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Abstract

Let {ξt, t ∈ Zd} be a nonuniform φ-mixing strictly stationary real random field with Eξ0 =

0, E|ξ0|2+δ < ∞ for some 0 < δ < 1. A sufficient condition is given for the sequence of
partial sum set-indexed process {Zn(A), A ∈ A} to converge to Brownian motion. By a direct
calculation, the author shows that the result holds for a more general class of set index A,
where A is assumed only to have the metric entropy exponent r, 0 < r < 1, and the rate

of nonuniform φ-mixing is weakened. The result obtained essentially improve those given by
Chen[1] and Goldie, Greenwood[6], etc.
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§1. Introduction

Let Z be the set of all integers, N be the set of all positive integers and {ξt, t ∈ Zd}
be a strictly stationary real random field on a d-dimensional integer lattice . Let A be

a totally bounded subset of the class Bd of Borel subsets of Id = [0, 1]d with the metric

dL(A,B) = |A△B|, its closure A is complete and totally bounded, hence compact. For

m ∈ N,

Jm = {(l1/m, · · · , ld/m), lj ∈ N, 1 ≤ lj ≤ m, j = 1, · · · , d},

Cm,j =
d∏

i=1

(ji − 1/m, ji], j = (j1, · · · , jd) ∈ Jm.

From the random field {ξt, t ∈ Zd}, we define the partial-sum process of n-th level as

Zn(A) = n−d/2
∑
j∈Jn

|A ∩ Cn,j|
|Cn,j|

(ξnj − Eξnj) A ∈ A, n ∈ N, (1.1)

where nj = (nj1, · · · , njd), | · | is the Lebesgue measure. For sets E,F ⊆ Rd the separation

distance is

ρ(E,F ) = inf
x∈E,y∈F

∥x− y∥ = inf
x∈E,y∈F

max
1≤i≤d

|xi − yi|.
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Let C(A) be the space of continuous real-valued functions on A with the supnorm ∥ · ∥,
i.e., ∥f∥A = sup

A∈A
|f(A)|. Let CA(A) be the set of everywhere additive elements of C(A), i.e.,

elements f such that f(A∪B) = f(A)+ f(B)− f(A∩B) whenever A,B,A∪B,A∩B ∈ A.

Suppose that A satisfies a metric entropy condition with exponent r, i.e., for every ε > 0

there is a finite family N (A, ε) ⊂ Bd, which we take to have minimal cardinality exp(H(ε)),

such that for every A ∈ A there exist A−, A
+ ∈ N (A, ε) with A− ⊆ A ⊆ A+ and |A+ \

A−| ≤ ε, and the function H(·) is called the metric entropy (with inclusion), its exponent is

H(ε) = O(ε−r).

Definition 1.1 The random field {ξt, t ∈ Zd} is said to be φ-mixing, if

φ(x) = sup
I,J⊂Rd

ρ(I,J>x

sup
E∈σ(ξt,t∈I),P (E)>0
F∈σ(ξs,s∈I),P (F )>0

max(|P (E|F )− P (E)|, |P (F |E)− P (F )|)

and φ(x) −→ 0 as x −→ ∞. The random field {ξt, t ∈ Zd} is said to be nonuniform φ-

mixing, if for Λi ⊂ Zd, |Λi| < ∞, i = 1, 2, there exists a nonnegative real function φ|Λ1|(·)
depending only on |Λ1| such that

sup
E∈σ(Λ1),F∈σ(Λ2),P (F )>0

|P (E|F )− P (E)| ≤ φ|Λ1|(ρ(Λ1,Λ2))

and φ|Λ1|(x) → 0 as x → ∞, where |Λ| is the cardinality of Λ.

Dobrushin[3] showed that the φ-mixing condition is not satisfied even for some simple

examples of Gibbs random fields. Dobrushin and Nahapetian[4] introduced the nonuniform

φ-mixing condition. Chen[1] gave a sufficient condition for a sequence of partial-sum set-

indexed processes with nonuniform φ-mixing condition to converge to Brownian motion,

when the indexed set A = C = {(a, b],a, b ∈ [0, 1]d}, as follows.
Theorem C. Let {ξt, t ∈ Zd} be a strictly stationary nonuniform φ-mixing random field

and satisfy

(i) there exists a non-negative real function φ(·) on R1, such that for any Λ ⊂ Zd, |Λ| <
∞, φ|Λ|(·) ≤ |Λ|φ(·), and for some δ > 0

lim
r→∞

sup
r∈R+

(φ(r))1/2r3d+4d/δ < ∞, (1.2)

(ii) Eξ0 = 0, E|ξ0|2+δ < ∞, where 0 = (0, · · · , 0),
(iii)

0 < σ2 :=
∑
t∈Zd

Cov(ξ0, ξt) < ∞. (1.3)

Then Zn converges weakly in CA(C) to a Brownian motion with parameter σ, as n → ∞.

In this paper, we improve Theorem C by a direct calculation, and prove that the conclu-

sion holds for the more general indexed set A, where A is assumed only to have the metric

entropy exponent r, 0 < r < 1, and the rate of nonuniform φ-mixing is weakened.

Theorem 1.1. Let {ξt, t ∈ Zd} be a strictly stationary nonuniform φ-mixing random

field, and satisfy

(i) φ|Λ|(·) ≤ |Λ|φ(·) and φ(x) = O(x−2d−1−2d/δ) for some δ > 0,

(ii) Eξ0 = 0, E|ξ0|2+δ < ∞,

(iii) A has exponent of metric entropy (with inclusion) r < 1.
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Then Zn converges weakly in CA(A) to a Brownian motion with parameter σ, as n → ∞,

where σ2 is defined as (1.3).

Remark 1.1. From Theorem 1.1 it follows that a uniform central limit theorem for

certain Gibba fields which has been given in [1] is also true for indexed set A, if A has

exponent of metric entropy r < 1.

§2. Finite-Dimensional Convergence

For the finite dimensional distributions of Zn(·) to converge to the corresponding finite

dimensional distributions of Brownian motion, we have

Theorem 2.1. Let {ξt, t ∈ Zd} be a strictly staionary nonuniform φ-mixing random

field with Eξ0 = 0, E|ξ0|2+δ < ∞ for some δ > 0. The set-indexed partial-sum processes

{Zn(A), A ∈ Bd} are defined in (1.1). Suppose that

φ|Λ|(·) ≤ |Λ|φ(·), φ(x) = O(x−2(d+ε)), for some ε > 0.

Then the finite dimensional distributions of {Zn} on Bd converge to the corresponding fi-

nite dimensional distributions of Brownian motion with parameter σ, where 0 < σ2 =∑
t∈Zd

Eξ0ξt < ∞.

The proof of Theorem 2.1 needs the following lemmas.

Lemma 2.1. Let {ξt, t ∈ Zd}, {Zn(A), A ∈ Bd} be as in Theorem 2.1. Suppose that

φ|Λ|(·) ≤ |Λ|φ(·) and φ(x) = O(x−(d+1+θ)) for some θ > 0.

Then for any A ∈ Bd

∥Zn(A)∥2+δ ≤ cσ0|nA|1/2, (2.1)

where σ2
0 = Eξ20.

Proof. First, imitating the proof of Theorem 3.1 of [5], we prove that for δ = 0

σ(2m) ≤ 21/2(1 + 2m1/2φ1/2(d−1/2mp − 2))1/2σ(m) + 3σ(cms)

where σ(m) = sup
A∈Bd,|A|=m

∥Zn(A)∥2, σ(m) = sup
m′≤m

σ(m′), take 0 < p < 1/d in the bisection

lemma to be such that the exponent s = (q + pd)/(q + 1) does not have any positive power

equal to 1/2. For any given h > 1, we write h = 2km, k ∈ N, 1/2 < m ≤ 1, note that

σ(m) ≤ 1, and for nonuniform φ-mixing we have

σ(2j+1m) ≤ αjσ(2
jm) + βj ,

where

αj = 21/2(1 + 2 · 2j/2mj/2φ(d−1/22jpmp − 2))1/2,

βj = 3 σ(c2js).

By iteration,

σ(h) ≤
k−1∏
j=0

αj +

k−1∑
j=0

βj

k−1∏
i=j+1

αi. (2.2)

Furthermore, we take p, 1
d > p > 1

d+1 , such that s = q+pd
q+1 does not also have any positive
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power equal to 1/2. There exists a j0 ≥ 1 such that d1/22jp2−p > 2j/(d+1) for j ≥ j0, so

φ :=
∞∑

j=j0

2j/2φ1/2(d−1/22jpmp − 2)

≤
∞∑
j=1

2j/2φ1/2(2j/(d+1))

≤ c

∞∑
j=1

2
j
2 2−

1
2 ·

j
d+1 (d+1+θ)

= c
∞∑
j=1

(
2θ/(2(d+1))

)−j

< ∞.

Thus we obtain

σ(h) ≤ cecφ
(
2

k
2 + 3

k−1∑
j=0

2
k−j−1

2 σ(c2js)
)
.

The remainder of the proof is the same as in the proof of Theorem 3.1 of [5]. This proves

that (2.1) holds for δ = 0.

For the case of 0 < δ ≤ 1. By using

|1 + x|2+δ ≤ 1 + 9|x|+ 9|x|1+δ + |x|2+δ (2.3)

and the notation of Theorem 3.1 of [5]

Zn(A) = Zn(A
′′
+) + Zn(A

′′
−)− Zn(A

′
+)− Zn(A

′
−) + Zn(A ∩ S), (2.4)

where |A| = 2m,S is a slice of A, |A′′
+| = |A′′

−| = m,A′′
+ and A′′

− are situated on the different

sides of S, the separation distance ρ(A′′
+, A

′′
−) ≥ d−1/2mp, |A′

+|, |A′
−|, and A ∪ S do not

exceed cms. Denote

τ(h) = sup
|A|=h,A∈Bd

∥Zn(A)∥2+δ, τ(h) = sup
h′≤h

τ(h′).

From (2.4)

τ(2m) ≤ ∥Zn(A
′′
+) + Zn(A

′′
−)∥2+δ + 3τ(cms). (2.5)

By (2.3) we have

E|Zn(A
′′
+) + Zn(A

′′
−)|2+δ

≤ 2τ2+δ(m) + 9(E|Zn(A
′′
+)||Zn(A

′′
−)|1+δ + E|Zn(A

′′
+)|1+δ|Zn(A

′′
−)|). (2.6)

By the property of nonuniform φ-mixing, we have

E|Zn(A
′′
+)||Zn(A

′′
−)|1+δ

≤ E|Zn(A
′′
+)|E|Zn(A

′′
−)|1+δ + 2φ

1
2+δ

|A′′
+|(d

− 1
2mp − 2)τ2+δ(m)

≤
(
1 + 2m

1
2+δφ

1
2+δ (d−

1
2mp − 2)

)
τ2+δ(m). (2.7)

Similarly we have

E|Zn(A
′′
+)|1+δ|Zn(A

′′
−)|

≤
(
1 + 2m

1
2+δφ

1
2+δ (d−

1
2mp − 2)

)
τ2+δ(m). (2.8)
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Inserting (2.7), (2.8) into (2.6) yields

∥Zn(A
′′
+) + Zn(A

′′
−)∥2+δ ≤ c

(
1 +m

1
2+δφ

1
2+δ (d−

1
2mp − 2)

) 1
2+δ

τ(m),

whence

τ(2m) ≤ c
(
1 +m

1
2+δφ

1
2+δ (d−

1
2mp − 2)

) 1
2+δ

τ(m) + 3cτ(cms).

By iteration, for h = 2km, k ∈ N, 1/2 < m ≤ 1 we have

τ(h) ≤
k−1∏
j=0

αj +

k−1∑
j=0

βj

k−1∏
i=j+1

αi,

where

αj ≤ c
{
1 + 2

j
2+δm

j
2+δφ

1
2+δ (d−

1
2 2jpmp − 2)

} 1
2+δ

.

So

φ′ =
∞∑

j=j0

2
j

2+δφ
1

2+δ

(
d−

1
2 2jpmp − 2

)
≤ c

∞∑
j=1

(
2ε/(2(2+δ)(d+1)

)−j

< ∞.

The remainder of the proof is the same as in the case of δ = 0. The proof of Lemma 2.1 is

completed.

Lemma 2.2. Let the ξn,j and the partial-sum processes Zn satisfy

(i) Eξn,j = 0 ∀n, j,
(ii) the set {ξn,j, j ∈ Jn, n ≥ 1} is uniformly integrable,

(iii) sup
n

∞∑
j=1

φ1/4(2j) < ∞,

(iv) 0 < σ2 =
∑

i∈Zd

Eξ0ξi < ∞,

(V) EZ2
n(C) −→ |C|(n → ∞) for any C ∈ Bd.

Then the finite dimensional distributions of {Zn}, on Bd, converge to the corresponding

finite dimensional distribution of Brownian motion with parameter σ.

This is Theorem 4.1 of [5].

Proof of Theorem 2.1. Without loss of generality, we assume σ2 = 1. Put ξn,j =

n−d/2ξnj. It is clear that the conditions (i), (ii) of Lemma 2.2 are satisfied. By the strict

stationarity of ξt, the condition (iii) of Lemma 2.2 ia also satisfied. To check (iv) and (v) of

Lemma 2.2, we have

EZ2
n(A) = n−d

∑
j∈Jn

|A ∩ Cn,j|
|Cn,j|

∑
k∈Jn

|A ∩ Cn,k|
|Cn,k|

Eξnjξnk.

Denote I(j) = n(j− 1/n, j], j ∈ Jn, |I(j)| = 1. Note that

γ(nj− nk) = Eξnjξnk ≤ 2φ
1/2
|I(j)|(|nj− nk|)σ2

0

≤ 2φ1/2(|nj− nk|)σ2
0 .
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Since ∑
k∈Zd

φ1/2(|k|) =
∞∑
r=1

∑
2r−1≤|k|<2r

φ1/2(|k|)

≤
∞∑
r=1

c2(r−1)dφ1/2(2r−1)

≤ c

∞∑
r=1

(
2ε
)−r

< ∞,

the condition (iv) of Lemma 2.2 is satisfied. At last, by the same discussion as in the proof

of Corollary 1.4 of [5], the condition (v) of Lemma 2.2 is also satisfied.

§3. Proof of Theorem 1.1

We use the notation of [1]. From the proof of Lemma 3.1 of [1], now we need only prove

lim
ν↓0

lim sup
n→∞

P
{
∥Zn(A ∩ In,i, 0, a)∥A0 > λ

}
= 0, (3.1)

where A0 = {A\B : A,B ∈ A, |A\B| ≤ ν}, pn =
[
n

2+δ
2(1+δ)

]
,

Zn(A ∩ In,i, 0, a) =
∑

l∈Jpn

∑
j∈S(n,l,i)

|A ∩ In,l,i ∩ Cn,j|
|Cn,j|

(ηnj(0, a)− Eηn,j(0, a)

=
∑

l∈Jpn

Vnl(A ∩ In,i, 0, a),

ηn,j(0, a) = n−(d/2)ξnjI(n
dδ/(2(1+δ))n−d/2|ξnj| < a), j ∈ Jn,

where S(n, l, i) = {j ∈ Jn : In,l,i ∩ Cn,j ̸= ∅}. Denote Vnl = Vnl(A ∩ In,i, 0, a). By the

property of nonuniform φ-mixing, we have

Ee
α

∑
l∈Jpn

Vnl

≤ EeαVnlEe
α

∑
k ̸=l,k∈Jpn

Vnk

+ 2φ|S(n,l,i)|

( n

2pn

)
Ee

α
∑
k̸=l

Vnk

∥Vnl∥∞. (3.2)

Note that |Vnl| ≤ 2a and eαVnl ≤ 1 + αVnl + α2V 2
nl when αa ≤ 1/4. From Lemma 2.4 of [1]

it follows that

EV 2
nl ≤ C|A ∩ Inl,i| for i = 1, 2, · · · , 2d.

Therefore for αa ≤ 1/4

EeαVnl ≤ eEα2V 2
nl ≤ eCα2|A∩Inl,i|. (3.3)

Inserting (3.3) into (3.2) yields

Ee
α

∑
l∈Jpn

Vnl

≤ wEe
α

∑
k ̸=l, k∈Jpn

Vnk

,

where

w ≤ eCα2|A∩Inl,i|
(
1 + 2e1/2|S(n, l, i)|φ

( n

2pn

))
≤ eCα2|A∩Inl,i|

(
1 + 2e1/2

nd

(2pn)d
φ
( n

2pn

))
.
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By iteration,

Ee
α

∑
l∈Jpn

Vnl

≤ eCα2|A∩In,i|
(
1 + 2e1/2

nd

(2pn)d
φ
( n

2pn

))pd
n

≤ exp
(
cα2|A|+ cnd

( n

2pn

)−2d−2d/δ−1)
= exp

(
cα2|A|+ cn− δ

2(1+δ)

)
≤ c exp(α2|A|) (3.4)

for large n.

Now we return to the estimate of the left hand side of (3.1). Since 0 ≤ r < 1, we can take

s > 0 such that r < 1/(1 + s). Set

δj = ν/2j , j = 0, 1, · · · ,

λj = λ0e
−j(1+r−r(2+s))/(2+s), j = 1, 2, · · · ,

λ0 = λ(1− e−(1+r−r(2+s))/(2+s)),

aj = e−j(1+r)/(2+s)a, j = 1, 2, · · · ,

a = cν1/(1+δ), c = (6τ/λ0)
1/(1+s),

where τ = E|ξ0|2+δ. For any A ∈ A0 there exist Aj , A
+
j ∈ A0(δj) such that Aj ⊆ A ⊆ A+

j

and |A+
j \Aj | ≤ δj . Then

Zn(A ∩ In,i, 0, a)

= Zn(A0 ∩ In,i, 0, a) +
∞∑
j=0

{Zn(Aj+1 ∩ In,i, 0, aj)− Zn(Aj ∩ In,i, 0, aj)}

+

∞∑
j=0

{Zn(A ∩ In,i, aj , aj−1)− Zn(Aj ∩ In,i, aj , aj−1)}.

So if ∥Zn(· ∩ In,i, 0, a)∥A0
is to exceed λ, at least one of the following must hold:

(a) for some A ∈ A0(δ0), |Zn(A0 ∩ In,i, 0, a)| > λ0;

(b) for some j, for some Aj ∈ A0(δj), Aj+1 ∈ A0(δj+1),

|Aj△Aj+1| ≤ 2δj ,

|Zn(Aj+1 ∩ In,i, 0, aj)− Zn(Aj ∩ In,i, 0, aj)| > 2λj ;

(c) for some j, for some Aj , A
+
j ∈ A0(δj), Aj ⊆ A ⊆ A+

j ,

|A+
j \Aj | ≤ δj ,

|Zn(A ∩ In,i, aj , aj−1)− Zn(Aj ∩ In,i, aj , aj−1)| > λj .

The number of pairs Aj , A
+
j in A0(δj) is ≤ exp(4H(δj/2)), while the number of pairs Aj ∈

A0(δj), Aj+1 ∈ A0(δj+1) is ≤ exp(4H(δj+1/2)). Since H(x) = O(x−r) is nonincreasing, we

have

P{∥Zn(· ∩ In,i, 0, a)∥A0 > λ} ≤ p0 +
∞∑
j=0

rj +
∞∑
j=1

sj ,
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where

p0 ≤ 2 exp{2H(δ0/2)} max
|A0|≤2δ0

P{|Zn(A0 ∩ In,i, 0, a)| > λ0},

rj ≤ 4 exp{4H(δj+1/2)} max
|Aj+1△Aj |≤2δj

(P{|Zn(Aj+1\Aj) ∩ In,i, 0, a)| > λj}

+ P{|Zn(Aj\Aj+1) ∩ In,i, 0, a)| > λj}),

sj ≤ exp{4H(δj/2)} max
Aj⊆A+

j ,|A+
j \Aj |≤2δj

P
{

sup
Aj⊆A⊆A+

j

|Zn(A ∩ In,i, aj , aj−1)

− Zn(Aj ∩ In,i, aj , aj−1)| > λj

}
.

By (3.4), taking α = 1/4a0, we have

p0 ≤ 2 exp{2H(δ0/2)} exp
(
− λ0

4a0
+ c

δ0
a20

)
≤ 2 exp

{
c2r+1δ−r

0 − λ0

4a0
+ c

δ0
a0

}
.

Similarly

rj ≤ 4 exp
{
c2r+1δ−r

j − λj

4aj
+ c

δj
aj

}
,

sj ≤ exp
{
c2r+1δ−r

j − λj

4aj
+ c

δj
aj

}
.

Thus

p0 +
∞∑
j=0

rj +
∞∑
j=1

sj

≤ 6

∞∑
j=0

exp
{
cδ−r

j − λj

4aj
+ c

δj
aj

}
≤ 6

∞∑
j=0

exp
{(

cν−r − c′ν−
1

1+s + cν−
1−s
1+s 2−

iδr
2+s

)
2jr.

Because of r < 1/(1 + s), the coefficient of 2ir may be made negative as large as required,

by choosing ν small enough, and (3.1) follows. The remainder of the proof is the same as

the proof of Theorem 1.1 of [1]. Theorem 1.1 is proved.
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