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Abstract

Ellis and Branton introduced a class of non-self-similar sets; they gave an upper bound of
Hausdorff dimension for such sets, and a conjecture of the lower bound for these sets. This
paper gives a proof of this conjecture by using the lemma of Frostman.
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60. Introduction

A lot of the classical fractal sets are self-similar, built up by pieces wich are geometrically
similar to the whole set, but in smaller scales!™6:712],

Hutchinson defined in [5] the notion of self-similar set, which was also introduced by
Moran!'® and Marion!®. The dimension and structure of self-similar sets have been studied
and generalized by many authors, such as Peyrierel!1].

For the non-self-similar case, we have a few results in general. Ellis and Branton!®! have
intruduced a class of non-self-similar sets by using the Markov attractors. They obtained
an upper bound of Hausdorff dimension for such attractors, and they gave a conjecture for
its lower bound of Hausdorff dimension.

This paper is organized in the following way : in the first section, we recall the notion of

(3]

iterated function system, and state the results of Ellis and Branton!”!, in second section, we

give a new proof of their conjecture.

§1. Preliminaries

Let (X,d) be a compact metric space. We call the system (X;7y,---,T,) a hyperbolic
iterated function system, if there exists a constant s € (0, 1) such that for all 1 <4 <n and
z,y € X,

d(Ti(z), Ti(y)) < sd(z,y). (L.1)

For those systems, a subset A C X is called an attractor for the system, provided
(1) A is closed, and A # (),
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(2) T;(A) c Aforall1 <4 <n,
(3) A is minimal with respect to 1 and 2.

With this definition, we have then!®!
A=Ti(A) UTy(A)U--- UTy(A). (1.2)

A hyperbolic iterated function system (X;T1,---,T,) is said to be disjoint, if the collec-
tion of sub-sets {T;(A)}1<i<n is a partition of A.

Remark 1.1. (1) Let (X;T4,---,T,) be a hyperbolic iterated function system and A be
an attractor of X. Then

A=Ti(A)UTs(A) U UT,(A). (1.3)

We note T1 (A)UT2(A)U---UT,(A) := ¢p(A). Then for all closed non-empty subset E C X,
lim ¢(E) = A in the Hausdorff metric.

k—+oco
(2) (Existence and unicity of the attractor): Let (X;T3, - ,T,) be a hyperbolic iterated

function system, then there exists one and only one attractor A, and A is compact.

1.1 Markov Attractors

Definition 1.1. Let M = (m;;) be an n x n matriz. M is called a Markov transition
matriz, if my; =0 or 1, for all 1 <4,5 < n.

Definition 1.2. An n x n matrix M is said to be positive, if there exists k > 1 such that
M* > 0.

Definition 1.3. Let M = (m;;) be an n x n Markov transitive matriz. A word
(i1dg---ig -~ -) (finite or infinite) is called M -admissible if we have, for allj > 1, m; ;. = 1.

Lemma 1.1. Let M be an n x n positive matriz and note ||M|| the spectral radius of M.
Then there exist B > a > 0 such that, for any k > 1, we havel®)

aX < Y (MF); < AR,

ij=1

Definition 1.4. Let (X;T1,---,T,) be a hyperbolic iterated function system, with the
attractor A. Let M be an n x n Markov transitive matriz. We say that a point a € A is
M -attractive, if there exists an infinite word (i1is - - -1k - -+ ) M-admissible, such that

a= lim Tj (Ti,(--- (T3, () - )

J—00

forallz € X.

Let Ajs be the set of M-attractivs points of A; A,y is called Markov attractor of system
(X;Th,---,T,) associated to M.

1.2 Estimation of the Hausdorff Dimension of Markov Attractor

Let (X;Ty,---,T,) be a disjoined hyperbolic iterated functions system, and d be the
metric on X. Suppose that there exist some constants 0 < t < t; < s; < s < 0, such that
for any 1 <7 < n, we have

tid(x’y) < d(Tl(x)le(y)) < Sid(x?y)' (14)
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1.2.1 Notations

A Attractor of the disjoined hyperbolic iterated
functions system (X;T4,--- ,Ty),
M = (mij)i<i j<n An n x n primitive Markove transitive matrix,

G(k) = (irig - i) Sub-set of all mots M — admissible of the length k,
G*= | Gk The sub-set of all M — admissible words with finite length,

Y The set of all M-admissible infinite words,
Apny The Markov attractor of the system
(X;Ty,---,Ty,) associeted to M.

And we define also ¢;,;,...;, € R by
Livig-iyy = biytiy * - Tiy,
and two operations of words: if I = (i1ig- ik, ), J = (J1j2 - Jk,), then
IJ = (ivia -~ ik, Jij2 - Jia)s
INJ={(iria---ip); p=maxk, such thati, =j,, V1 <r <p}

Write
51 0 tl 0

0 Sn 0 ty
We recall that (s;) and (¢;) are the constants in (1.4).
Let P = MSY and @ = MT", where v, u > 0 are two positive constants such that

1Pl =[Ql = 1.
Corollary 1.1. With the above hypothesis, there exist as > 1 >0, (o2 > 1 > 0, such
that

< Y si<an A< Y tf<p
)

1€G(k) I€G(k
forallk > 1.
Theorem 1.1 (Ellis-Branton, cf. [3]).

dimAM S V. (15)
Conjecture of Ellis-Branton 1.1 (cf. [3]).
dim Ay > w. (1.6)

§2. Proof of the Conjecture of Ellis-Branton

In this section, we will prove the conjecture of Ellis Branton; first we state some lemmas.
Lemma 2.1. Define

6(TI(A)7TJ(A)) = inf{d(m,y);x € TZ(A)7 Y€ TJ(A)v (’Laj) €l x ‘]}a
and ¢ = 1§3§§§n5(E(A)’Tj(A))' Then
§(T1(A), T;(A)) = ctrng
forany I, J € G(k) and I # J.
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Proof. Let [ = (i1---4p---ix) and J = (i1 ipJp+1-- - Jk) With ip41 # jp41. Then for

all z, y € A we get
d(T[(Z), TJ(y)) > t]/\Jd( Tpt1-ik (:C)a ij+1“-jk (y))
- tI/\Jd( ipt1 ('T/)’ ij+1 (y/))7
where o/ =T; ., (x) € A, and y =T}, ,,...;, (y) € A, which implies that
ATy (), T5,., (1) = ¢,
thus
d(Tr(x), Ts(y)) = ctin-
This completes the proof of the lemma.
Lemma 2.2. Let (i1ig - im---) be a word in Y ,,. Then

T(i1i2"'im"' MNe+1 (A) C T(i1i2"'im"' e (A)’

and { U TI(A)}k>1 is a decreasing sequence, and moreover

Ay = ﬂ UT,

1<k<-+oo I€G (k)
Proof.
T(iliz"'im"')|k+1(A) = T(i1i2"'im )\k( i1 (A))

Hence { U Ti(A)} x> is a decreasing sequence. Clearly we have

1€G(K)
AM C ﬂ U T[

1<k<+oco I€G(k

On the other hand, let z € () U TI(A). Then x € |J Tr(A) for all k € N*.
1<k<+oo I€G(k) I€G(k)

Thus there exists a unique I, € G(k) such that
x €Ty (A).
Further, if Iy, € G(k + 1), x € T1,,,(A), then we have I y1[r = I. Otherwise, if
Iy11|k # Ir, we shall have
Tryy), (A) N T, (A) = 0,
which means that
T, (A)NTy, (A) = 0.

This is a contraction. So there exists a unique sequence Tki<j<oo, satisfying I, A I} =

Imin(m,l)7 Vm, , such that

where x = lilgn Tr, (y), for any y € A. Thus =z € Ap.

Thus we complete the proof of the lemma.
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Theorem 2.3 (Conjecture of Ellis-Branton 1.8).
dim Ap; > u.

Proof. By Corollary 1.1, there exists a sequence of real numbers {73 }x>1 such that

1
<
B =TEE
and
Ve Z ty =1
1€G (k)

So we can define a sequence of the Borel probability {u}r>1, such that the support of
is always contained in A, and

i (Tr(A)) = v (tr)",
where I € G(k).

Since supp pur € J Tr(A) and pi(A) = 1, there exists a sub-sequence of integers
IeG(k)
{mk}kzh such that
® {Ym, tk>1 converges to a real number 7. Easily, we have
1 1
— <y < =

B2 - B

® {{tm, }k>1 converges to a Borel probability measure y, satisfying that
suppu C Apg, and p(Ap) = 1.

Let O be a ball small enough, satisfaying that O N Ay # (). Suppose that x € O N Ayy.
Then there exists an infinite word #1145 - - € Y 5y such that © € T(;,4,...4,,... )|, (A), for
all k> 1.

So there exists k € N* such that

Cti1i2-~ik+1
Take I = (i1i2---i) and J € G(k) with I # J. By Lemma 2.1, we have then
6(TI(A),TJ(A)) >clting > Ct[7

since ONTr(A) # 0, and |O| < cty, ONTy(A) = 0.
Ifl > k, we get

< ‘O| < Ctiliz“'ik'

JeG(l) JEG()
- Y oo, } fon( U )}
JNT= I INI=I
©Onzia) <p{ |J 1A}
INI=I

Let m; be fixed, | > m;. Then

w{ U @} < { U T},

JEG(I) JEG(m;)
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where J AT = 1.

We have
Mmj{ U TJ(A)} = Ym; Z ty < 'ijtTIL Z tr
JeG(my) JeG(my) LeG(m;—k)
A .
= Tmit (’ij—k > t%) = Jm g
’ijfk LEG(mek) ’ijfk
B2 B2
= Et? = B (ct)v (Cuty”?“ikﬂ)’

where J AT = 1.
Then we obtain

B2 1 “ B2 1 “
i (0) < 2ol w0) < 22 ol

So by the lemma of Frostman!*, we have

dim Ay > u.

Then we obtain Theorem 2.3.
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