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Abstract

Ellis and Branton introduced a class of non-self-similar sets; they gave an upper bound of
Hausdorff dimension for such sets, and a conjecture of the lower bound for these sets. This
paper gives a proof of this conjecture by using the lemma of Frostman.
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§0. Introduction

A lot of the classical fractal sets are self-similar, built up by pieces wich are geometrically

similar to the whole set, but in smaller scales[1,6,7,12].

Hutchinson defined in [5] the notion of self-similar set, which was also introduced by

Moran[10] and Marion[8]. The dimension and structure of self-similar sets have been studied

and generalized by many authors, such as Peyrière[11].

For the non-self-similar case, we have a few results in general. Ellis and Branton[3] have

intruduced a class of non-self-similar sets by using the Markov attractors. They obtained

an upper bound of Hausdorff dimension for such attractors, and they gave a conjecture for

its lower bound of Hausdorff dimension.

This paper is organized in the following way : in the first section, we recall the notion of

iterated function system, and state the results of Ellis and Branton[3], in second section, we

give a new proof of their conjecture.

§1. Preliminaries

Let (X, d) be a compact metric space. We call the system (X;T1, · · · , Tn) a hyperbolic

iterated function system, if there exists a constant s ∈ (0, 1) such that for all 1 ≤ i ≤ n and

x, y ∈ X,

d(Ti(x), Ti(y)) ≤ sd(x, y). (1.1)

For those systems, a subset A ⊂ X is called an attractor for the system, provided

(1) A is closed, and A ̸= ∅,
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(2) Ti(A) ⊂ A for all 1 ≤ i ≤ n,

(3) A is minimal with respect to 1 and 2.

With this definition, we have then[3]

A = T1(A) ∪ T2(A) ∪ · · · ∪ Tn(A). (1.2)

A hyperbolic iterated function system (X;T1, · · · , Tn) is said to be disjoint, if the collec-

tion of sub-sets {Ti(A)}1≤i≤n is a partition of A.

Remark 1.1. (1) Let (X;T1, · · · , Tn) be a hyperbolic iterated function system and A be

an attractor of X. Then

A = T1(A) ∪ T2(A) ∪ · · · ∪ Tn(A). (1.3)

We note T1(A)∪T2(A)∪ · · ·∪Tn(A) := ψ(A). Then for all closed non-empty subset E ⊂ X,

lim
k→+∞

ψ(E) = A in the Hausdorff metric.

(2) (Existence and unicity of the attractor): Let (X;T1, · · · , Tn) be a hyperbolic iterated

function system, then there exists one and only one attractor A, and A is compact.

1.1 Markov Attractors

Definition 1.1. Let M = (mij) be an n × n matrix. M is called a Markov transition

matrix, if mij = 0 or 1, for all 1 ≤ i, j ≤ n.

Definition 1.2. An n× n matrix M is said to be positive, if there exists k ≥ 1 such that

Mk > 0.

Definition 1.3. Let M = (mij) be an n × n Markov transitive matrix. A word

(i1i2 · · · ik · · · ) (finite or infinite) is calledM -admissible if we have, for all j ≥ 1, mijij+1 = 1.

Lemma 1.1. Let M be an n×n positive matrix and note ||M || the spectral radius of M .

Then there exist β ≥ α > 0 such that, for any k ≥ 1, we have[3]

αλk ≤
n∑

i,j=1

(Mk)ij ≤ βλk.

Definition 1.4. Let (X;T1, · · · , Tn) be a hyperbolic iterated function system, with the

attractor A. Let M be an n × n Markov transitive matrix. We say that a point a ∈ A is

M -attractive, if there exists an infinite word (i1i2 · · · ik · · · ) M -admissible, such that

a = lim
j→∞

Ti1(Ti2(· · · (Tij (x)) · · · )

for all x ∈ X.

Let AM be the set of M -attractivs points of A; AM is called Markov attractor of system

(X;T1, · · · , Tn) associated to M .

1.2 Estimation of the Hausdorff Dimension of Markov Attractor

Let (X;T1, · · · , Tn) be a disjoined hyperbolic iterated functions system, and d be the

metric on X. Suppose that there exist some constants 0 < t ≤ ti ≤ si ≤ s < 0, such that

for any 1 ≤ i ≤ n, we have

tid(x, y) ≤ d(Ti(x), Ti(y)) ≤ sid(x, y). (1.4)
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1.2.1 Notations
A Attractor of the disjoined hyperbolic iterated

functions system (X;T1, · · · , Tn),
M = (mij)1≤i ,j≤n An n× n primitive Markove transitive matrix,
G(k) = (i1i2 · · · ik) Sub-set of all mots M − admissible of the length k,
G∗ =

∪
1≤k<∞

G(k) The sub-set of all M − admissible words with finite length,∑
M The set of all M -admissible infinite words,

AM The Markov attractor of the system
(X;T1, · · · , Tn) associeted to M.

And we define also ti1i2···ik ∈ R by

ti1i2···ik = ti1ti2 · · · tik ,

and two operations of words: if I = (i1i2 · · · ik1), J = (j1j2 · · · jk2), then

IJ = (i1i2 · · · ik1j1j2 · · · jk2),

I ∧ J = {(i1i2 · · · ip); p = max k, such that ir = jr, ∀1 ≤ r ≤ p}.

Write

S =


s1 0

·
·

·
0 sn

 and T =


t1 0

·
·

·
0 tn

 .

We recall that (si) and (ti) are the constants in (1.4).

Let P = MSv and Q = MTu, where v, u > 0 are two positive constants such that

∥P∥ = ∥Q∥ = 1.

Corollary 1.1. With the above hypothesis, there exist α2 ≥ α1 > 0, β2 ≥ β1 > 0, such

that

α1 ≤
∑

I∈G(k)

svI ≤ α2, β1 ≤
∑

I∈G(k)

tuI ≤ β2

for all k ≥ 1.

Theorem 1.1 (Ellis-Branton, cf. [3]).

dimAM ≤ v. (1.5)

Conjecture of Ellis-Branton 1.1 (cf. [3]).

dimAM ≥ u. (1.6)

§2. Proof of the Conjecture of Ellis-Branton

In this section, we will prove the conjecture of Ellis Branton; first we state some lemmas.

Lemma 2.1. Define

δ(TI(A), TJ(A)) = inf{d(x, y);x ∈ Ti(A), y ∈ Tj(A), (i, j) ∈ I × J},

and c = inf
1≤i ̸=j≤n

δ(Ti(A), Tj(A)). Then

δ(TI(A), TJ(A)) ≥ ctI∧J

for any I, J ∈ G(k) and I ̸= J .
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Proof. Let I = (i1 · · · ip · · · ik) and J = (i1 · · · ipjp+1 · · · jk) with ip+1 ̸= jp+1. Then for

all x, y ∈ A we get

d(TI(x), TJ(y)) ≥ tI∧Jd(Tip+1···ik(x), Tjp+1···jk(y))

= tI∧Jd(Tip+1(x
′), Tjp+1(y

′)),

where x′ = Tip+2···ik(x) ∈ A, and y′ = Tjp+2···jk(y) ∈ A, which implies that

d(Tip+1(x
′), Tjp+1(y

′)) ≥ c,

thus

d(TI(x), TJ(y)) ≥ ctI∧J .

This completes the proof of the lemma.

Lemma 2.2. Let (i1i2 · · · im · · · ) be a word in
∑

M . Then

T(i1i2···im··· )|k+1
(A) ⊂ T(i1i2···im··· )|k(A),

and
{ ∪

I∈G(k)

TI(A)
}
k≥1

is a decreasing sequence, and moreover

AM =
∩

1≤k<+∞

∪
I∈G(k)

TI(A).

Proof.

T(i1i2···im··· )|k+1
(A) = T(i1i2···im··· )|k(Tik+1

(A))

⊂ T(i1i2···im··· )|k(A).

Hence
{ ∪

I∈G(k)

TI(A)
}
k≥1

is a decreasing sequence. Clearly we have

AM ⊂
∩

1≤k<+∞

∪
I∈G(k)

TI(A).

On the other hand, let x ∈
∩

1≤k<+∞

∪
I∈G(k)

TI(A). Then x ∈
∪

I∈G(k)

TI(A) for all k ∈ N∗.

Thus there exists a unique Ik ∈ G(k) such that

x ∈ TIk(A).

Further, if Ik+1 ∈ G(k + 1), x ∈ TIk+1
(A), then we have Ik+1|k = Ik. Otherwise, if

Ik+1|k ̸= Ik, we shall have

TIk+1|k(A) ∩ TIk(A) = ∅,

which means that

TIk+1
(A) ∩ TIk(A) = ∅.

This is a contraction. So there exists a unique sequence Tk1≤k<∞, satisfying Im ∧ Il =
Imin(m,l), ∀m, l, such that

x ∈
∩

1≤k<∞

TIk(A),

where x = lim
k
TIk(y), for any y ∈ A. Thus x ∈ AM .

Thus we complete the proof of the lemma.
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Theorem 2.3 (Conjecture of Ellis-Branton 1.8).

dimAM ≥ u.

Proof. By Corollary 1.1, there exists a sequence of real numbers {γk}k≥1 such that

1

β2
≤ γk ≤ 1

β1

and

γk
∑

I∈G(k)

tuI = 1.

So we can define a sequence of the Borel probability {µk}k≥1, such that the support of µk

is always contained in A, and

µk(TI(A)) = γk(tI)
u,

where I ∈ G(k).

Since supp µk ⊂
∪

I∈G(k)

TI(A) and µk(A) = 1, there exists a sub-sequence of integers

{mk}k≥1, such that

• {γmk
}k≥1 converges to a real number γ. Easily, we have

1

β2
≤ γ ≤ 1

β1
.

• {µmk
}k≥1 converges to a Borel probability measure µ, satisfying that

suppµ ⊂ AM , and µ(AM ) = 1.

Let O be a ball small enough, satisfaying that O ∩ AM ̸= ∅. Suppose that x ∈ O ∩ AM .

Then there exists an infinite word i1i2 · · · im · · · ∈
∑

M such that x ∈ T(i1i2···im··· )|k(A), for

all k ≥ 1.

So there exists k ∈ N∗ such that

cti1i2···ik+1
≤ |O| < cti1i2···ik .

Take I = (i1i2 · · · ik) and J ∈ G(k) with I ̸= J . By Lemma 2.1, we have then

δ(TI(A), TJ (A)) ≥ ctI∧J > ctI ,

since O ∩ TI(A) ̸= ∅, and |O| ≤ ctI , O ∩ TJ (A) = ∅.
If l ≥ k, we get

µ(O) = µ(O ∩AM )

= µ
{
O
∩( ∪

J∈G(l)

TJ(A)
)}

= µ
{ ∪

J∈G(l)

(O ∩ TJ(A))
}

= µ
{ ∪

J∧I=I

(O ∩ TJ (A))
}
= µ

{
O
∩( ∪

J∧I=I

TJ(A)
)}

= µ(O ∩ TI(A)) ≤ µ
{ ∪

J∧I=I

TJ(A)
}
.

Let mj be fixed, l ≥ mj . Then

µmj

{ ∪
J∈G(l)

TJ(A)
}
≤ µmj

{ ∪
J∈G(mj)

TJ(A)
}
,
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where J ∧ I = I.

We have

µmj

{ ∪
J∈G(mj)

TJ(A)
}
= γmj

∑
J∈G(mj)

tuJ ≤ γmj t
u
I

∑
L∈G(mj−k)

tuL

=
γmj t

u
I

γmj−k

(
γmj−k

∑
L∈G(mj−k)

tuL

)
=

γmj

γmj−k
tuI

≤ β2
β1
tuI ≤ β2

β1

1

(ct)u
(cutui1i2···ik+1

),

where J ∧ I = I.

Then we obtain

µmj (O) ≤ β2
β1

1

(ct)u
|O|u, µ(O) ≤ β2

β1

1

(ct)u
|O|u.

So by the lemma of Frostman[4], we have

dimAM ≥ u.

Then we obtain Theorem 2.3.
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