A REMARK ON THE HAUSDORFF DIMENSION OF CERTAIN NON-SELF-SIMILAR ATTRACTORS

LIU HONGGEN*

Abstract

Ellis and Branton introduced a class of non-self-similar sets; they gave an upper bound of Hausdorff dimension for such sets, and a conjecture of the lower bound for these sets. This paper gives a proof of this conjecture by using the lemma of Frostman.

Keywords Non-self-similar attractor, Hausdorff dimension, Ellis and Branton conjecture,

Iterated function system 1991 MR Subject Classification 54F50, 58F12 Chinese Library Classification 0189.12, 019

§0. Introduction

A lot of the classical fractal sets are self-similar, built up by pieces wich are geometrically similar to the whole set, but in smaller scales^[1,6,7,12].

Hutchinson defined in [5] the notion of self-similar set, which was also introduced by Moran^[10] and Marion^[8]. The dimension and structure of self-similar sets have been studied and generalized by many authors, such as Peyrière^[11].

For the non-self-similar case, we have a few results in general. Ellis and Branton^[3] have intruduced a class of non-self-similar sets by using the Markov attractors. They obtained an upper bound of Hausdorff dimension for such attractors, and they gave a conjecture for its lower bound of Hausdorff dimension.

This paper is organized in the following way : in the first section, we recall the notion of iterated function system, and state the results of Ellis and Branton^[3], in second section, we give a new proof of their conjecture.

§1. Preliminaries

Let (X, d) be a compact metric space. We call the system $(X; T_1, \dots, T_n)$ a hyperbolic iterated function system, if there exists a constant $s \in (0, 1)$ such that for all $1 \le i \le n$ and $x, y \in X$,

$$d(T_i(x), T_i(y)) \le sd(x, y). \tag{1.1}$$

For those systems, a subset $A \subset X$ is called an attractor for the system, provided (1) A is closed, and $A \neq \emptyset$,

Manuscript received June 4, 1994. Revised August 8, 1996.

^{*}Laboratoire des Fluides, Automatique et Systèmes Thermiques, Bâtiment 502, Campus universitaire, 91405 Orsay, France.

(3) A is minimal with respect to 1 and 2.

With this definition, we have then^[3]

$$A = T_1(A) \cup T_2(A) \cup \dots \cup T_n(A).$$
(1.2)

A hyperbolic iterated function system $(X; T_1, \dots, T_n)$ is said to be disjoint, if the collection of sub-sets $\{T_i(A)\}_{1 \le i \le n}$ is a partition of A.

Remark 1.1. (1) Let $(X; T_1, \dots, T_n)$ be a hyperbolic iterated function system and A be an attractor of X. Then

$$A = T_1(A) \cup T_2(A) \cup \dots \cup T_n(A).$$

$$(1.3)$$

We note $T_1(A) \cup T_2(A) \cup \cdots \cup T_n(A) := \psi(A)$. Then for all closed non-empty subset $E \subset X$, $\lim_{k \to +\infty} \psi(E) = A$ in the Hausdorff metric.

(2) (Existence and unicity of the attractor): Let $(X; T_1, \dots, T_n)$ be a hyperbolic iterated function system, then there exists one and only one attractor A, and A is compact.

1.1 Markov Attractors

Definition 1.1. Let $M = (m_{ij})$ be an $n \times n$ matrix. M is called a Markov transition matrix, if $m_{ij} = 0$ or 1, for all $1 \le i, j \le n$.

Definition 1.2. An $n \times n$ matrix M is said to be positive, if there exists $k \ge 1$ such that $M^k > 0$.

Definition 1.3. Let $M = (m_{ij})$ be an $n \times n$ Markov transitive matrix. A word $(i_1i_2\cdots i_k\cdots)$ (finite or infinite) is called M-admissible if we have, for all $j \ge 1$, $m_{i_ji_{j+1}} = 1$.

Lemma 1.1. Let M be an $n \times n$ positive matrix and note ||M|| the spectral radius of M. Then there exist $\beta \geq \alpha > 0$ such that, for any $k \geq 1$, we have^[3]

$$\alpha \lambda^k \le \sum_{i,j=1}^n (M^k)_{ij} \le \beta \lambda^k.$$

Definition 1.4. Let $(X; T_1, \dots, T_n)$ be a hyperbolic iterated function system, with the attractor A. Let M be an $n \times n$ Markov transitive matrix. We say that a point $a \in A$ is M-attractive, if there exists an infinite word $(i_1i_2 \cdots i_k \cdots)$ M-admissible, such that

$$a = \lim_{j \to \infty} T_{i_1}(T_{i_2}(\cdots(T_{i_j}(x)))\cdots)$$

for all $x \in X$.

Let A_M be the set of *M*-attractive points of *A*; A_M is called Markov attractor of system $(X; T_1, \dots, T_n)$ associated to *M*.

1.2 Estimation of the Hausdorff Dimension of Markov Attractor

Let $(X; T_1, \dots, T_n)$ be a disjoined hyperbolic iterated functions system, and d be the metric on X. Suppose that there exist some constants $0 < t \le t_i \le s_i \le s < 0$, such that for any $1 \le i \le n$, we have

$$t_i d(x, y) \le d(T_i(x), T_i(y)) \le s_i d(x, y).$$
 (1.4)

1.2.1 Notations	
A	Attractor of the disjoined hyperbolic iterated
	functions system $(X; T_1, \cdots, T_n)$,
$M = (m_{ij})_{1 \le i, j \le n}$	An $n \times n$ primitive Markove transitive matrix,
$G(k) = (i_1 i_2 \cdots i_k)$	Sub-set of all mots M – admissible of the length k ,
$G^* = \bigcup G(k)$	The sub-set of all M – admissible words with finite length,
$1 \le k < \infty$	
\sum_{M}	The set of all M -admissible infinite words,
A_M	The Markov attractor of the system
	$(X; T_1, \cdots, T_n)$ associeted to M .

And we define also $t_{i_1i_2\cdots i_k} \in \mathbf{R}$ by

$$t_{i_1i_2\cdots i_k} = t_{i_1}t_{i_2}\cdots t_{i_k},$$

and two operations of words: if $I = (i_1 i_2 \cdots i_{k_1}), J = (j_1 j_2 \cdots j_{k_2})$, then

$$IJ = (i_1 i_2 \cdots i_{k_1} j_1 j_2 \cdots j_{k_2}),$$

$$I \wedge J = \{(i_1 i_2 \cdots i_p); \ p = \max k, \quad \text{such that } i_r = j_r, \ \forall 1 \le r \le p\}$$

Write

$$S = \begin{pmatrix} s_1 & & 0 \\ & \cdot & & \\ & & \cdot & \\ 0 & & s_n \end{pmatrix} \quad \text{and} \quad T = \begin{pmatrix} t_1 & & 0 \\ & \cdot & & \\ & & \cdot & \\ 0 & & t_n \end{pmatrix}.$$

We recall that (s_i) and (t_i) are the constants in (1.4).

Let $P = MS^v$ and $Q = MT^u$, where v, u > 0 are two positive constants such that ||P|| = ||Q|| = 1.

Corollary 1.1. With the above hypothesis, there exist $\alpha_2 \ge \alpha_1 > 0$, $\beta_2 \ge \beta_1 > 0$, such that

$$\alpha_1 \leq \sum_{I \in G(k)} s_I^v \leq \alpha_2, \quad \beta_1 \leq \sum_{I \in G(k)} t_I^u \leq \beta_2$$

for all $k \geq 1$.

Theorem 1.1 (Ellis-Branton, cf. [3]).

$$\dim A_M \le v. \tag{1.5}$$

Conjecture of Ellis-Branton 1.1 (cf. [3]).

$$\dim A_M \ge u. \tag{1.6}$$

§2. Proof of the Conjecture of Ellis-Branton

In this section, we will prove the conjecture of Ellis Branton; first we state some lemmas. Lemma 2.1. *Define*

 $\delta(T_{I}(A), T_{J}(A)) = \inf\{d(x, y); x \in T_{i}(A), y \in T_{j}(A), (i, j) \in I \times J\},\$ and $c = \inf_{1 \le i \ne j \le n} \delta(T_{i}(A), T_{j}(A)).$ Then

$$\delta(T_I(A), T_J(A)) \ge ct_{I \land J}$$

for any $I, J \in G(k)$ and $I \neq J$.

Proof. Let $I = (i_1 \cdots i_p \cdots i_k)$ and $J = (i_1 \cdots i_p j_{p+1} \cdots j_k)$ with $i_{p+1} \neq j_{p+1}$. Then for all $x, y \in A$ we get

$$d(T_{I}(x), T_{J}(y)) \ge t_{I \land J} d(T_{i_{p+1} \cdots i_{k}}(x), T_{j_{p+1} \cdots j_{k}}(y))$$

= $t_{I \land J} d(T_{i_{p+1}}(x'), T_{j_{p+1}}(y')),$

where $x' = T_{i_{p+2}\cdots i_k}(x) \in A$, and $y' = T_{j_{p+2}\cdots j_k}(y) \in A$, which implies that

$$d(T_{i_{p+1}}(x'), T_{j_{p+1}}(y')) \ge c,$$

thus

$$d(T_I(x), T_J(y)) \ge ct_{I \land J}.$$

This completes the proof of the lemma.

Lemma 2.2. Let $(i_1i_2\cdots i_m\cdots)$ be a word in \sum_M . Then

$$T_{(i_1i_2\cdots i_m\cdots)|_{k+1}}(A) \subset T_{(i_1i_2\cdots i_m\cdots)|_k}(A),$$

and $\left\{\bigcup_{I\in G(k)}T_I(A)\right\}_{k\geq 1}$ is a decreasing sequence, and moreover

$$A_M = \bigcap_{1 \le k < +\infty} \bigcup_{I \in G(k)} T_I(A)$$

Proof.

$$T_{(i_1i_2\cdots i_m\cdots)|_{k+1}}(A) = T_{(i_1i_2\cdots i_m\cdots)|_k}(T_{i_{k+1}}(A))$$
$$\subset T_{(i_1i_2\cdots i_m\cdots)|_k}(A).$$

Hence $\big\{\bigcup_{I\in G(k)}T_I(A)\big\}_{k\geq 1}$ is a decreasing sequence. Clearly we have

$$A_M \subset \bigcap_{1 \le k < +\infty} \bigcup_{I \in G(k)} T_I(A)$$

On the other hand, let $x \in \bigcap_{1 \le k < +\infty} \bigcup_{I \in G(k)} T_I(A)$. Then $x \in \bigcup_{I \in G(k)} T_I(A)$ for all $k \in N^*$. Thus there exists a unique $I_k \in G(k)$ such that

$$x \in T_{I_k}(A)$$

Further, if $I_{k+1} \in G(k+1)$, $x \in T_{I_{k+1}}(A)$, then we have $I_{k+1}|_k = I_k$. Otherwise, if $I_{k+1}|_k \neq I_k$, we shall have

$$T_{I_{k+1}|_k}(A) \cap T_{I_k}(A) = \emptyset,$$

which means that

$$T_{I_{k+1}}(A) \cap T_{I_k}(A) = \emptyset.$$

This is a contraction. So there exists a unique sequence $T_{k_1 \leq k < \infty}$, satisfying $I_m \wedge I_l = I_{\min(m,l)}$, $\forall m, l$, such that

$$x \in \bigcap_{1 \le k < \infty} T_{I_k}(A),$$

where $x = \lim_{k} T_{I_k}(y)$, for any $y \in A$. Thus $x \in A_M$.

Thus we complete the proof of the lemma.

Theorem 2.3 (Conjecture of Ellis-Branton 1.8).

$$\dim A_M \ge u.$$

Proof. By Corollary 1.1, there exists a sequence of real numbers $\{\gamma_k\}_{k\geq 1}$ such that

$$\frac{1}{\beta_2} \le \gamma_k \le \frac{1}{\beta_1}$$

and

$$\gamma_k \sum_{I \in G(k)} t_I^u = 1.$$

So we can define a sequence of the Borel probability $\{\mu_k\}_{k\geq 1}$, such that the support of μ_k is always contained in A, and

$$\mu_k(T_I(A)) = \gamma_k(t_I)^u,$$

where $I \in G(k)$.

Since supp $\mu_k \subset \bigcup_{I \in G(k)} T_I(A)$ and $\mu_k(A) = 1$, there exists a sub-sequence of integers

 ${m_k}_{k\geq 1}$, such that

• $\{\gamma_{m_k}\}_{k\geq 1}$ converges to a real number γ . Easily, we have

s

$$\frac{1}{\beta_2} \le \gamma \le \frac{1}{\beta_1}.$$

• $\{\mu_{m_k}\}_{k\geq 1}$ converges to a Borel probability measure μ , satisfying that

$$upp \mu \subset A_M$$
, and $\mu(A_M) = 1$.

Let O be a ball small enough, satisfaying that $O \cap A_M \neq \emptyset$. Suppose that $x \in O \cap A_M$. Then there exists an infinite word $i_1 i_2 \cdots i_m \cdots \in \sum_M$ such that $x \in T_{(i_1 i_2 \cdots i_m \cdots)|_k}(A)$, for all $k \geq 1$.

So there exists $k \in N^*$ such that

$$ct_{i_1i_2\cdots i_{k+1}} \le |O| < ct_{i_1i_2\cdots i_k}$$

Take $I = (i_1 i_2 \cdots i_k)$ and $J \in G(k)$ with $I \neq J$. By Lemma 2.1, we have then

$$\delta(T_I(A), T_J(A)) \ge ct_{I \land J} > ct_I,$$

since $O \cap T_I(A) \neq \emptyset$, and $|O| \leq ct_I, O \cap T_J(A) = \emptyset$.

If $l \geq k$, we get

$$\mu(O) = \mu(O \cap A_M)$$

= $\mu \Big\{ O \bigcap \Big(\bigcup_{J \in G(l)} T_J(A) \Big) \Big\} = \mu \Big\{ \bigcup_{J \in G(l)} (O \cap T_J(A)) \Big\}$
= $\mu \Big\{ \bigcup_{J \wedge I = I} (O \cap T_J(A)) \Big\} = \mu \Big\{ O \bigcap \Big(\bigcup_{J \wedge I = I} T_J(A) \Big) \Big\}$
= $\mu(O \cap T_I(A)) \le \mu \Big\{ \bigcup_{J \wedge I = I} T_J(A) \Big\}.$

Let m_j be fixed, $l \ge m_j$. Then

$$\mu_{m_j} \Big\{ \bigcup_{J \in G(l)} T_J(A) \Big\} \le \mu_{m_j} \Big\{ \bigcup_{J \in G(m_j)} T_J(A) \Big\}$$

where $J \wedge I = I$.

We have

$$\mu_{m_j} \left\{ \bigcup_{J \in G(m_j)} T_J(A) \right\} = \gamma_{m_j} \sum_{J \in G(m_j)} t_J^u \le \gamma_{m_j} t_I^u \sum_{L \in G(m_j-k)} t_L^u$$
$$= \frac{\gamma_{m_j} t_I^u}{\gamma_{m_j-k}} \left(\gamma_{m_j-k} \sum_{L \in G(m_j-k)} t_L^u \right) = \frac{\gamma_{m_j}}{\gamma_{m_j-k}} t_I^u$$
$$\le \frac{\beta_2}{\beta_1} t_I^u \le \frac{\beta_2}{\beta_1} \frac{1}{(ct)^u} (c^u t_{i_1 i_2 \cdots i_{k+1}}^u),$$

where $J \wedge I = I$.

Then we obtain

$$\mu_{m_j}(O) \le \frac{\beta_2}{\beta_1} \frac{1}{(ct)^u} |O|^u, \quad \mu(O) \le \frac{\beta_2}{\beta_1} \frac{1}{(ct)^u} |O|^u.$$

So by the lemma of Frostman^[4], we have

$$\dim A_M \ge u.$$

Then we obtain Theorem 2.3.

References

- [1] Dekking, F. M., Recurrent sets, Advances in Mathematics, 44 (1982), 78-104.
- [2] Drobot, V. & Turner, J., Hausdorff dimension and Perron-Frobenius theory, Illinois J. Math., 33:1, (1989), 1-9.
- [3] Ellis, D. B. & Branton, M. G., Non-self-similar attractors of hyperbolic iterated function systems, *Lect. Notes in Math.*, 1342, Springer 1986-1987, 158-171.
- [4] Falconer, K. J., The geometry of fractal sets, Cambridge University Press, Cambridge 1985.
- [5] Hutchinson, J. E., Fractals and self-similarity, Indiana Univ. Math. J., **30**(1981), 713-747.
- [6] Mandelbrot, B. B., Fractals: form, chance and dimension, San Francisco: W. H. Freeman and Co., 1977.
- [7] Mandelbrot, B. B., The fractal geometry of nature, San Francisco: W. H. Freeman and Co., 1982.
- [8] Marion, J., Le Calcul de la Mesure Hausdorff des Sous-Ensembles Parfaits Isotypiques de R^m, Comptes Rendus Acad. Sci. Paris, 289 (1979), A65-A68.
- [9] Maudin, R. D. & Williams, S. C., Hausdorff dimension in graph directed constructions, T. A. M. S., 309:2 (1988), 811-830.
- [10] Moran, P. A. P., Additive functions of intervals and Hausdorff maesure, Proceeding of the Cambridge Philosophical Socity, 42(1946),15-23.
- [11] Peyrière, J., Calculs de dimensions de Hausdorff, Duke mathematical Journal, 44(1977), 591-601.
- [12] Stepney, S., Snowflakes and other monsters, Acorn User, March 1984.