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BOUNDED SOLUTIONS AND PERIODIC SOLUTIONS

OF VISCOUS POLYTROPIC GAS EQUATIONS
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Abstract

A piston problem of viscous polytropic gas equations is discussed. It is shown that the global

solution is bounded uniformly in time if the piston motion is bounded and that if the piston
motion is periodic in time, then there exists a periodic solution to the piston problem with the
same period.
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§1. Introduction

The one-dimensional motion for the viscous gas is well formulated by the following stytem

in Lagrangian coordinates 
vt − ux = 0,

ut + p(v)x =
(µux

v

)
x
+ f,

(1.1)

where v is the specific volume, u is the velocity, p is the pressure, µ is the viscosity coefficient

and f is the external force. In what follows we will assume that the gas is polytropic, i.e.,

p(v) = av−γ , where a > 0, γ > 1 are positive constants, and that the viscosity coefficient is

constant µ =const.> 0.

The sysyem (1.1) is considered on a fixed domain Q in the Lagrangian mass coordinate

Q = {t ≥ 0, 0 ≤ x ≤ 1}

with the boundary conditions:

u(0, t) = 0, u(1, t) = u1(t), (1.2)

where u1(t) is a given function (piston velocity).

We treat two initial boundary value problems.

(i) The external force problem, i.e., the system (1.1), (1.2) with u1(t) = 0.

(ii) The piston problem, i.e., the system (1.1), (1.2), with f = 0.

We only give the treatment for piston problem in this paper, the external force problem

can be handled similarly. When gas is assumed polytropic, it is known by Kanel[2] and

Kanzhikhov[3] that the initial boundary value problem with fixed boundary has a unique
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global in time solution which decays to the constant equilibrium state as time tends to

infinity. While in the case when a piston acts on the gas, the obtained global in time

solution has only a bound which depends on time (see [3] and [1]), therefore the asymptotic

behavior is unknown. In the case of p(v) = av−1, a > 0, Matsumura and Nishida[4] showed

that if the piston motion is bounded with respect to time, then the bounded solution exists

globally in time, and if the piston motion is periodic in time, there exists at least a periodic

solution with the same period. In contrast with the case of p(v) = av−1 in [4], certain

essential difficulties occur when we deal with the case of p(v) = av−γ , a > 0, γ > 1. For the

case of p(v) = av−1, the positive lower and upper bounds, independent of t, can be obtained

easily, while in the case of p(v) = av−γ , a > 0, γ > 1, it seems that the boundness of the

piston motion along is not sufficient to ensure that the specific volume v can be confined

in a bounded interval [v, v̄] with positive v and v̄, independent of t. However, if the piston

motion is suitably small, we can show that the bounded solution exists globally in time. For

the periodic solution, we prove that if the piston motion is periodic in time, then there exists

at least a periodic solution with the same period provided the piston motion |u1(t)|+
∣∣du1(t)

dt

∣∣
is suitably small.

§2. Uniformly Bounded Solution of the Piston Problem

In this section we discuss the piston problem
vt − ux = 0,

ut +
( a

vγ

)
x
=

(µux

v

)
x
, t ≥ 0, x ∈ [0, 1],

(2.1)

u(0, t) = 0, u(1, t) = u1(t), t ≥ 0, (2.2)

with the initial data

(v, u)(x, 0) = (v0, u0)(x), 0 ≤ x ≤ 1, (2.3)

where we assume that

B−1
1 ≤ v0(x) ≤ B1 for a positive constant B1, (2.4)

v0 ∈ C1+α(0, 1), u0 ∈ C2+α(0, 1) for some 0 < α < 1 (2.5)

and the compatibility condition

u0(0) = 0, u0(1) = u1(0). (2.6)

Furthermore, we assume ∫ 1

0

u0(x)dx = 1 (2.7)

for convenience. Our main result in this section is

Theorem 2.1. If the piston does not collide the fixed boundeary x = 0 and does not go

to positive infinity neither, i.e.,

X−1
0 < X(t) ≡ 1 +

∫ 1

0

u1(s)ds < X0

for a positive constant X0 and sup
t≥0

{
|u1(t)|+

∣∣∣du1(t)
dt

∣∣∣} is suitably small, then the piston prob-

lem (2.1)-(2.3) with (2.4)-(2.7) has the global solution in time, which is uniformly bounded
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with respect to time in H1-norm. Moreover, v(x, t) possesses positive lower and upper

boundes, independent of t.

Since the global existence and uniqueness with v(x, t) > 0 (x ∈ [0, 1], t ≥ 0) have been

proved in [3] and [1], we only need to obtain the bounded estimates of the solution which

will finish the proof of Theorem 2.1.

In view of (2.1)1 and (2.7), it is easy to obtain that∫ 1

0

v(x, t)dx =

∫ 1

0

v0(x)dx+

∫ t

0

u1(s)ds

= 1 +

∫ t

0

u1(s)ds ≡ X(t).

Now, we make the transformation of the unknown variable to get the piston boundary

condition into the fixed boundary condition. Define

U(x, t) =
u1(t)

X(t)

∫ x

0

v(x, t)dx,

and let

w(x, t) = X(t)(u(t, x)− U(x, t)) and m(x, t) = v(x, t)/X(t).

In order to simplify the treatment of the condition m > 0 we introduce the change of

variable

m = en,

with which the piston problem takes the form
nt −

en

X(t)2
wx = 0,

wt +
(ae−γn)x
X(t)γ−1

=
1

X(t)
(µe−nwx)x −X(t)

du1(t)

dt

∫ x

0

en(ξ, t)dξ

(2.8)

and ∫ 1

0

en(x, t)dx = 1, w(0, t) = w(1, t) = 0, (2.9)

n,w are imposed with corresponding initial data.

Define

ε
def.
= sup

t≥0

{
|u1(t)|+

∣∣∣du1(t)

dt

∣∣∣}
and assume ε > 0 for convenience.

In this section, C will denote a generic constant which may depend only on X0, µ, a and

γ.

After a straightforward calculation, and using (2.8), we arrive at{1

2
w2 + aX3−γ(t)

[
en − 1− 1

(1− γ)
(e(1−γ)n − 1)

]}
t

= −aX1−γ(e−γnw)x + aX1−γwx + µX−1(e−nwx)w

−X
du1

dt
w

∫ x

0

endξ + a(3− γ)X2−γu1

[
en − 1− 1

(1− γ)
(e(1−γ)n − 1)

]
(t ≥ 0).
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Integrating the above equation over [0, 1], with the help of (2.9), one can get{∫ 1

0

[1
2
w2 +

aX3−γ

γ − 1
(e(1−γ)n − 1)

]
dx

}
t
+

∫ 1

0

µ

X
e−nw2

xdx

≤ C
[
ε

∫ 1

0

|w|dx+ ε
∣∣∣ ∫ 1

0

(e(1−γ)n − 1)dx
∣∣∣], t ≥ 0. (2.10)

Multiplying (2.8)2 with nx

X(t) and using (2.8)1, (2.9), we obtain{∫ 1

0

[µ
2
n2
x − wnx

X(t)

]
dx

}
t
+

∫ 1

0

γae−γnn2
x

X(t)γ
dx

≤ ε

X(t)2

∫ 1

0

|w||nx|dx+
1

X(t)3

∫ 1

0

e−nw2
xdx+ Cε

∫ 1

0

|nx|dx, t ≥ 0.
(2.11)

Let

M = max
{
∥n(·, 0)∥L∞ ,

16X0

µ

√
E(0)

7

}
. (2.12)

The definition of E(0) will be given below.

Define T ∗ as

T ∗ = sup{t| ∥n(·, t)∥L∞ ≤ 2M, t ≥ 0}. (2.13)

We will prove that T ∗ = +∞ provided ε > 0 is suitably small.

At first, (2.9) implies that there exists z(t) ∈ [0, 1] for any t ≥ 0 such that

n(z(t), t) = 0. (2.14)

(2.9) and Hölder inequality imply that

|w(x, t)| = |w(x, t)− w(0, t)| =
∣∣∣ ∫ x

0

wx(ξ, t)dξ
∣∣∣

≤
(∫ 1

0

e−nw2
xdx

)1/2

, x ∈ [0, 1], t ≥ 0. (2.15)

Similarly, with the help of (2.14), it holds that

|n(x, t)| ≤
(∫ 1

0

n2
xdx

)1/2

, t ≥ 0, x ∈ [0, 1]. (2.16)

If T ∗ < +∞, we have the following estimates.

(2.14) implies

|e(1−γ)n(x, t)− 1| = |e(1−γ)n(x, t)− e(1−γ)n(z(t), t)|

≤ e2γM
(∫ 1

0

n2
xdx

)1/2

, 0 ≤ t ≤ T ∗. (2.17)

It follows from the above inequalities and Cauchy inequality that for any α > 0,{∫ 1

0

[1
2
w2 +

aX3−γ

γ − 1
(e(1−γ)n − 1) +

µα

2
n2
x − αwnx

X(t)

]
dx

}
t

+
[ µ

4X(t)
− 3α

2

X(t)γe2γM

γaX(t)4
ε2 − α

X(t)3

] ∫ 1

0

e−nw2
xdx

+
αγa

2X(t)γ
e−2γM

∫ 1

0

n2
xdx

≤ C(1 +
1

α
)ε2ε6γM , 0 ≤ t ≤ T ∗. (2.18)
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Let

E(t)
def.
=

∫ 1

0

[1
2
w2 +

aX3−γ

γ − 1
(e(1−γ)n − 1) +

µα

2
n2
x − αwnx

X(t)

]
(x, t)dx.

If ε is so small that

3e2γMε2

2γa
≤ 1

Xγ−1
0

≤ 1

X(t)γ−1
,

which implies

3e2γMε2X(t)γ−4

2γa
≤ 1

X(t)3
,

then we can take α = µ
16X2

0
. Noting that X0 ≥ 1 due to X−1

0 ≤ X0, it is easy to check that∫ 1

0

[1
4
w2 +

aX3−γ

γ − 1
(e(1−γ)n − 1) +

7µ2

256X2
0

n2
x

]
(x, t)dx

≤ E(t) ≤
∫ 1

0

[3
4
w2 +

aX3−γ

γ − 1
(e(1−γ)n − 1) +

9µ2

256X2
0

n2
x

]
(x, t)dx, 0 ≤ t ≤ T ∗,

(2.19)

and

E(t)t +
µ

8X0

∫ 1

0

e−nw2
x +

γaµ

32X2+γ
0

e−2γM

∫ 1

0

n2
xdx ≤ Cε2e6γM , 0 ≤ t ≤ T ∗. (2.20)

(2.17) implies that∫ 1

0

e(1−γ)ndx ≤ 1

2ε
e−2γM

∫ 1

0

n2
xdx+

ε

2
e6γM , 0 ≤ t ≤ T ∗. (2.21)

Since en − 1
(1−γ) (e

(1−γ)n − 1) − 1 > 0 for any n, it follows from (2.15), (2.19), (2.20) and

(2.21) that if ε is so small that ε ≤ K1e
−2γM (K1 is a positive constant not dependent on ε

and µ), then

E(t)t + β1εE(t) ≤ Cε2e6γM , 0 ≤ t ≤ T ∗, (2.22)

where β1 > 0 is a positive constant. It reads from (2.22) that

E(t) ≤ E(0) +
Cε

β1
e6γM , 0 ≤ t ≤ T ∗, (2.23)

which together with (2.16) and (2.19) gives

∥n(x, t)∥L∞ ≤
[256X2

0

7µ2

(
E(0) +

Cε

β1
e6γM

)]1/2
, 0 ≤ t ≤ T ∗. (2.24)

Since 16X0

µ

√
E(0)
7 ≤ M , it is known from (2.24) that if ε is suitably small, then

∥n(·, T ∗)∥L∞ < 2M.

This conflicts with the definition of T ∗. Hence T ∗ = +∞, which implies that ∥n(·, t)∥L∞ ≤
2M for t ≥ 0. At last, it is not difficult to obtain

d

dt

(
E(t) +

β2

2

∫ 1

0

w2
xdx

)
+ ν

(
E(t) +

β2

2

∫ 1

0

w2
xdx

)
≤ C, t ≥ 0

if we choose β2 and ν small. This completes the proof of Theorem 2.1.
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§3. Periodic Solutions

In this section, we suppose that the piston pathX(t) and so u1(t) =
dX
dt be periodic with

respect to time with periodic T, and X−1
0 ≤ X(t) ≤ X0, for t ∈ [0, 1] and X0 > 0. The mian

result is

Theorem 3.1. For any given δ > 0, there exists at least one periodic solution (n,w) for

(2.8), (2.9) with the period T in the set {(n,w)| |n(x, t)| ≤ δ, |w(x, t)| ≤ δ, x ∈ [0, 1], t ∈
[0, T ]}, pervided

ε
def.
= sup

0≤t≤T

{
|u1(t)|+

∣∣∣du1(t)

dt

∣∣∣}
is suitably small. Moreover, it holds that{

n ∈ C(0, T,H1), nt ∈ C(0, T, L2) ∩ L2(0, T,H1),

w ∈ C(0, T,H1) ∩ L2(0, T,H2), wt ∈ L2(0, T, L2).

The proof of this theorem is divided into two parts:

(i) discretization with respect to the space variable,

(ii) energy estimstes to apply Leray-Schauder fixed point theory.

Let us discretize as follows
∆x = 1/N, ni(t) = n(t, (i− 1/2)∆x), i = 1, 2, · · · , N,

wi(t) = w(t, i∆x), i = 1, 2, · · · , N − 1,

n = (n1, n2, · · · , nN ), w = (w1, · · · , wN−1).

(3.2)

Consider the system of nonlinear ordinary differential equations

nit −
e−n1

X(t)2
wi − wi−1

∆x
= 0, i = 1, 2, · · · , N,

wit +
a(e−γni+1 − e−γni)

X(t)γ−1∆x
− µ

X(t)∆x

(
e−ni+1

wi+1 − wi

∆x

− e−ni
wi − wi−1

∆x

)
= qi, i = 1, 2, · · · , N − 1,

(3.3)

where

qi = X(t)
du1

dt

i∑
k=1

exp(nk)∆x, (3.4)

the boundary condition

w0(t) = wN (t) = 0 (3.5)

is imposed and the condition

N∑
i=1

exp(ni(t))∆x = 1, t ∈ [0, 1] (3.6)

is required.

At first, we establish the following lemma.

Lemma 3.1. For any given δ > 0, there exists a periodic solution (n,w) for (3.3)-(3.6)

with period T in set {(n,w)| |n|∞ ≤ δ, |w|∞ ≤ δ}, provided

ε = sup
0≤t≤T

{
|u1(t)|+

∣∣∣du1(t)

dt

∣∣∣}
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is suitably small, where

|n|∞ = max{|n1|, |n2|, · · · , |nN |},
|w|∞ = max{|w1|, |w2|, · · · , |wN−1|}.

Since ε = 0, i.e., u1(t) ≡ 0 (0 ≤ t ≤ T ) is a triaval case, we assume ε > 0 for convenience.

For the proof of Lemma 3.1, the following lemma is needed, which can be found in [4].

Lemma 3.2. Let h(t) = (h1(t), h2(t), · · · , hN (t)) and d(t) = (d1(t), d2(t), · · · , dN−1(t))

be smooth and periodic in t with period T . Assume
N∑
i=1

∫ T

0

hi(s)ds = 0. (3.7)

Then the following system of linear differential equations (3.8)-(3.10) for (n,w) has a unique

periodic solution (n,w) with the same period T .

nit −
wi − wi−1

∆x
= hi, i = 1, 2, · · · , N, (3.8)

wit −
a(ni+1 − ni)

∆x
− µ

∆x

(wi+1 − wi

∆x
− wi − wi−1

∆x

)
= di, i = 1, 2, · · · , N − 1, (3.9)

with w0(t) = wN (t) = 0 and ∫ T

0

N∑
i=1

exp(ni(s))∆xdx = T. (3.10)

We will use Leray-Schauder fixed point theorem to prove Lemma 3.1. For this purpose,

we denote X = 1
T

∫ T

0
X(t)dt, the mean positive of the piston, and define

X(t, λ) = X + λ(X(t)−X), 0 ≤ λ ≤ 1,

u1(t, λ) =
dX(t, λ)

dt
,

fi(t, λ) = X(t, λ)
du1(t, λ)

dt

i∑
k=1

exp(nk(t))∆x.

(3.11)

Rewrite the system (3.3) in the form
nit −

wi − wi−1

∆x
= hi, i = 1, 2, · · · , N,

wit +
a(ni+1 − ni)

∆x
− µ

∆x

(wi+1 − wi

∆x
− wi − wi−1

∆x

)
= gi, i = 1, 2, · · · , N − 1,

where

hi =
( e−ni

X(t, λ)2
− 1

)wi − wi−1

∆x
− h̄,

gi =
µ

∆x

(( e−ni+1

X(t, λ)
− 1

)wi+1 − wi

∆x
−
( e−ni

X(t, λ)
− 1

)wi − wi−1

∆x

)
− a(e−γni+1 − e−γni)

∆x(X(t, λ))γ−1
− a(ni+1 − ni)

∆x
− fi(t, λ),

h̄ =
1

TN

∫ T

0

N∑
i=1

e−ni

X(t, λ)2
wi − wi−1

∆x
dt. (3.13)

Here we also suppose

w0(t) = wN (t) = 0 (3.14)
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and
N∑
i=1

exp(ni(t))∆x = 1, 0 ≤ t ≤ T. (3.15)

The periodic solution of the original problem (3.3)-(3.5) is equivalent to the periodic solution

of (3.12)-(3.15) in the case of λ = 1. Since h̄ is defined in (3.13) and so the right hand side of

(3.12) satisfies the condition (3.7), we can apply Lemma 3.2 to the “linear inhomogenous”

system (3.12)-(3.15). Let us denote the solution operator of (3.8)-(3.10) by L−1. Then the

problem (3.12)-(3.15) is equivalent to the equation

(n,w) = F (n,w, λ) = L−1(h(n,w, λ), g(n,w, λ)). (3.16)

To obtain a fixed point of mapping F for λ = 1, we apply Leray-Schauder Theorem in the

form[5].

Theorem (Leray-Schauder). Let K be a non-empty bounded open convex set in a

Banach space B, and F be a continuous mapping from K × [0, 1] into B. Suppose

(i) F is compact,

(ii) There exists a unique point x0 ∈ K such that F (x0, 0) = x0,

(iii) F is Frechét differentiable at (x0, 0) and I − Fx(x0, 0) has the inverse in L(B,B),

(iv) F (x, λ) ̸= x for any x ∈ ∂K and λ ∈ [0, 1).

Then there exists a fixed point x1 ∈ K such that F (x1, 1) = x1.

For any given δ > 0, let

K = {(n,w)(t) = (n1(t), · · · , nN (t), w1(t), · · · , wN−1(t)),

bounded continuous and periodic in t with period T , with the norm max
0≤t≤T

{|n|∞, |w|∞ ≤ δ},

B = {(n,w)(t)|(n,w) bounded continuous and periodic in t with period T}.

In the following we derive the a priori estimate for the solution of (3.16) to guarantee

(iv). In this process we can also see that x0 = (0, 0) for λ = 0 is our case and the remaining

conditions are easy to see. If (n,w) is the periodic solution for (3.12)-(3.15) with λ ∈ [0, 1),

then it satisfies the equation
nit −

e−ni

X2

wi − wi−1

∆x
= 0, i = 1, 2, · · · , N − 1,

wit +
a(e−γni+1 − e−γni)

Xγ−1∆x
− µ

X∆x

(
e−ni+1

wi+1 − wi

∆x

− e−ni
wi − wi−1

∆x

)
= fi, i = 1, 2, · · · , N − 1,

(3.17)

where fi is given by (3.11),

X = X(t, λ), u1 = u1(t, λ).

Let

ε(λ) = sup
0≤t≤T

{
|u1(t, λ)|+

∣∣∣du1(t, λ)

dt

∣∣∣}.
Then

ε(λ) ≤ ε, λ ∈ [0, 1), ε(0) = 0.



No.1 Luo, T. BOUNDED SOLUTIONS OF VISCOUS POLYTROPIC GAS EQUATIONS 107

From (3.17), (3.14) and (3.15) we have

N∑
i=1

[1
2
w2

i + aX3−γ
(
eni − 1− 1

(1− γ)
(e(1−γ)ni − 1)

)]
t
∆x

+

N∑
i=1

µe−ni

X

(wi − wi−1

∆x

)2

∆x

=
N∑
i=1

{
fiwi + a(3− γ)X2−γu1

[ 1

γ − 1
(e(1−γ)ni − 1)

]}
∆x. (3.18)

(3.17) implies that

wi

X
+

a(e−γni+1 − e−γni)

Xγ∆x
− µ

∆x
(ni+1 − ni)t =

fi
X

.

Multiplying the above (ni+1 − ni) and summing up with respect to i, we have

N−1∑
i=1

[µ
2

(ni+1 − ni

∆x

)2

− wi

X

ni+1 − ni

∆x

]
t
∆x

−
N−1∑
i=1

a

Xγ

(ni+1 − ni

∆x

)
· e

−γni+1 − e−γni

∆x
∆x

=

N−1∑
i=1

[(u1wi

X2
− fi

X

)ni+1 − ni

∆x
+

e−ni

X3

(wi − wi−1

∆x

)2]
∆x. (3.19)

This, combined with (3.18), yields the following lemma.

Lemma 3.3. For any given δ > 0, if

ε = sup
0≤t≤T

{
|u1(t)|+

∣∣∣du1(t)

dt

∣∣∣}
is suitably small, then |n(t)|∞ ≤ δ implies |n(t)|∞ < δ and |w(t)|∞ < δ for the periodic

solution (n,w) of the operator equation (3.16) with λ ∈ [0, 1).

Proof. Let

Q
def.
= −

N−1∑
i=1

ni+1 − ni

∆x

e−γni+1 − e−γni

∆x
∆x

=
N−1∑
i=1

(ni+1 − ni

∆x

)2
∫ 1

0

exp(−γ(ni + θ(ni+1 − ni)))dθ∆x.

Using this notation we estimate the first term on the right hand side of (3.19), i.e.,∣∣∣N−1∑
i=1

fi
X

ni+1 − ni

∆x
∆x

∣∣∣
≤ X0ε(λ)

N−1∑
i=1

∣∣∣ni+1 − ni

∆x

∣∣∣( ∫ 1

0

exp(−γ(ni + θ(ni+1 − ni)))dθ
)1/2

·
(∫ 1

0

exp(−γ(i+ θ(ni+1 − ni)))dθ
)1/2

∆x

≤ X0ε(λ)Q
1/2

(N−1∑
i=1

∆x
/∫ 1

0

exp(−γ(ni + θ(ni+1 − ni)))dθ
)1/2

, (3.20)
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N−1∑
i=1

∆x
/(∫ 1

0

exp(−γ(ni + θ(ni+1 − ni)))dθ
)

≤
N−1∑
i=1

(∫ 1

0

exp(γ(ni + θ(ni+1 − ni)))dθ
)
∆x

≤ 1

2
exp(γ − 1)δ ·

N−1∑
i=1

(exp(ni+1) + exp(ni))∆x

≤ exp(γ − 1)δ. (3.21)

Then we deduce that∣∣∣N−1∑
i+1

fi
X

ni+1 − ni

∆x
∆x

∣∣∣ ≤ a

6Xγ
0

Q+ Λ[ε(λ)]2 exp(γ − 1)δ, (3.22)

whereafter, Λ denotes a generic constant which may depend only on X0, µ, a and γ.

Since

|wi| ≤
(∑

k

ek∆x
)1/2(∑

k

∣∣∣wk − wk−1

∆x

∣∣∣e−nk∆x
)1/2

,

we have∑
|fiwi|∆x ≤ |f |∞|w|∞ ≤ µ

2X0

∑
e−ni

(wi − wi−1

∆x

)2

∆x+ Λ(ε(Λ))2 (3.24)

and ∣∣∣∑ uiwi

X2

ni+1 − ni

∆x

∣∣∣
≤ a

6Xγ
0

Q+ Λ(ε(λ))2 exp(γ − 1)δ
∑

e−ni

(wi − wi−1

∆x

)2

∆x. (3.25)

It can be shown from (3.15) that

|n|∞ ≤ Q1/2 exp[(γ − 1)δ/2]. (3.26)

Due to γ > 1 and
N∑
i=1

eni∆x = 1, it holds that

N∑
i=1

e(1−γ)ni∆x ≥ 1 (3.27)

and there exists k ∈ {1, 2, · · · , N} such that

enk ≥ 1,

namely r(1−γ)nk ≤ 1. Thus, it follows from (3.21) and (3.27) that∣∣∣ N∑
i=1

(e(1−γ)ni − 1)∆x
∣∣∣ = N∑

i=1

(e(1−γ)ni − 1)∆x ≤
N∑
i=1

(e(1−γ)ni − e(1−γ)nk)∆x.

We estimate |e(1−γ)ni − e(1−γ)nk | as follows:

|e(1−γ)ni − e(1−γ)nk | ≤
N−1∑
i=1

|e(1−γ)ni+1 − e(1−γ)ni | ≤ Q1/2 exp(γ − 1)δ,

where the similar approach as used in the (3.20)-(3.20) is used. So, we have∣∣∣ N∑
i=1

(e(1−γ)ni − 1)
∣∣∣∆x ≤ Q1/2 exp(γ − 1)δ. (3.28)
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The above estimstes imply the following two inequalities

N∑
i=1

[1
2
w2

i + aX3−γ
(
eni − 1− 1

(1− γ)
(e(1−γ)ni − 1)

)]
t
∆x

+
µ

2X0

N∑
i=1

e−ni

(wi − wi−1

∆x

)2

∆x

≤ Λ[ε(λ)]2 + Λε(λ)Q1/2 exp[(γ − 1)δ] (3.29)

and
N−1∑
i=1

[µ
2

(ni+1 − ni

∆x

)2

− wi

X

ni+1 − ni

∆x

]
t
∆x+

aQ

2Xγ
0

≤ Λ[ε(λ)]2 exp(γ − 1)δ + Λ[ε(λ)]2 exp[(γ − 1)δ]
N−1∑
i=1

e−ni

(wi − wi−1

∆x

)2

∆x.
(3.30)

Multiplying (3.30) with a positive number σ, which will be chosen latter, we get the following

estimate, with the help of (3.29).

N∑
i=1

[1
2
w2

i + aX3−γ
(
eni − 1− 1

(1− γ)
(e(1−γ)ni − 1)

)
+

µσ

2

(ni+1 − ni

∆x

)2

− σwi

X

ni+1 − ni

∆x

]
t
∆x

+
( µ

2X0
− Λσε2 exp(γ − 1)δ

) N∑
i=1

e−ni

(wi − wi−1

∆x

)2

∆x+
aσ

4Xγ
0

Q

≤ Λexp[2(γ − 1)δ][ε(λ)]2 ≤ λ exp[2(γ − 1)]ε2. (3.31)

For given δ > 0, if ε is suitably small such that ε2 ≤ K2 exp(1 − γ)δ, where K2 > 0 is a

constant not depending on δ and ε, then we can choose σ > 0 suitably such that it holds

that
µ

2X0
− Λσε2 exp(γ − 1)δ ≥ a0 > 0 (3.32)

for a positive constant a0, and

a1w
2
i + a2

(ni+1 − ni

∆x

)2

≤ 1

2
w2

i +
µσ

2

(ni+1 − ni

∆x

)2

− σwi

X

ni+1 − ni

∆x

≤ a′1w
2
i + a′2

(ni+1 − ni

∆x

)2

, (3.33)

where ai, a
′
i (i = 1, 2, ) are positive constants. Since ε(0) = 0, (3.33)-(3.35) imply (ii), (3.28)

yields ∣∣∣∑ 1

γ − 1
(e(1−γ)ni − 1)

∣∣∣ = ∑ 1

γ − 1
(e(1−γ)ni − 1)

≤ Q

2ε
+ Λε exp[2(γ − 1)δ]. (3.34)

It is easy to check

N−1∑
i=1

(ni+1 − ni

∆x

)2

∆x ≤ Q exp[2(γ − 1)δ]. (3.35)
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With a similar approach as in Section 2, we can get from (3.31)-(3.35) that

dA(t)

dt
+ εA(t) ≤ Λε2 exp[2(γ − 1)δ], 0 ≤ t ≤ T, (3.36)

if ε is suitably small, where

A(t) =
N−1∑
i=1

[1
2
w2

i + aX3−γ
[
eni − 1− 1

(1− γ)
(e(1−γ)ni − 1)

]
+

µσ

2

(ni+1 − ni

∆x

)2

− σwi

X

ni+1 − ni

∆x

]
∆x.

Together with the fact that A(t) is periodic in t with period T, (3.36) implies∫ T

0

A(t)dt ≤ ΛTε exp[2(γ − 1)δ]. (3.37)

With the help of the following Lemma 3.4, (3.31) and (3.37), we obtain

max
0≤t≤T

A(t) ≤ Λ(ε+ ε2T ) exp[2(γ − 1)δ]. (3.38)

Lemma 3.4. Let A(t) ≥ 0 and z(t) be periodic with period T . If dA(t)
dt ≤ z(t), then it

holds that

max
0≤t≤T

A(t) ≤ 1

T

∫ T

0

A(t)dt+

∫ t

0

|z(t)|dt.

The proof of this lemma can be found in [4]. By virtue of (3.26), (3.35) and (3.27), one

gets

|n|∞ ≤
{N−1∑

i=1

[ni+1 − ni

∆x

]2
∆x

}1/2

· exp(γ − 1/2)δ

≤
( 1

a2
A(t)

)1/2

≤
[ Λ
a2

(ε+ ε2T )
]1/2

exp(2γ − 3/2)δ,

with which we have that |n(t)|∞ < δ (0 ≤ t ≤ T ) if ε is suitably small.

We turn to the estimate of |w|∞ next. Multiplying (3.12)2 with 1
∆x

(wi+1−wi

∆x − wi−wi−1

∆x

)
,

we obtain
N−1∑
i=1

1

2

(wi+1 − wi

∆x

)2

t
∆x+

µ

2X0
e−δ

N−1∑
i=1

{ 1

∆x

[wi+1 − wi

∆x
− wi − wi−1

∆x

]}2

∆x

≤ Λeδ max
i

∣∣∣wi+1 − wi

∆x

∣∣∣2 N−1∑
i=1

(e−ni+1 − e−ni

∆x

)2

∆x+ Λε2eδ

+ Λeδ
N1∑
i=1

(e−γni+1 − e−γni

∆x

)2

∆x

≤ Λe3δ max
i

∣∣∣wi+1 − wi

∆x

∣∣∣2 N−1∑
i=1

(ni+1 − ni

∆x

)2

∆x+ Λε2eδ

+ Λexp[(2γ + 1)δ] ·
N−1∑
i=1

(ni+1 − ni

∆x

)2

∆x. (3.39)
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Suppose that l, j ∈ {1, 2, · · · , N − 1} satisfy[wl−1 − wl

∆x

]2
≤

N−1∑
i=1

[wi+1 − wi

∆x

]2
∆x

and

max
i

[wi+1 − wi

∆x

]2
=

[wj+1 − wj

∆x

]2
.

Therefore

max
i

[wi+1 − wi

∆x

]2
≤

[wj+1 − wj

∆x

]2
−
[wl+1 − wl

∆x

]2
+

N−1∑
i=1

[wi+1 − wi

∆x

]2
∆x

≤
N1∑
i=1

∣∣∣[wi+1 − wi

∆x

]2
−
[wi − wi−1

∆x

]2∣∣∣+ N−1∑
i=1

[wi+1 − wi

∆x

]2
∆x

≤
N−1∑
i=1

∣∣∣wi+1 − wi

∆x
− wi − wi−1

∆x

∣∣∣∣∣∣wi+1 − wi

∆x
+

wi − wi−1

∆x

∣∣∣
+

N−1∑
i=1

[wi+1 − wi

∆x

]2
∆x. (3.40)

Thus, (3.33), (3.37), (3.38), (3.39) and (3.40), with the help of Cauchy inequality, imply

that
N−1∑
i=1

1

2

(wi+1 − wi

∆x

)2

t
∆x+

µe−δ

4X0

N−1∑
i=1

{ 1

∆x

(wi+1 − wi

∆x
− wi − wi−1

∆x

)}2

∆x

≤ Λε2 exp δ + Λ(ε+ ε2T ) exp(4γ − 1)δ

+ Λ(ε+ ε2T )2 exp[(4γ + 3)δ]
N−1∑
i=1

(wi − wi−1

∆x

)2

∆x. (3.41)

Integrating (3.31) over [0, T ), one gets∫ T

0

N−1∑
i=1

(wi+1 − wi

∆x

)2

∆xdt ≤ Λexp[(2γ − 1)δ]ε2T. (3.42)

It turns out from (3.41), (3.42) and Lemma 3.4 that

max
0≤t≤T

N−1∑
i=1

(wi+1 − wi

∆x

)2

∆x

≤ Λε2 exp(2γ − 1)δ + Λε2T exp δ

+ Λ(ε+ ε2T )2ε2T 2 exp[(6γ + 2)δ] + Λ(ε+ ε2T )T exp[(4γ − 1)δ].

Since

|w(t)|2∞ ≤
(N−1∑

i=1

(wi+1 − wi

∆x

)2

∆x
)1/2

due to w0(t) = wN (t) = 0,

we can choose ε so small that

max
0≤t≤T

|w(t)|∞ < δ.
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This completes the proof of Lemma 3.2.

Lemma 3.3 and Leray-Schauder Theorem imply that there exists a solution (n,w) ∈ K

of (3.16) in the case of λ = 1, i.e., the system (3.3)-(3.6) has a periodic solution (n,w) ∈ K.

All the estimates in the proof of Lemma 3.2 are valid for the obtained periodic solution if

we use ε instead of ε(λ). Because all of these estimates do not depend on N , we can take

the limit as N → +∞ along a subsequence to obtain Theorem 3.1 as in [4]. The remaining

proof of Theorem 3.1 is the same as in [4], we omit it.
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