Chin. Ann. of Math.
18B: 1(1997),71-78.

WEAK CONVERGENCE FOR NON-UNIFORM
»-MIXING RANDOM FIELDS**
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Abstract

Let {&,t € Zd} be a nonuniform p-mixing strictly stationary real random field with E¢g =
0, E|éo|?T < oo for some 0 < & < 1. A sufficient condition is given for the sequence of
partial sum set-indexed process {Z,(A), A € A} to converge to Brownian motion. By a direct
calculation, the author shows that the result holds for a more general class of set index A,
where A is assumed only to have the metric entropy exponent r,0 < r < 1, and the rate
of nonuniform ¢-mixing is weakened. The result obtained essentially improve those given by
Chenl! and Goldie, Greenwood!9, etc.
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¢1. Introduction

Let Z be the set of all integers, N be the set of all positive integers and {¢;,t € Z4}
be a strictly stationary real random field on a d-dimensional integer lattice . Let A be
a totally bounded subset of the class B? of Borel subsets of I? = [0,1]¢ with the metric
dr(A, B) = |AAB], its closure A is complete and totally bounded, hence compact. For
m € N,

I ={(li/m, -+ lg/m),l; e N,1<1; <m,j=1,---,d},

d
Cmij = H(]Z = 1/m, jil, i= 01, dd) € I

i=1

From the random field {&,t € Z9}, we define the partial-sum process of n-th level as

ANCy;
Zu@y=n-2 Y B0l e _pey acanen, (11
ie7 1Cng
where nj = (njy,--- ,njq),| - | is the Lebesgue measure. For sets E, F C R the separation
distance is
PIE,F) xe}Er,lyeF e = xe}EI,lyeF 1I£z'agxd|xl il
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Let C(A) be the space of continuous real-valued functions on A with the supnorm || - ||,

ie., || fllz = sup |f(A)]. Let CA(A) be the set of everywhere additive elements of C(A), i.e.,
AcA
elements f such that f(AUB) = f(A)+ f(B) — f(AN B) whenever A, B,AUB,ANB € A.

Suppose that A satisfies a metric entropy condition with exponent r, i.e., for every ¢ > 0
there is a finite family N'(A,¢) C BY, which we take to have minimal cardinality exp(H (g)),
such that for every A € A there exist A_, At € N(A,e) with A_ C A C A" and |AT \
A_| < e, and the function H(-) is called the metric entropy (with inclusion), its exponent is

H(e) =0().
Definition 1.1 The random field {&;,t € Z9} is said to be p-mizing, if
p(r) = sup sup max(|P(E|F) — P(E)|,|P(F|E) — P(F)|)

I,JCR? E€o(&,tel),P(E)>0
p(I,J>zx Feo(és,s€l),P(F)>0

and o(x) — 0 as x — oo. The random field {&.,t € Z9} is said to be monuniform -
mizing, if for A; C Z%,|A;] < oo,i = 1,2, there exists a nonnegative real function 1A, ()
depending only on |A1| such that
sup |P(E|F) — P(E)| < opa,(p(A1, Ag))
Eco(M1),FEa(A2),P(F)>0
and pa,(z) = 0 as x — oo, where |A| is the cardinality of A.

Dobrushin®! showed that the ¢-mixing condition is not satisfied even for some simple
examples of Gibbs random fields. Dobrushin and Nahapetian introduced the nonuniform
@-mixing condition. Chenl!l gave a sufficient condition for a sequence of partial-sum set-
indexed processes with nonuniform ¢-mixing condition to converge to Brownian motion,
when the indexed set A = C = {(a, b],a,b € [0,1]?}, as follows.

Theorem C. Let {&;,t € Z9} be a strictly stationary nonuniform p-mizing random field
and satisfy

(i) there exists a mon-negative real function p(-) on RY, such that for any A C Z¢, |A| <
00, pa|(-) < [Alp(-), and for some 6 > 0

lim sup (p(r))Y/ 2344440 < o0, (1.2)

0 re R
(i) BE& =0, E|&|?>T° < 0o, where 0= (0,---,0),
(iii)
0<o?:= )" Cov(é,&) < o. (1.3)
tezd
Then Z,, converges weakly in CA(C) to a Brownian motion with parameter o, as n — oo.
In this paper, we improve Theorem C by a direct calculation, and prove that the conclu-
sion holds for the more general indexed set A, where A is assumed only to have the metric
entropy exponent r,0 < r < 1, and the rate of nonuniform ¢-mixing is weakened.
Theorem 1.1. Let {&,t € Z9} be a strictly stationary nonuniform @-mizing random
field, and satisfy
() o) < JAlp() and p(x) = O(a~24=1-24/%) for some & > 0,
(if) Eo =0, Bléo|** < oo,

(iii) A has exponent of metric entropy (with inclusion) r < 1.
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Then Z,, converges weakly in CA(A) to a Brownian motion with parameter o, as n — 00,
where o2 is defined as (1.3).

Remark 1.1. From Theorem 1.1 it follows that a uniform central limit theorem for
certain Gibba fields which has been given in [1] is also true for indexed set A, if A has
exponent of metric entropy r < 1.

§2. Finite-Dimensional Convergence

For the finite dimensional distributions of Z,(-) to converge to the corresponding finite
dimensional distributions of Brownian motion, we have

Theorem 2.1. Let {&,t € Z9) be a strictly staionary nonuniform p-mizing random
field with E¢y = 0, E|&|*10 < oo for some § > 0. The set-indexed partial-sum processes
{Z.(A), A € BY} are defined in (1.1). Suppose that

() < Alp(), p(@) = O@=29),  for some &> 0.
Then the finite dimensional distributions of {Z,} on B? converge to the corresponding fi-

nite dimensional distributions of Brownian motion with parameter o, where 0 < o2 =

> E&oés < oo.

teZd
The proof of Theorem 2.1 needs the following lemmas.

Lemma 2.1. Let {&,t € Z}, {Z,(A), A € B2} be as in Theorem 2.1. Suppose that
P () SIAlp() and () = O @H40)  for some 0> 0.
Then for any A € B¢
1Z0(A)ll2+5 < coolnAl'/2, (2.1)
where of = EE3.
Proof. First, imitating the proof of Theorem 3.1 of [5], we prove that for § =0
a(2m) < 2Y2(1 4 2m* 20" 2(d= 12 mP — 2)) /26 (m) + 35 (cm®)

where o(m) = sup || Zn(A)||2, 7(m) = sup o(m'), take 0 < p < 1/d in the bisection
AEBd,|Al=m m! <m
lemma to be such that the exponent s = (¢ + pd)/(¢ + 1) does not have any positive power
equal to 1/2. For any given h > 1, we write h = 2¥m,k € N,1/2 < m < 1, note that
o(m) <1, and for nonuniform ¢-mixing we have
o (21m) < ago(2m) + B,

where

oy = 21/2(1 +2. 2j/2mj/2<p(d_1/22jpmp _ 2))1/2,

Bj = 3(c27%).

By iteration,

k—1 k—1 k—1
o) <[Tas+>28 II o (2.2)
j=0 j=0  i=j+1
g+pd

Furthermore, we take p,é >p > ﬁ, such that s = does not also have any positive

q+1
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power equal to 1/2. There exists a jy > 1 such that d'/22ip2=p > 23/(d+1) for j > 4. so

@ = Z 2j/2@1/2(d—1/22j10mp -2)
Jj=Jo

< 2j/2(p1/2(2j/(d+1))

<.

IA
Pqﬁ i
8 —

2%2-%#(‘1-&-1-&-9)

<.
Il
-

—c (20/<2(d+1>>)’j < 0.

“

Il
-

J
Thus we obtain

k=1 ‘
o(h) < ce® <2§ +3) - 1E(c2”)).
§=0
The remainder of the proof is the same as in the proof of Theorem 3.1 of [5]. This proves
that (2.1) holds for § = 0.
For the case of 0 < § < 1. By using
114 2270 < 14 9)z| + 9)z* 0 + |=]>+° (2.3)
and the notation of Theorem 3.1 of [5]
where |A| = 2m, S is a slice of A, |[A'[| = |A”| =m, A’| and A” are situated on the different
sides of S, the separation distance p(A’f, A”) > d='/?mP |4’ |,|A"|, and AU S do not
exceed cm?®. Denote

7(h) = sup [ Zn(A)ll2s, T(h) = sup 7().
|A|=h,AcB? h'<h
From (2.4)
7(2m) < ([ Zn(AY) + Zn(AY)|l21s + 37(cm?). (2.5)

By (2.3) we have
E|Zn(AY) + Za(AZL)*0
< 27770 (m) + O(B| Zn (A 2o (A" + BIZo(AD01Z0 (AY))]).- (2.6)

By the property of nonuniform ¢-mixing, we have

E|Z(AL)]| Za (AL
_1
< B|Zn(A})|E| Zn (A7) + 20707 (d=2mP — 2)72 (m)
+
< (1 T 2mTs o7 (dTmP — 2))72+5(m). (2.7)

Similarly we have
E|Zn (A7) Zu(AY))]
< (1 + 2m T T (A" EmP — 2))72+5(m). (2.8)
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Inserting (2.7), (2.8) into (2.6) yields
1

1Za(AY) + Za(AZ) 215 < e(1+m5 7 (@ dm? —2)) " 7(m),

whence
1

7(2m) < c(l + m7THe s (d 2mP — 2)) 7(m) + 3cT(em?).

By iteration, for h = 28m,k € N,1/2 < m < 1 we have

k—1 k—1
(h) <[] +ZBJ H i,
j=0 = i=j+1
where
1 75
a; < c{l + 275 m s o7 (472 27PmP — 2)} .
So

o = Z 22J75(,0ﬁ (d7%2jpmp — 2)
<c Z<25/(2(2+6)(d+1)) —J < .

The remainder of the proof is the same as in the case of § = 0. The proof of Lemma 2.1 is
completed.

Lemma 2.2. Let the &, ; and the partial-sum processes Z, satisfy

(i) E¢nj =0 Vn,j,

(ii) the set {&nj,J € Jn,n > 1} is uniformly integrable,

(iil) sup Z e/4(27) < o0,

n J—

(iv) 0 < o? = 3 E&& < oo,

VA

(V) EZ2(C) — |C|(n — o) for any C € B.

Then the finite dimensional distributions of {Z,}, on B, converge to the corresponding
finite dimensional distribution of Brownian motion with parameter o.

This is Theorem 4.1 of [5].

Proof of Theorem 2.1. Without loss of generality, we assume 0 = 1. Put ,; =
n~42¢,;. Tt is clear that the conditions (i), (ii) of Lemma 2.2 are satisfied. By the strict
stationarity of &, the condition (iii) of Lemma 2.2 ia also satisfied. To check (iv) and (v) of
Lemma 2.2, we have

_ AﬁCn AN C’nk
j€Jn . keJ, nk
Denote I(j) =n(j —1/n,j], j € Jn, |I(j)| = 1. Note that
¥(nj = nk) = E€nic < 20103 (Inj — nk|)o?
< 21/2(Jnj — nk)a2.
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Since

YoPkD =) Y @Ak

kezd r=1 27‘—1S‘k‘<27‘

S Z cQ(T_l)dgpl/Q (27‘—1)

r=1
0 -T
< 02(26) < 00,
r=1
the condition (iv) of Lemma 2.2 is satisfied. At last, by the same discussion as in the proof
of Corollary 1.4 of [5], the condition (v) of Lemma 2.2 is also satisfied.
§3. Proof of Theorem 1.1

We use the notation of [1]. From the proof of Lemma 3.1 of [1], now we need only prove

lim i sup P{\\Zn(A A 100,04, > /\} =0, (3.1)

n— oo

where Ay = {A\B : A, B € A,|A\B| < v}, pn = [niﬂiﬁﬁ},

AN In,l.i n Cn,'
Zn(ANI,;,0,a) = Z Z | |C’ | i (M (0,a) — Eny, 5(0,a)
1€J,, jES(n,L,i) .l

= Y Vu(ANT,;0,a),

leJ,,,
Tn.j (07 a) = ni(d/2)fnd(ndé/@(lJré))nid/Q|€nj| < a)a j € Jna

where S(n,1,i) = {j € J, : In1; N Cpnj # 0}. Denote Vi = V(AN I,;,0,a). By the
property of nonuniform p-mixing, we have

a > Vm a > Vink
FEe '€/pn SEeaV"lEe k#£LkEJp,,
n a > Vi
+2<P|S<n,1,i>\(§)Ee o Vailleo- (3.2)

Note that |Vy1| < 2a and e®V < 1+ aVy; + a?V2 when aa < 1/4. From Lemma 2.4 of [1]
it follows that

EVA<C|ANILy;  for i=1,2,---,2%
Therefore for aa < 1/4
Eeaan < eE(Xszl < eCQﬁ‘Aﬂln],i‘. (33)

Inserting (3.3) into (3.2) yields

« Z an « Z Vnk
Ee leJp, <UJE€ k#l1, keJp,

where

U}SecazlAnI"I’il(l+2€1/2|S(n’177;)|@( n ))
2pn,

(2;)”(2%))'

< eca2|Amm,i|(1 1 9e1/2
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7
By iteration,
Eealgin Vi < (O0?|ANT,, | (1 + 2¢1/? n ‘p(i))pi
< (2pn)d 2pn
—2d—2d/6—1
Sexp(COéQ‘A|+Cnd( n ) )
2Dy,

= exp<ca2‘A| + Cniﬁ>
S c exp(Oé2|A|) (34)

for large n.

Now we return to the estimate of the left hand side of (3.1). Since 0 < r < 1, we can take

s> 0 such that » < 1/(1 4 s). Set

§; =v/27, j=0,1,---,

A = Age I (IFr=r e /(249), =12

Ao = A(1 — e~ (Hr=r(2+5)/(2+9)

a; = e*j(1+r)/(2+8)a’ j=1,2,--,

a = et/ (9 c= (67’//\0)1/(1+5),

where 7 = E|¢|?10. For any A € Ay there exist Aj,Aj+ € Ap(6;) such that A; C A C A;r

and \A;F\Aj| < ;. Then
Zn(A n Im,O,a)

oo

= Zn(Ao N1y, 0,a) + Z{Zn(Aj+1 N 1p,i,0,a5) — Zn(Aj N 1y 5,0,05)

=0

+ Z{Zn(A n Inﬂ;, aj, aj_l) — Zn(A] N Inﬂ', aj, aj_l)}.
7=0

So if | Z,(- NI 4,0,a)|| 4, is to exceed A, at least one of the following must hold:

(a) for some A € Ag(do), |Zn(AoN1L,4,0,a)] > Ao;
(b) for some j, for some A; € Ag(6;), Ajq1 € Ao(dj41),

|A; AA; 1] < 265,

‘Z.,L(Aj_;,_l N In,iv 0, aj) — Zn(A] N Inﬂ', 0, aj)| > 2/\j;
(¢) for some j, for some Aj,A;r € Ap(0;), A; CAC A;r,

|AF\A;| < 45,

‘Zn(A n Imi,aj,aj_l) — Zn(A] n I7L7i,aj,aj_1)\ > /\j.

The number of pairs A4;, A;r in Ag(d;) is < exp(4H(d;/2)), while the number of pairs A; €
Ao(0;), Aji1 € Ao(dj41) is < exp(4H (6j41/2)). Since H(x) = O(x~") is nonincreasing, we

have

o0 [e%e]
P{Za(- N iy 0,0) |40 > A} <po+D_ri+ D55,
J=0 j=1



78 CHIN. ANN. OF MATH. Vol.18 Ser.B

where
po < 2exp{2H(8p/2)} max P{|Z,(AoNI,;,0,a)] > o},
[Ao|<280

ry < desp(AH (0,41 /2)} (P{1Z0(A121\A;) N 1,1,0,0)| > A}

max
Aj110A;]<25;
+ P{|Zn(Aj\Aj11) N 113, 0,a)| > \j}),

s; < exp{4H(d,/2)} max P{ sup | Zn(ANIy,,a5,a;-1)

AjCAT|ATNA;|<26;  * a,cacat
= Zn(Aj N Ing, a5, a5-1)] > /\j}~
By (3.4), taking o = 1/4ap, we have
A ]
po < 2exp{2H(60/2)} exp(— - + 3 )
4ag ag
A é
< 2exp{c2r+l(50_T AL S 070}.
4&0 ap
Similarly
Aj 0,
r < 4exp{c2’”+15j—’” -4y c—]},
4aj aj
r —r Aj 5
s; < exp{82 H(Sj — 47; + ca—;}.
Thus

Po + Z rj+ Z 5;
j=0 j=1
- N0y
6Zexp{c5j — Ej + ca—j}
7=0

oo
_ 1 1-s __ isr .
65 exp{(cy T VTR f ey T2 2+-<>2”.
j=0

IN

IN

Because of r < 1/(1 + s), the coefficient of 2/” may be made negative as large as required,
by choosing v small enough, and (3.1) follows. The remainder of the proof is the same as
the proof of Theorem 1.1 of [1]. Theorem 1.1 is proved.
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