for LCPs (see [13]) remains valid in the context of

row sufficiency. As is known that Lemke’s scheme employs an artificial variable so as to

render every pair of complementary variables “in kilter” at the very beginning ( and this is

so kept throughout). However, this scheme is not, in appearence, a principal pivoting one,

because in each iteration there is always a pair of complementary variables which are both

to be non–basic. Since the artificial variable appears to be basic most of the time, it varies

“passively” rather than “actively” when updating. Similar to Lemke’s scheme, an artificial

variable is also employed in our scheme for the same purpose. However, ours is based on the

principal pivoting approach, i.e., in each iteration every pair of complementary variables is

kept to be a pair of basic and nonbasic variables. Therefore, the artificial variable remains

invariably nonbasic, so it varies “actively” rather than “passively” when updating.

According to [11], a BLCP can be formulated as such a problem: Find out x, y ∈ RN

satisfying 
y = Mx+ q,

a ≤ x ≤ b,

yi > 0 =⇒ xi = ai (̸= −∞),

yi < 0 =⇒ xi = bi (̸= +∞),

where i ∈ N = {1, 2, . . . , n}, q ∈ RN , a ∈ (R ∪ {−∞})N , b ∈ (R ∪ {+∞})N , a < b, and

M = [mij ] ∈ RN×N . Clearly, if ai = 0, bi = +∞ for every i, then the BLCP turns out

specifically an LCP, i.e., 
y = Mx+ q,

x ≥ 0, y ≥ 0,

x⊤y = 0.

In this paper, a BLCP is somehow formulated generally as such: Find out x, y ∈ RN

satisfying 
w = Mz + q,

a ≤ x ≤ b,

yi > ci =⇒ xi = ai (̸= −∞),

yi < ci =⇒ xi = bi (̸= +∞),

where c ∈ RN , a ≤ b (instead of a < b), wi and zi represent respectively either yi and xi,

or xi and yi (instead of yi and xi invariably). Clearly, if M is specifically supposed to be

a P–matrix, then the two definitions given above are basically the same. In the following,

the above linear system w = Mz + q is to be called specifically a principal dictionary (PD)

of the BLCP; and variables, if locating in w(z), are to be called basic (nonbasic). For an

i ∈ N,xi and yi are called complementary variables, and xi and yi are called in kilter, if

yi = ci and ai ≤ xi ≤ bi, or yi > ci and xi = ai(̸= −∞), or yi < ci and xi = bi( ̸= +∞).

Obviously, (x, y) forms a solution to the BLCP iff for every i ∈ N,xi and yi are in kilter.

In the following discussion, principal dictionaries are invariably denoted by w = Mz + q for

the sake of notational simplicity, although the contents of w and z , as well as that of M

and q, could be renewed due to updating.

It can be shown (say by the Kuhn–Tucker conditions) that the following box-type convex
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quadratic program

minimize − c⊤x+ d⊤xB∗ +
1

2
x⊤
B∗GxB∗ +

1

2
y⊤BHyB ,

subjuct to xB = HyB −AxB∗ + e,

a ≤ x ≤ b,

(where B stands for a certain subset of N , B∗ = N − B, d ∈ RB∗
, e ∈ RB , A ∈ RB×B∗

,

and both G ∈ RB∗×B∗
and H ∈ RB×B are symmetric and positive semi–definite) can be

reduced to a BLCP, where w, z, q, and M are respectively(
xB

yB∗

)
,

(
yB
xB∗

)
,

(
e
d

)
,

(
H −A
A⊤ G

)
.

Since M is now positive semi–definite hence row sufficient, this BLCP can be processed by

our scheme. However, quadratic program in this form cannot be handled by methods given

in [9, 10, 11], unless that c = 0, G is symmetric and positive definite (hence a P–matrix in

particular), and B is empty (hence H and A disappear, and M = G). This means that the

“box-type” quadratic program concerned there has to be strictly convex and subject to no

linear constraints[11,19].

The following two properties of row sufficient matrices are the only prerequisite required

for our discussion. Since they were well proved in [5, 6], their proofs are omitted here in

consideration of space-saving.

Property 1.1. If a PD: w = Mz + q is transformed equivalently to another principal

dictionary, then the M of the transformed one remains row sufficient if the original is to be

row sufficient.

Property 1.2. If M = [mij ] is row sufficient, then mii = 0 for a certain i entails that

mij < 0(> 0) implies mji > 0(< 0).

§2. The Scheme

A variable xi is called fixed if ai = bi, and a variable yi is called to be fixed if both ai and

bi are infinite. Obviously, in any of the solutions to the BLCP, the fixed variables are always

fixedly valued i.e. for a fixed xi, it has to be valued in ai(= bi); and for a fixed yi, it has

to be valued in ci. In PDs, fixed variables, if appearing basic and depending on nonbasic

variables that are nonfixed, are often “trouble–making” ones in the sense that they might

cause degeneracy which none of the standard perturbation techniques can deal with. In

order to render a given PD free from such variables, we propose an “improving” procedure

as follows:

If the given PD is free from such variables then stop; otherwise, let wĩ be a fixed variable

such that mĩj̃ ̸= 0 and zj̃ is nonfixed. Now if mĩ̃i ̸= 0 holds, then update the PD by pivoting

on entry mĩ̃i and go back to repeat this procedure again; otherwise (by Properties 1.1 and

1.2, mj̃ĩ must be nonzero now), update the PD by pivoting respectively on entries mĩj̃ and

mj̃ĩ (this is valid because mĩ̃i = 0,mĩj̃ ̸= 0, and mj̃ĩ ̸= 0 hold now), and go back to repeat

this procedure again.

Since each updating of the PD results in reducing the number of the “trouble–making”

variables at least by one, the above procedure is finite. With this procedure at hand, we
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can assume without lass of generality that the following scheme starts off with an initial PD

that is free from “trouble–making” variables.

The scheme is as follows:

Step 0 (The Initial Step):

0.1. Set z as such: for j ∈ N , if zj = yj then set zj := cj ; if zj = xj then set zj := aj (if

finite) or bj (if finite), or any preset value (say zero) in case that both aj and bj are infinite.

Now set accordingly w := Mz + q. If there is a fixed basic variable that is not valued as

wanted, then the problem is insolvable (because the fixed basic variables are dependent only

on fixed nonbasic variables now), stop.

0.2. If every pair of complementary variables is now in kilter, then the current (x, y)

forms a solution to the problem, stop; otherwise, add an additional item tp onto the right

hand side of the PD, where p ∈ RN and t (the so–called artificial variable) are so rendered

initially that every pair of complementary variables turns out in kilter with t valued positive.

Step 1 (The Major Step):

Let t decrease inasmuch as every pair of complementary variables is kept in kilter. If t

can thus decrease to zero, then obviously the current pair of (x, y) forms a solution to the

problem, stop; otherwise, some of the basic variables say wĩ would “block” the decrease of

t, i.e., further decrease of t would cause xĩ and ỹi out of kilter.

(now: (i) such a variable is called a blocking variable;

(ii) if the net increment of t is zero, then it is said that degeneracy occurs;

(iii) the current (x⊤, y⊤, t)⊤ will be referred to in our proof of Theorem 1 below as a

major–step–related vector).

If mĩ̃i ̸= 0, then update the current PD by pivoting on entry mĩ̃i, and go back to Step 1;

otherwise, set z̃i in a mode of “drive” that it gets ready to increase (decrease) if z̃i = xĩ =

ãi(b̃i) or wĩ = xĩ = ãi(b̃i) holds currently.

Step 2 (The Transitional Step):

2.1. Let z̃i “drive” according to the mode set afore inasmuch as every pair of complemen-

tary variables is kept in kilter. If z̃i can thus drive infinitely, then the problem is insolvable

(see to Theorem 2 below for the proof), stop; otherwise, either some of the basic variables,

say wj̃ , or z̃i itself, would “block” the drive of z̃i, i.e., further drive of z̃i would cause xj̃ and

yj̃ , or xĩ and ỹi, out of kilter.

(now:(i) such a variable is also called a blocking variable;

(ii) if the net increment of z̃i is zero, then it is said that degeneracy occurs;

(iii) the current (x⊤, y⊤, t)⊤ is referred to in our proof of Theorem 1 below as a transitional-

step-related vector).

If the blocking variable is z̃i, then go back to Step 1; otherwise, let wj̃ be a blocking

variable (hence mj̃ĩ ̸= 0 must hold) and go on to the following substep.

2.2. If mĩj̃ = 0 holds currently (hence mj̃j̃ ̸= 0 must be true, because from Properties

1.1 and 1.2, mj̃j̃ = 0 and mj̃ĩ ̸= 0 would lead to mĩj̃ ̸= 0), then update the current PD by

pivoting on entry mj̃j̃ and go back to Step 2; otherwise, update the current PD by pivoting

respectively on entries mĩj̃ and mj̃ĩ (this is valid because mĩ̃i = 0, mĩj̃ ̸= 0 and mj̃ĩ ̸= 0

hold now), and go back to Step 1.



No.1 Wang, Z. M. A NEW PRINCIPAL PIVOTING SCHEME 69

Remark 2.1. In the case that the constraint matrix M = [mij ] is specifically a P–

matrix, now, according to [5, 17], M remains a P–matrix in any of the updated PDs during

operation of the scheme. Therefore every mii remains positive throughout. This means that

the operation can never reach Step 2, and must end up with a solution obtained.

Theorem 2.1. The scheme is finite, if nondegeneracy assumption is to be in force.

Proof. Suppose that the scheme operates endlessly. Then the operation either passes

Step 1 in infinite times or cycles inside Step 2. From this and the nondegeneracy assumption

it can be derived that if the former (latter) happens, there must be two major (transitional)–

step–related vectors which are basically identical except that the values of t (z̃i) are different.

This, however, is contradictory to that wĩ(wj̃) plays a role of blocking variable.

Remark 2.2. It is not difficult to specify that once the initial PD is “improved” by means

of the “improving” procedure proposed afore, all updated PDs would remain “improved”.

Therefore, with this scheme, the fixed basic variables cannot happen to be blocking ones.

Hence, any standard perturbation techniques are applicable to this scheme for securing

nondegeneracy.

Remark 2.3. We have discovered additionally. Suppose that the given constraint matrix

is sufficient, then, to secure finiteness of the scheme, the nondegeneracy assumption can be

replaced by the least–index rule[1,2,3] (i.e., the candidate blocking variable is chosen to be

the least–indexed among all the then blocking variables) in so far as that a sufficient number

of artificial variables are introduced, that is: one artificial variable (together with a vector

possessing a single non–zero component), for each pair of complementary variables that is

initially out of kilter. Furthermore, if the given constraint matrix is to be particularly posi-

tive semi–definite, then only one artificial variable (as is described in Step 0.2), is required.

Since the proof of this argument is technically lengthy, we cannot but drop it here out of

simplicity consideration.

Theorem 2.2. The scheme is valid.

Proof. This is mainly to prove that if the operation ends up at Step 2.1, then the problem

is insolvable. Suppose this is not true. Then let x
′
and y

′
be a solution to this problem.

Now, let the then t decrease to zero and denote the corresponding x and y by x
′′
and y

′′
.

First, since the then wĩ plays a role of blocking variable, when t reaches zero it must happen

that either

(i) wĩ = x
′′

ĩ
< ãi (b̃i),

or

(ii) wĩ = y
′′

ĩ
< ci (> ci) and z̃i = xĩ = ãi (b̃i).

Secondly, since the then z̃i can drive infinitely, this implies that if mjĩ > 0 (< 0) then either

zj = x
′′

j = aj (bj) and wj = y
′′

j > cj (< cj), or

zj = yj = cj and bj = +∞ (aj = −∞).

By referring to Properties 1.1 and 1.2, it can be concluded that if mĩj < 0 (> 0) then either

zj = x
′′

j = aj (bj) and wj = y
′′

j > cj (< cj), or

zj = yj = cj and bj = +∞ (aj = −∞).

By taking notice to the fact that (x
′
, y

′
) , and (x

′′
, y

′′
) as well, must satisfy the ĩ-th equation
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of the PD then concerned (with t = 0), it follows that if the above mentioned case (i)

happens, then

x
′

ĩ
≤ x

′′

ĩ
< ãi (x

′

ĩ
≥ x

′′

ĩ
> b̃i),

and if the above mentioned case (ii) happens, then

y
′

ĩ
≤ y

′′

ĩ
< c̃i and b̃i = +∞ (y

′

ĩ
≥ y

′′

ĩ
> c̃i and ãi = −∞).

This, however, is contradictory to the supposition that (x
′
, y

′
) forms a solution to the prob-

lem.
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