
Chin. Ann. of Math.
18B: 1(1997),89-98.

A REMARK ON HOFER-ZEHNDER SYMPLECTIC

CAPACITY IN SYMPLECTIC MANIFOLDS M×R2n**

Ma Renyi*

Abstract

The author studies the Hofer-Zehnder capacity and the Weinstein conjecture in M × R2n
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§1. Introduction

In 1985 M. Gromov proved in his seminar paper “Pseudoholomorphic Curves in Sympletic

Manifold”[8], among other things a striking rigidity result, the so-called Gromov’s Sympletic

Squeezing theorem. Consider the vectorspace Cn equipped with its usual Hermitian inner

product. Denote by ⟨·, ·⟩ =Re(·, ·) the associated real inner product and by σ = −Im(·, ·) the
usual induced symplectic form. If B2n(r) denotes the Euclidean r-ball and Z2n(ε) × Cn−1

the symplectic cylinder of radius ε, M.Gromov proved that B2n(R) admits a symplectic

embedding into Z2n(ε) iff R ≤ ε.

In the same paper, M.Gromov gave a definition of symplectic radius for a symplectic

manifold, the so-called Gromov Capacity, i.e.

cG(M,ω) = sup{πr2| there exist a symplectic embedding B2n(r) → M}.

Coming from the variational theory of Hamiltonian dynamics, I. Ekeland and H. Hofer ob-

served in [2,3] that the study of periodic solutions of Hamiltonian Systems can be effectively

used to prove the squeezing theorem, and more important, gave new Symplectic invariant,

the so-called Ekeland-Hofer symplectic capacity cEH . Recently, H. Hofer and E. Zehnder

in [13] propose the axioms of capacity for a general symplectic manifold (M,ω) (with or

without boundary), and construct a new capacity for a general symplectic manifold, the

so-called Hofer-Zehnder capacity cHZ .

The construction of Hofer-Zehnder capacity as given in [13] goes as follows. Denote by

H(M,ω) the subset of C∞(M,R) consisting of all smooth maps satisfying

• There exists a compact subsetK ⊂ M\∂M depending onH such thatH|(M\K) = m(H)

is constant.

• There is a nonempty open set U depending on H such that H|U ≡ 0.
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• 0 ≤ H(x) ≤ m(H) for all x ∈ M .

We shall call H ∈ H(M,ω) admissible if it has the property that all T -periodic solutions

of Hamiltonian systems X = XH(x) on M with 0 < T ≤ 1 are constant. We shall write

Had(M,ω) for the set of admissible H ∈ H(M,ω). We define cHZ : ℵ → R∗
+ by

cHZ(M,ω) = sup{m(H)|H ∈ Had(M,ω)}.

It has been shown in [13] that cHZ defines a symplectic capacity having the additional

property that cHZ(B
2n(r);σ) = cHZ(Z

2n(r);σ) = πr2. In this paper, we shall study the

Hofer-Zehnder capacity and Weinstein conjecture in (M ×R2n, ω⊕σ) and extend the above

result to the case including the ω|π2(M) ̸= 0.

Definition 1.1. Let (M,ω) be a compact symplectic manifold. We define

l(M,ω) =: inf{⟨ω, α⟩|⟨ω, α⟩ > 0, α ∈ [S2,M ]}.

Here [S2,M ] stands for the set of free homotopy classes from S2 to M .

Theorem 1.1. Let (M,ω) be a compact symplectic manifold. Suppose that l(M,ω) > 0

and 0 < πr2 < l(M,ω). Suppose that H : M × Z(r) → R1, a smooth function, satisfies:

H|U ≡ 0 and H|(M×Z(r)\K) = m(H) for an open subset U and a compact subset K of

U and suppose that πr2 < m(H) < l(M,ω). Then, the Hamiltonian systems ẋ = xH(x) on

M × Z(r) has at least one nontrivial 1-periodic solution.

From the above theorem, we obtain the main result in this paper which extends the result

by H. Hofer and E. Zehnder in [ 13 ], i.e.,

Theorem 1.2. Let (M,ω) be a compact symplectic manifold. Suppose that l(M,ω) > 0

and 0 < πR2 < l(M,ω). Then, we have cHZ(M ×B(r);ω ⊕ σ) = πr2.

Proof. Suppose that H : M × Z(r) → R1 satisfies:

• H|U ≡ 0 for an open subset of M × Z(r).

• HM×Z(r)\K ≡ m(H) for a compact subset of M × Z(r).

• 0 ≤ H(x) ≤ m(H) and m(H) > πr2.

Now, if m(H) < l (M,ω), by Theorem 1.1, the Hamiltonian systems ẋ = xH(x) on

M × Z(r) has a nontrivial 1-periodic solution. So, we can assume that m(H) ≥ l(M,ω).

Then there exists 0 < λ < 1 such that πr2 < m(λH) < l(M,ω). By Theorem 1.1, we

know that the Hamiltonian systems ẋ = xλH(x) on M × Z(r) has a nontrivial 1-periodic

solution which corresponds to a nontrivial λ-periodic solution of ẋ = xH(x) on M × Z(r)

with 0 < λ < 1. This completes the proof of Theorem 1.2.

Let Z0, · · · , Zn be coordinates on Cn+1 and denote by π : Cn+1\{0} → CPn the standard

projection map. Let U ⊂ CPn be an open set and Z : U → Cn+1\{0} a lifting of U , i.e., a

holomorphic map with π ◦ Z = id. Consider the differential form

ω0 =

√
−1

2π
∂∂̄ log ||z||2.

One can verify that ω0 is independent of the lifting chosen and ω0 is a globally defined

Kahler form. Thus ω0 defines a hermitian metric on CPn, called the Fubini-Study metric

ds2 on CPn. It is well-known that the De Rham class [ω0] ∈ H2(CPn, Z) is the class of a

hyperplane H and the first Chern class of tangent bundle of CPn is (n+1)[ω0] (see [7]). So,

we will take ω = (n+ 1)ω0 as the standard symplectic structure on CPn. In this case, one

can easily check l(CPn, ω) = n+1, i.e., the smallest one of all positive first Chern numbers.
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Now, we consider the sympletic product of complex projective spaces. Let

(M,ω) = (CPm1−1 × · · · × CPmk−1, ω1 ⊕ · · · ⊕ ωk).

By the property of the Chern class and our choice on ωi, we know that the De Rham

cohomology class [ω1 ⊕ · · · ⊕ ωk] is the first Chern class of T (CPm1−1 × · · · × CPmk−1).

By the integerability of the first Chern class on H2(M,Z) ≃ π2(M), we know l(M,ω) > 0.

In addition, the all Chern numbers form a subgroup Γ of the integer group Z. By an

easy calculation, we know that l(M,ω) is the smallest positive number in Γ and l(M,ω) =

(m1, · · · ,mk), where (m1, · · · ,mk) denotes the greatest common divisor of m1, · · · ,mk.

Corollary 1.1. For n > 1, consider on CPn−1 the standard symplectic form ω such that

ω[u] = n for a generator u of H2(CPn−1). Suppose 0 < πr2 < (m1, · · · ,mk). Then

cHZ(CPm1−1 × · · · × CPmk−1 ×B(r), ω1 ⊕ · · · ⊕ ωk ⊕ σ) = πr2,

cHZ(CPm1−1 × · · · × CPmk−1 × Z(r), ω1 ⊕ · · · ⊕ ωk ⊕ σ) = πr2,

where (m1, · · · ,mk) denotes the greatest common divisor of m1, · · · ,mk.

Now, let us recall some notations. Consider a compact (2n− 1) dimensional manifold S

equipped with a 1-form λ such that λ ∧ (dλ)n−1 is a volume form. One calls λ a contact

form.

The manifold S carries a natural line bundle defined by

Ls = {(x, ξ) ∈ TS|dλ(x)(ξ, η) = 0 for all η ∈ TxS} .

Hence Ls ⊂ TS and since λ ∧ (dλ)n−1 is a volume, λ(x, ξ) ̸= 0 for (x, ξ) ⊂ LS , if ξ ̸= 0.

Denote by D(S) the closed integral curves for the (integrable) distribution LS → S. A.

Weinstein conjectured that D(S) ̸= 0 at least if H1(S;R) = 0.

Let us say that a compact smooth hypersurface S in a symplectic manifold (M,ω) is of

contact type provided there exists a 1-form λ on S such that dλ = i∗ω, where i : S → M

is the inclusion and λ(x, ξ) ̸= 0 for non-zero elements in LS .

As a corollary of Theorem 1.2 and the Theorem 4 in [13], we obtain

Theorem 1.3. Let (M,ω) be a compact symplectic manifold and supposed that l(M,ω) >

0,
∑

⊂ M ×Z(
√

l(M,ω)/π) is a compact hypersurface of contact type. Then
∑

has at least

one closed characteristic.

Remark 1.1. Theorem 1.3 implies that the Weinstein conjecture holds in

M × Z(
√
l(M,ω)/π).

Remakr 1.2. In the case ω|π2(M) = 0, l(M,ω) = ∞. Theorem 1.3 implies the results

proved by A. Floer, H. Hofer, C. Viterbo in [6].

Remark 1.3. In [16], we have proved the Theorem 1.1 under the assumption 0 < πr2 <
1
2 l(M,ω) by the similar method. We do not know if the restriction 0 < πr2 < l(M,ω) in

Theorem 1.1 is necessary or not.

Corollary 1.2. For n > 1, consider on CPn−1 the standard symplectic structure ω such

that πr20 =
∫
CP 1 ω. Let

∑
⊂ M × Z(r0) be a compact hypersurface of contact type. Then∑

has at least one closed characteristic.

We shall prove Theorem 1.1 by slight modification of the method proposed by A. Floer,

H. Hofer, C. Viterbo in [6]. In the first two sections, we reformulate the proof of Theorem
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1.1 to the compactness of the set of solutions of the associated nonlinear Cauchy-Riemann

equations. We shall estimate the energy or area of a possible splitting holomorphic sphere

by the geometric radius r in M×Z(r) (see Lemma 2.1). Then, by the standard argument on

the blowing-up sequence and the assumption πr2 < l(M,ω), we can remove the possibility

of blow up or bubble. Thus, we yield the local compactness theorem. By the nonlinear

Fredholm alternative (see §4 or [6], [8], [16]), we know that the global compactness theorem

does not hold. The failure of global compactness implies the existence of nontrivial periodic

solutions (see §3.2). We complete the proof of Theorem 1.1 by the standard argument as in

[6].

Note. We recently noticed that the method of this paper can be improved to prove

the weinstein conjectures in T ∗N × R2n(n ≥ 1), where (T ∗N, dθ) is the cotangent bundle

of N with Liouville form θ =
n∑

i=1

yidxi. The main fact we used in this case is that the

J-holomorphic can not touch the contact boundary from inside. For the details and another

method, see [17].

§2. An Extension of the Hamiltonian Function

We first assume that H satisfies the assumption of Theorem, i.e., we assume that H

vanishes in a neighbourhood U of u0 and denote byK a compact set such thatK ⊂ M×Z(r)

and H(x) = m(H) for x ∈ (M × Z(r)\K). We shall extend the function H|K in a suitable

way to a function H̄ defined on M ×R2n.

Pick 0 < ε1 < 1
2 such that

π(1 + ε1)r
2 < m(H) < l(M,ω) (2.1)

and pick a smooth f : [0,∞) → R such that

• f(t) = m(H), t ≤ r,

• f ′′(t) > 0, t > r,

• f(t) = π(1+ε1)t
2, t large, (2.2)

• 0 ≤ f(t) ≤ 2π(1 + ε1)t, t ≥ 0,

• f ′(t0) = 2πt0 for t0 > r

implies t0 =
√
2r.

Now, let R2 > r be such that

Supp(H −m(H)) ⊂ M ×B(R2) (2.3)

and choose a smooth function g : [0,∞) → R satisfying

g(s) = 0, 0 ≤ s ≤ R2,

g(s) = 1
2πs

2, s large, (2.4)

0 < g′(s) < 2πs, s > R2.

The extension H of HK is now defined as follows. Set z = (x, y), x ∈ M,y ∈ R2n, y =

(y1, y2), y1 ∈ R2, y2 ∈ R2n−2,

H =

{
H(z), if z ∈ (M × Z(r)) ∩ (M ×B(R2)),
f(|y1|) + g (|y2|) , if z ̸∈ (M × Z(r)) ∩ (M ×B(R2)).

(2.5)

Clearly H ∈ C∞(M ×R2n) and H(x) = H(x) if x ∈ K.

In the following, we still denote H by H for convenience.
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One can use H to associate the so-called Hamiltonian Systems (H) on M ×R2n :{
ż = XH(z),

z(0) = z(1).
(2.6)

As in [6,13], the 1-periodic solutions of ż = xH(z) falls in

• non-constant 1-periodic solution in K,

• constant,

• z(t) = (x, y(t)) where y(t) = y0e
2πit, y0 = (y1,0, · · · , 0) and f (|y0|) = 2π|y0|. Thus,

|y0| =
√
2r.

We shall call “triviall solution” any of the last two kinds of solutions. Then Theorem 1.1

is equivalent to

Proposition 2.1 The Hamiltonion system (H):{
ż = XH(z),

z(0) = z(1),
(2.7)

with H as in Definition 1.2, has at least one non-trivial solution.

Set z = (z1, z2) ∈ Ω(M × R2n) (loop space), z1 ∈ Ω(M), z2 ∈ Ω(R2n), z = (z1, z2) :

D → M × R2n, z|∂D = z. For any given point x ∈ M , we define an action functional on

{x} ×R2n ⊂ M ×R2n as follows:

AH(x)(z2) =

∫
D

z∗2σ −
∫
∂D

H(x, y). (2.8)

Since the standard symplectic form σ on R2n is exact, we can rewrite AH(x)(·) as

AH(x)(y) =
1

2
⟨Jẏ, y⟩ −

∫ 1

0

H(x, y). (2.9)

Lemma 2.1. For any trivial solution (x, y) of Hamiltonian system (H), we have the

estimates

−m(H) ≤ AH(x)(y) ≤ 0. (2.10)

Proof. See the proof of Lemma 4.6 in [15].

§3. A Holomorphic Curve Approach to the Problem

Let (V, ω) be a symplectic manifold, such that (V, ω) = (M × R2n, ω ⊕ σ). Let J be an

almost complex structure with ω, J0 a standard complex structure on R2n. Set J = J ⊕ J0.

Thus, J is an almost complex structure on V compatible with ω.

Let Γ be the set obtained by gluing (−∞, 0) × S1 and D with its orientation reversed

along {0} × S1 ≃ ∂D,Γs = Γ− (−∞s)× S1,Γ− = Γ− Γ0 = (−∞, 0)× S1.

Then, Γ has a canonical complex structure, and with this structure, Γ is conformally

diffeomorphic to S2 − 0 ≃ C identifying D with the disk of radius 1
2π in C (or the southern

hemisphere in S2) and (−∞, 0] × S1 to C − D(0, 1
2π ) (or the north hemisphere minus the

north pole) by polar coordinates (r, t) 7→ e−re2πit.

Let U = H−1(0), u0 ∈
∑

, D(u0, ε) ⊂ U. γ ⊂ S(u0,
ε
4 ) a geodesic circle and u1 =

γ(0), a (u1, γ(t)) =
∫ t

0
||γ′(τ)||dτ a arclengh of γ starting at γ(0) = u1 and ending at γ(t).
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Similar to [6], we can formulate the proof of Proposition 1.1 to the study of compactness

of the set of solutions of nonlinear Cauchy-Riemann equations associated by (H), i.e.,

∂u(z) = gλc (z, u(z)) on Γ, (3.1)

where

gλc(z, u) =

{
−λc, on D,
−▽H (u(z)) , on Γ−,

0 ≤ λ ≤ 1,

u is homotopic to zero and satisfies

lim
s→−∞

u(s, t) = u(−∞) ∈ γ in H1(S1) (3.2)

and ∫ −1

−∞

∫ 1

0

∣∣∣∂u
∂s

∣∣∣2dtds = δ

{∫ 0

−1

∫ 1

0

∣∣∣∂u
∂s

∣∣∣2dtds+ a (u1, u(−∞))

}
, (3.3)

and ∂ stands for Cauchy-Riemann operater. For the details, refer to [6].

One can easily verify that these constraints are independent. Thus it is a 2n-dimensional

condition. Since lim
s→−∞

u(s, t) = u(−∞) ∈ γ, we can extend the map u : Γ 7→ V to the map

u : Γ ∪ {−∞} = S2 7→ V by setting u(−∞) = lim
s→−∞

u(s, t). Thus, we shall identifying the

map u : Γ 7→ V with the map u : S2 7→ V in the following.

Lemma 3.1. If C is a vector field on (V, ω) = (M × R2n, ω ⊕ σ) induced by a constant

vector field C = (c1, 0, · · · , 0) on Cn, and if u = (x, y) is a solution of (2.1), (2.2), (2.3),

then we have the following prior-estimates:

E(u) :=

∫ 0

−∞

∫ 1

0

|∂u
∂s

|2dtds+ 1

2

∫
D

| ▽ x|2 ≤ πr2.

Proof. See the proof of Lemma 4.2 in [16].

Lemma 3.2. If c is a vector field on (V, ω) = (M × R2n, ω ⊕ σ) induced by a constant

vector field on c, then, for |λ| = 1 and |c| large enough, the equations (3.1), (3.2), (3.3) have

no solution.

Proof. See the proof of Lemma 4.1 in [16].

§4. Compactness of the Set of Solutions

4.1. Local Compactness Theorem

Lemma 4.1. Let (λn, un) = (λn, xn, yn) be a sequence of solution in (3.1), (3.2), (3.3).

Then, for any s ∈ (−∞, 0), after taking a subsequence, ||yn||W 1,p(Γs) ≤ c(s) for all n’s, c(s)

depends only on s.

Proof. For a solution un of (3.1), by the definition,∫ s

∞

∫ 1

0

u∗
nω − infH (un(s, ·)) ≥ 0. (4.1)

Since un is homotopic to zero∫
Γ

u∗
nω =

∫ s

−∞

∫ 1

0

u∗
nω +

∫
Γs

u∗
nω = 0. (4.2)

Taking (4.2) into (4.1), by the definition of metric, we have

1

4

∫
Γs

(
|∂un|2 − |∂un|2

)
−
∫

H (Un(s, ·)) ≥ 0 (4.3)
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and ∫
Γs

(
|∂un|2 + 4

∫
H(un(s, ·)

)
≤

∫
Γs

|∂u|2 =

∫
Γs

|∂xn|2 +
∫
Γs

|∂yn|2

≤ c1(s) + c2(s)

∫
Γs

|yn|2. (4.4)

The last inequality follows from the equation satisfied by un, and the fact that

|gλnc (z, un(z)) | ≤ π(1 + ε1)|yn|. (4.5)

Thus ∫
Γs

|yn|2 ≤ c1(s) + c2(s)

∫
Γs

|yn|2, (4.6)∫
Γs

|∂yn|2 ≤ c1(s) + c2(s)

∫
Γs

|yn|2. (4.7)

Hence

||yn||w1,2(Γs) ≤ c3(s)||yn||L2(Γs + c4(s). (4.8)

Let now yn = 1
||yn||L2(Γs)

yn = 1
ρn

yn. Then yn is bounded in W 1,2(Γs) and hence has a

subsequence converging to y∞ in Lp(Γs) (compactness of W 1,2 ⊂ Lp) and we can assume

weak convergence in W 1,2(Γs). Since yn satisfies

∂yn = −λn

ρn
on D

= −2π(1 + ε1)yn + εn on Γs ∩ Γ−, (4.9)

yn is a weak solution

∂y∞ =

{
0 on D,
−2π(1 + ε1)y∞ on Γs ∩ Γ−.

(4.10)

Also consider

0 ≤ 1

ρ2n
AH(un)(s)

=
1

4ρ2n

(∫
Γs

(|∂xn|2 − |∂xn|2 + |∂yn|2 − |∂yn|2)
)
− 1

ρ2n

∫
H (un(s, ·))

≤ 1

ρ2n
πr2. (4.11)

For s < s, elliptic estimates imply strong convergence yn 7→ y∞ in Γs, so that (4.11) implies

1

4

∫
Γs

(
|∂y∞|2 − |∂yn|2

)
−
∫

π(1 + ε1)|yn(s, ·)|2

→ 1

4

∫
Γ|s

(
|∂y∞|2 − |∂y∞|2

)
−
∫

π(1 + ε1)|y∞(s, ·)|2 = AH∞(y∞)(s)
(4.12)

and 1
ρ2
n

∫
Γs

|∂xn|2 goes to zero because ∂xn −▽xH(xn, yn) is bounded.

So AH∞(y∞)(s) = 1
ρ2
n

∫
Γs

|∂xn|2. But the right hand side increases with s, whereas the

left hand side is decreasing which follows from:

AH∞(y∞)(s) =
1

4

∫
Γs

(
|∂y∞|2 − |∂y∞|2

)
−

∫
π(1 + ε1)|y∞(s, ·)|2

=

∫
Γs

y∗∞ω −
∫

π(1 + ε1)|y∞(s, ·)|2. (4.13)
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We calculate the derivative A′
H∞

(y∞)(s) of AH∞(y∞)(s) as usual. We obtain

AH∞(y∞)(s) = −
∫ 0

s

∫ 1

0

|∂y∞|2dtds. (4.14)

Therefore AH∞(y∞)(s) is a constant. Hence y∞(s, ·) is a solution of ż = 2π(1 + ε1)z and

y∞(s, ·) = 0 for s < s.

This, by Fubini’s Theorem, contradicts ||y∞||L2(Γs) = 1. As a result, ||yn||w1,2(Γs) is

bounded by a constant c(s).

Now, we can prove the locall compactness theorem, i.e.

Theorem 4.1. Let (λn, un) be a sequence of solutions of (3.1)-(3.3). Then, after taking

subsequence, (λn, un) converges to (λ, u) in W 1,p
loc and u satisfies ∂u(z) = gλc (z, u(z)).

Proof. See the proof of Theorem 4.1 in [16].

4.2. Global Compactness Theorem

Now if we assume that the Hamiltonian system (H) has no nontrivial solution, then we

can obtain the global compactness theorem from the local one, i.e.,

Therem 4.2. Suppose that the Hamiltonian system (H) has only trivial solutions. Let

(λn, un) be a sequence of solutions on (3.1)-(3.3). Then, after taking a subsequence (λn, un)

converges to some (λ, u) in W 1,p(S2, V ) such that u satisfies (3.1)-(3.3).

Proof. Since H ≡ 0 on set U and u0 ∈ U , we can take disk D(u0, ε) ⊂ U . We can

of course assume that zn = (rn, θn) ∈ (−∞,−1) × S1 and also that un(zn) goes to a limit

u0 ∈ γ ⊂ S(u0,
ε
4 ). Since the set of limit points of sequences un(zn) is obviously connected

and contains u0, we can even assume that rn is the smallest (remember that rn ≤ −1) real

number such that un((−∞, rn)× S1) ⊂ D(u0,
ε
2 ).

If rn are bounded from below by a constant r0, the theorem can be easily checked. So,

we assume rn → −∞(n → ∞). We now set vn(r, θ) = un(r + rn, θ + θn) for (r, θ) ∈ ∂vn =

−▽H(vn) on (−∞,−rn)× S1 and E(vn) =
∫ −rn
−∞

∫ 1

0
|∂vn

∂s
|2dtds ≤ E(un) ≤ πr2 < l(M,ω).

Thus, the same proof as used in Theorem 4.1 shows that vn converges on all compact subsets

to some v defined on (−∞,+∞)× S1 and of course

∂v = −▽H(v), E(v) =

∫ +∞

−∞

∫ 1

0

∣∣∣∂v
∂s

∣∣∣dtds ≤ πr2 < l(M,ω).

We shall prove that v is a constant by four steps.

Set v = (v1, v2), where v1, v2 are M,R2n components of v respectively.

(1) For a sequence sn going to infinity, then, after taking a subsequence, v(sn, ·) converges
to a trivial solution (x, y(t)) of (H) in H1(S1) and

lim
n→∞

∥∥∥∂v1
∂t

(sn, t)
∥∥∥
L2(S1)

= 0.

To prove the assertion (1), we assume the contrary, i.e., we assume that there exists

a sequence τα → ∞ so that v(τα) does not accumulate at H1(S1). Then, the sequence

vα(τ, t) = v(τα + τ, t) on
[
− τα

2 , τα
2

]
satisfies the hyperthesis of Theorem 4.1 with

E(vα) =

∫ τα
2

− τα
2

∫ 1

0

∣∣∣∂vτ
∂τ

∣∣∣2 =

∫ 3τα
2

τα
2

∫ 1

0

∣∣∣∂v
∂s

∣∣∣2 → 0 (α → ∞).

Hence uα converges locally to some constant trajectory, by the assumption of Theorem 4.2,

which is a trivial solution of (H). This contradicts the above assumption.
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(2) There exist two sequences of numbers such that

0 ≤ lim
n→∞

∫ sn′′

sn′

∫ 1

0

v∗1ω < l(M,ω). (4.15)

To prove (4.15), we define AH(v) : R1 ×R1 7→ R1 as follows:

AH(v)(s1, s2) =

∫ s2

s1

∫ 1

0

v∗ω −
∫ 1

0

(v ((s2, ·))−H (v(s1, ·))) dt. (4.16)

Clearly AH(v) : R1 × R1 7→ R1 is a smooth map. We differentiate (4.16) on variable s2
and then integrate it as usual. Thus we obtain

AH(v)(s1, s2) =

∫ s2

s1

∫ 1

0

|∂v
∂s

|2dtds ≤ δ
[
πr2 + arclengh(γ)

]
. (4.17)

We choose two sequences sn′, sn′′ of numbers such that s′n → −∞, sn′′ → ∞ satisfying

assertion (1). Since vn
(
(−∞, 0)× S1

)
= un

(
(−∞, rn)× S1

)
⊂ D(u0,

ε
2 ) and H ≡ 0 on

D(u0, ε), v(sn′, ·) converges to a constant by assertion (1) and ∂v = 0 on (−∞, 0)× S1.

lim
n→∞

∫ sn′′

sn′
v∗2ω −

∫ 1

0

(H (v(sn′′, ·))−H (v(sn′, ·)))

= lim
n→∞

[
−1

2
< −Jv̇(sn′′, ·)v(sn′′, ·) > −

∫ 1

0

H (v(sn′′, ·))
]
. (4.18)

By Lemma 1.1 and assertion (1)

−m(H) ≤ lim
n→∞

[∫ sn′′

sn′

∫ 1

0

v∗2ω −
∫ 1

0

(H (v(sn′′, ·))−H (v(sn′, ·)))
]
≤ 0. (4.19)

Note that v∗ω = v∗1ω + v∗2ω. Combining (4.16—4.19), we get

0 ≤ lim
n→∞

∫ sn′′

sn′

∫ 1

0

v∗1ω ≤ δ
[
πr2 + arclenth(γ)

]
+m(H) < l(M,ω) (4.20)

for δ small enough.

(3) lim
n→∞

∫ sn′′
sn′

∫ 1

0
v∗1ω = 0.

If assertion (3) does not hold, by assertion (2), we assume

0 ≤ lim
n→∞

∫ sn′′

sn′

∫ 1

0

v∗1ω < l(M,ω). (4.21)

By assertion (1), we can fill the small loops v1(sn′, ·), v1(sn′′, ·) by small disks Dn′, Dn′′
respectively in such a way that v on [sn′, sn′] × S1 gives together with the filled disks a

smooth map v1,n : Dn′ ∪
(
[sn′, sn′′]× S1

)
∪Dn′′ 7→ M and by (4.21)

0 <

∫
s2
v∗1,nω < l(M,ω)

contradicting the definition of l(M,ω).

(4) v is a constant.

The assertions (1)-(3) imply
∫∞
−∞

∫ 1

0
|∂v∂s |

2dtds = 0, i.e., v is a constant trajectory. Then,

H ≡ 0 on D(u0, ε) and v(−∞, 0) × S1) ⊂ D(u0,
ε
2 ) implies that v is a constant. Since

vn(0, 0) = un(zn) goes to u0, this constant has to be u0. This gives a contradiction by an

argument used by A. Floer, H. Hofer, C. Viterbo in [6]. This completes the proof of Theorem

4.2.
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§5. A Fredholm Formulation of Our Problem

Let B =
{
u ∈ W 1,p(S2, V )|u(−∞) ∈ γ and u homotopic to zero

}
and p > 2, ε → B

be the Banach vector bundle with fibre εu, where εu stands for the set of v which are

Lp–sections of the bundle over S2 with fibre C(TzS
2, Tu(z)). Rλ(u) = ∂u(z) − gλc (z, u(z))

defines a c∞–section Rλ of ε → B with Fredholm index zero. Then, the degree theory on

Fredholm section can be used to complete the proof of Theorem 1.1 as in [4]. For the details,

one can refer to [6]. This completes the proof of Theorem 1.1.
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