SPLIT INCLUSION AND METRICALLY NUCLEAR MAP**

WU LIANGSEN*

Abstract

The author relates the split inclusion property to the metrically nuclearty of the natural embedding ϕ_1 and proves the following result.

Let $A \subset B$ be an inclusion of factors, ω a faithful normal state of B such that $\omega = (\cdot \Omega, \Omega)$. If $\phi_1 : A \to L^1(B)$ defined by $\phi_1(x) = (\cdot \Omega, J_B x \Omega), \forall x \in A$, is the natural embedding, then (A, B) is a split inclusion if and only if ϕ_1 is a metrically nuclear map.

Keywords Von Neumann algebra, Split inclusion, Metrically nuclear map1991 MR Subject Classification 54C25Chinese Library Classification O189.1

§1. Introduction

When M is a von Neumann algebra on a Hilbert space \mathcal{H} with a cyclic and separating vector Ω , the following natural embeddings associated with Ω are of particular physical interests:

$$\begin{aligned} x \in L^{\infty}(M) & \xrightarrow{\phi_1} & (\cdot\Omega, Jx\Omega) \in L^1(M) \\ \phi_2 \searrow & \\ & \triangle^{\frac{1}{4}} x\Omega \in L^2(M) \end{aligned}$$

where \triangle , J are the modular operator and conjugation associated with M and Ω .

Definition 1.1. A W^* -inclusion (A, B) means that A, B are von Neumann algebras such that $A \subset B$. A W^* -inclusion $A \subset B$ is called split if there exists a type I factor N such that $A \subset N \subset B$.

D. Buchholz, C. D'Antoni and R. Longo^[1] related the split property of an inclusion $A \subset B$ of von Neumann algebras to the nucleality properties of the natural embeddings $\phi_p: L^{\infty}(A) \to L^p(B) \ (p = 1, 2).$

Definition 1.2. Let N, M be von Neamann algebras. We shall say that a completely positive normal map

$$\phi: N \to L^p(M)$$

Manuscript received June 6, 1994.

^{*}Department of Mathematics, East China Normal University, Shanghai 200062, China.

^{**}Project supported by the National Natural Science Foundation of China.

is extendible if, whenever \tilde{N} is a von Neumann algebra containing N, there exists a completely positive normal map $\tilde{\phi}: \tilde{N} \to L^p(M)$ that extends ϕ :

$$\begin{array}{ccc} N \\ \uparrow & \searrow \tilde{\phi} \\ N & \xrightarrow{}{\phi} & L^p(M) \end{array}$$

In [1] the following theorem was proved.

Proposition 1.1. Let $A \subset B$ be an inclusion of factors and ω a faithful normal state of *B*. The following are equivalent:

- (1) The restriction to A of the embedding $\phi_1 : B \to L^1(B)$ is extendible;
- (2) The restriction to A of the embedding $\phi_2 : B \to L^2(B)$ is extendible;
- (3) $A \subset B$ is a split inclusion.

But this criterion is not easy for applications. They also proved that the inclusion of factors $A \subset B$ is split if $\phi_p : L^{\infty}(A) \to L^p(B)$ is nuclear and only if ϕ_p is compact (p=1,2).

It is an interesting question whether the split inclusion property could be characterized by some kind of nuclearity properties of ϕ_p . In this paper we will present the affirmative answer for p = 1. We show that if $A \subset B$ is an inclusion of factors as above, then it is a split inclusion if and only if ϕ_1 is a metrically nuclear map.

§2. Preliminary

For the later use we will give some notations of operator spaces and metrically nuclear maps.

Definition 2.1. Let X be a vector space over the complex numbers with a norm $\|\cdot\|_n$ on each $M_n(X)$ for $n \in N$. The space X is called an operator space if it satisfies

(1) $||x \oplus y||_{n+m} = \max\{||x||_n, ||y||_m\},\$

$$(2) \|\alpha x\beta\|_n \le \|\alpha\| \|x\|_n \|\beta\|$$

for all $x \in M_n(X), y \in M_m(Y)$ and $\alpha, \beta \in M_n(C)$. We assume that all operator spaces are norm complete.

Let X and Y be operator spaces and $\phi: X \to Y$ a linear map. Then there is a natural map $\phi_n: M_n(X) \to M_n(Y)$ defined by

$$\phi_n([x_{ij}]) = [\phi(x_{ij})]$$

for all $[x_{ij}] \in M_n(X)$.

We call ϕ completely bounded if its cb-norm

$$\|\phi\|_{cb} = \sup\{\|\phi_n\|, n \in N\} < \infty.$$

The map is called a completely contraction if $\|\phi\|_{cb} \leq 1$. The set of all completely bounded maps from X to Y is denoted by CB(X, Y).

Definition 2.2. Given operator spaces X and Y, and $u \in M_n(X \otimes Y)$, we define

$$||u||_{\wedge} = \inf\{||\alpha|| ||x|| ||y|| ||\beta||\},\$$

where the infimum is taken for all possible representations $u = \alpha(x \otimes y)\beta$ with $x \in M_k(X), y \in M_l(Y)$ and $\alpha \in M_{n,kl}(C), \beta \in M_{kl,n}(C)$. We write $X \otimes_{\wedge} Y$ for the tensor product of X

and Y with above matrix norm and $X \otimes^{\wedge} Y$ for the completion which is called an operator projective tensor product for operator spaces.

Let X and Y be operator subspaces of B(H) and B(K). Viewing the algebraic tensor product $X \otimes Y$ as a subspace of $B(H \otimes K)$, we have an operator matrix norm, i.e., the spatial tensor norm ν on $X \otimes Y$. Let $X \otimes_{\vee} Y$ denote the tensor product of X and Y with the spatial tensor norm ν , and the completion $X \otimes^{\vee} Y$ with respect to the norm is called a spatial tensor product.

Definition 2.3. Let X and Y be operator spaces. We define the metrically nuclear mapping space, denoted by N(X,Y), to be the image of the natural complete contraction

$$\Phi : X^* \overset{\wedge}{\otimes} Y \longrightarrow X^* \overset{\vee}{\otimes} Y \hookrightarrow CB(X,Y)$$

with the matrix quotient norm denoted by $\{\nu_n\}$, i.e., we define

$$N(X,Y) \cong X^* \stackrel{\wedge}{\otimes} Y / \ker \Phi$$

It follows that N(X,Y) is an operator space, and that elements in $M_n(N(X,Y))$ can be regarded as maps from X into $M_n(Y)$, which are called metrically nuclear maps.

Let M_{∞}, T_{∞} and H_{∞} be the space of bounded operators, trace class operators and Hilbert-Schmidt operators on the separable Hilbert space ℓ^2 , respectively. For any $a \in H_{\infty}^*$, the dual of H_{∞} , and $b \in H_{\infty}$, we may define a completely bounded map $\theta_{a,b}: M_{\infty} \to T_{\infty}$ by

$$\theta_{a,b}(T) = aTb$$

It is a simple matter to check that $\|\theta_{a,b}\|_{cb} \leq \|a\| \|b\|$.

Theorem 2.1.^[3] A linear map $\phi: X \to M_n(Y)$ lies in $M_n(N(X,Y))$ if and only if there are completely bounded maps

$$\sigma: X \to M_{\infty}, \theta_{a,b}: M_{\infty} \to M_n(T_{\infty}) \text{ and } \tau: T_{\infty} \to Y$$

such that

$$\phi = \tau_n \circ \theta_{a,b} \circ \sigma.$$

Then we have

$$\nu_n(\phi) = \inf\{\|\tau\|_{cb} \|a\| \|b\| \|\sigma\|_{cb}\},\$$

where the infimum is taken for all such completely bounded maps.

\S **3. Main Results**

Let M be a von Neumann algebra and ω a faithful normal state of M such that $\omega(\cdot) = (\cdot \Omega, \Omega)$. We shall denote by

$$\phi_p = \phi_{p,\omega} : M \to L^p(M) \quad (p = 1, 2)$$

the natural embeddings given by

$$\phi_1(x) = (\cdot \Omega, Jx\Omega), \quad x \in M,$$

$$\phi_2(x) = \triangle^{\frac{1}{4}} x\Omega, \quad x \in M.$$

In this section we will present the main results in this paper. We need some lemmas.

Lemma 3.1. Let $\phi : A \to X$ be a metrically nuclear map from a von Neumann algebra A into a Banach space X. If ϕ is continuous from A, equipped with the σ -weakly topology, into X, equipped with the weak topology, then ϕ can be expressed as

$$\phi(a) = \alpha(f(a) \otimes \xi)\beta$$

where $f = \{f_{ij}\} \in M_{\infty}(A_*), \xi = \{\xi_{ij}\} \in K_{\infty}(X), \alpha, \beta \text{ are } 1 \times \infty^2 \text{ and } \infty^2 \times 1 \text{ matrices.}$

Proof. Given a completely bounded map $\phi \in CB(A, X)$, we have that $\phi \in N(A, X)$ with $\nu_1(\phi) < 1$ if and only if $\phi = \Phi(u)$ for some $u \in A^* \otimes^{\wedge} X$ satisfying $||u||_{\wedge} < 1$. That is,

$$\phi(a) = \alpha(f(a) \otimes \xi)\beta,$$

where $f = \{f_{ij}\} \in M_{\infty}(A^*), \xi = \{\xi_{ij}\} \in K_{\infty}(X), \alpha, \beta$ are $1 \times \infty^2$ and $\infty^2 \times 1$ matrices, $\|\alpha\| \|f\| \|\xi\| \|\beta\| < 1$ (cf. [2, p. 174]). Suppose that $f_{ij} = f_{ij}^{(n)} + f_{ij}^{(s)}$ is the decomposition of f_{ij} into its normal and singular parts^[5]. If $f^{(n)} = \{f_{ij}^{(n)}\}, f^{(s)} = \{f_{ij}^{(s)}\}$, then

$$\phi^{(n)} = \alpha(f^{(n)}(\cdot) \otimes \xi)\beta, \quad \phi^{(s)} = \alpha(f^{(s)}(\cdot) \otimes \xi)\beta$$

are the normal part and the singular part of ϕ such that $\phi = \phi^{(n)} + \phi^{(s)}$. Since $\phi^{(s)}$ is normal and singular, $\phi^{(s)} = 0$. So $\phi = \phi^{(n)}$.

Let \mathfrak{H} be an infinite dimensional separable Hilbert space. We denote by $L^p(\mathfrak{H}), p \geq 1$, the Schatten ideals of $B(\mathfrak{H})$.

Lemma 3.2.^[1,p.238] Let M be a von Neumann algebra and $\phi: M \to L^p(\mathfrak{H}), p \geq 1$, a completely positive normal map. Then there exists a normal representation π of M in $B(\mathfrak{H})$ and $T \in L^{2p}(\mathfrak{H})$ such that

$$\phi(x) = T^* \pi(x) T, \qquad \forall x \in M.$$

Lemma 3.3. Let $A \subset B$ be an inclusion of factors, $\omega = (\cdot \Omega, \Omega)$ a faithful normal state of B. If $\Psi : L^1(A) \to L^1(B)$ is defined by

$$\langle \cdot \Omega, J_A x \Omega \rangle \to \langle \cdot \Omega, J_B x \Omega \rangle, \ x \in A$$

where J_A, J_B are the modular conjugations, then Ψ is a completely contraction.

Proof. From Tomita-Takesaki theory, if \triangle_A, \triangle_B are the modular operators, then

$$S_A = J_A \triangle_A^{\frac{1}{2}} = \triangle_A^{-\frac{1}{2}} J_A,$$
$$J_A x \Omega = \triangle_A^{\frac{1}{2}} S_A x \Omega = \triangle_A^{\frac{1}{2}} x^* \Omega$$
$$J_B x \Omega = \triangle_B^{\frac{1}{2}} x^* \Omega, \quad \forall x \in A.$$

Suppose that A_0 is the space of all $a \in A$ with compact spectrum with respect to the modular group of A, Ω and put $\mathcal{D} = A_0 \Omega$.

We define

$$T_{\frac{1}{2}} = \triangle_B^{\frac{1}{2}} \triangle_A^{-\frac{1}{2}},$$

which is densely defined on $[A\Omega]$ with domain including \mathcal{D} .

$$T_{\frac{1}{2}}\xi = J_B S_B S_A J_A \xi = J_B J_A \xi, \quad \forall \xi \in \mathcal{D},$$
$$\|T_{\frac{1}{2}}\| \le 1.$$

Therefore

$$\begin{split} \| \triangle_B^{\frac{1}{2}} x^* \Omega \| &\leq \| \triangle_A^{\frac{1}{2}} x^* \Omega \|, \\ \| J_B x \Omega \| &\leq \| J_A x \Omega \|, \quad \forall x \in A, \end{split}$$

 Ψ is a contraction.

If we consider the tensor product $M_n \otimes A$ in stead of A, we can prove that Ψ is a completely contraction.

We consider a mapping

$$\Psi^{(n)}: (\langle \cdot\Omega, J_A x_{ij}\Omega \rangle) \to (\langle \cdot\Omega, J_B x_{ij}\Omega \rangle), \quad 1 \le i, j \le n, \quad x_{ij} \in A,$$

where $(\langle \Omega, J_A x_{ij} \Omega \rangle)$ is a functional defined on $M_n \otimes A$ for which the dual is given by

$$\langle (\langle \cdot \Omega, J_A x_{ij} \rangle), (a_{ij}) \rangle = \langle (a_{ij}\Omega), (\triangle_A^{\frac{1}{2}} x_{ij}^* \Omega) \rangle$$
$$= \sum_{i,j=1}^n \langle a_{ij}\Omega, \triangle_A^{\frac{1}{2}} x_{ij}^* \Omega \rangle, \quad \forall (a_{ij}) \in M_n \otimes A.$$

Define $T_{\frac{1}{2}} = \triangle_B^{\frac{1}{2}} \triangle_A^{-\frac{1}{2}} \otimes I_n$ on $[(M_n \otimes A_0)\Omega]$ such that

$$\Gamma_{\frac{1}{2}}\xi = ((J_B S_B S_A J_A) \otimes I_n)\xi = (J_B J_A \otimes I_n)\xi, \quad \forall \xi \in M_n \otimes \mathcal{D}.$$

Therefore

$$||T_{\frac{1}{2}}|| \le 1$$

that is,

$$\|(J_B x_{ij}\Omega)\| \le \|(J_A x_{ij}\Omega)\|$$

 Ψ is a completely contraction.

Theorem 3.1. Let $A \subset B$ be an inclusion of factors, ω a faithful normal state of B such that $\omega = (\Omega, \Omega)$. If $\phi_1 : A \to L^1(B)$ defined by $\phi_1(x) = (\Omega, J_B x \Omega), \forall x \in A$, is the natural embedding, then (A, B) is a split inclusion if and only if ϕ_1 is a metrically nuclear map.

Proof. If ϕ_1 is metrically nuclear, we will prove that (A, B) is a split inclusion. Since $A \subset B$ is a split inclusion if and only if ϕ_1 is extendible, the only thing we have to prove is that ϕ_1 is extendible.

By Lemma 3.1,

$$\phi_1(a) = \alpha \Big(\sum f_{ij}(a) \otimes g_{kl}\Big)\beta,$$

where $f = \{f_{ij}\} \in M_{\infty}(A_*), g = \{g_{kl}\} \in K_{\infty}(B_*), \alpha, \beta$ are $1 \times \infty^2$ and $\infty^2 \times 1$. We define

$$\lambda = \alpha \Big(\sum f_{ij} \otimes g_{kl} \Big) \beta.$$

Then λ is a normal functional on $A \otimes B$. If \tilde{A} is a von Neumann algebra such that $A \subset \tilde{A}$, we can extend λ as a normal functional $\tilde{\lambda}$ on $\tilde{A} \otimes B$. So

$$\tilde{\phi}_1: \tilde{a} \in \tilde{A} \to \tilde{\lambda}(\tilde{a} \otimes \cdot) \in L^1(B)$$

is completely positive, normal and extends ϕ_1 . Thus ϕ_1 is extendible.

Conversely, if $A \subset B$ is a split inclusion, there exists a type I factors F such that $A \subset F \subset B$.

Then we have a diagram as follows:

$$\begin{array}{cccc} A & \stackrel{\phi_1}{\longrightarrow} & L^1(B) \\ & \psi_1 \searrow & \swarrow E \\ & & L^1(F) \end{array}$$

If $F = B(\mathcal{H})$, where \mathcal{H} is a infinite dimensional separable Hilbert space, $L^1(F) = L^1(\mathcal{H})$, the set of all trace operators on \mathcal{H} .

By use of Lemma 3.2,

$$\psi_1 = T^* \pi(x) T, \quad \forall x \in A,$$

where $T \in L^2(\mathcal{H})$, and π is a normal representation of A in $B(\mathcal{H})$.

From Lemma 3.3, the embedding $L^1(F) \to L^1(B)$ defined by

$$E: (\cdot\Omega, J_F x \Omega) \to (\cdot\Omega, J_B x \Omega), \forall x \in F,$$

is a completely contraction so that

$$\phi_1 = E(T^*\pi(x)T) = E \circ \theta_{T^*,T} \circ \pi.$$

Using Theorem 2.1, we see that ϕ_1 is metrically nuclear. In a forthcoming paper we will deal with the case $p \neq 1$.

References

- Buchholz, D., D'Antoni, C. & Longo, R., Nuclear maps and modular structure 1, General properties, Journal of Functional Analysis, 88 (1990), 233–250.
- [2] Effros, E. J. & Ruan, Z. J., On approximation properties for operator space, International Journal of Mathematics, 1:2 (1990), 163-187.
- [3] Effros, E. G. & Ruan, Z. J., Recent development in operator spaces-current topics in operator algebras, Proceedings of the Satellite Conference of ICM-90, World Scientific, 1991, 146-164.
- [4] Takesaki, M., Theory of operator algebra, Springer Verlag, 1979.