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Abstract

The authors use the functional equations for embedding vector fields to study smooth em-
bedding flows of one-dimensional diffeomorphisms. The existence and uniqueness for smooth

embedding flows and vector fields are proved. As an application of embedding flows, some
classification results about local and global diffeomorphisms under smooth conjugacy are given.
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§1. Introduction

In this paper we will use the embedding equations to consider smooth embedding flows

and vector fields for diffeomorphisms of the real line IR. As an application of embedding

flows, we will give some classification results for local and global diffeomorphisms under

smooth conjugacy.

The embedding flow problem originates from the discussion for the relation between

flows with discrete time and flows with continuous time. For the embedding problem of

1-dimensional diffeomorphisms, there have been many results (see [3, 5, 7–9, 14, 17]). For

higher dimensional systems, Palis[12] pointed out that diffeomorphisms which admit embed-

ding flows with some smoothness are “few” in the Baire sense.

Let f be a diffeomorphism on a smooth manifold M . A smooth flow of M, {f t} (t ∈ IR),

is said to be an embedding flow of f if f1 = f . The corresponding vector field, V (x) =
∂
∂tf

t(x)
∣∣
t=0

, is called an embedding vector field of f .

In this paper, we only consider embedding flows of local and global diffeomorphisms on

IR. The strategies for global diffeomorphisms of IR are as follows. Let f be an orientation

preserving diffeomorphism of IR. Then IR can be divided into several intervals by fixed

points of f . Typically, let a− < a0 < a+ be three consecutive fixed points of f .

Strategy 1. Consider f on the open interval (a−, a+) on which f has a unique fixed point

a0. In this case, embedding flows can be separately studied on the two sides of the fixed

point, namely, on (a−, a0] and on [a0, a+) (see [7, 8]). It is well known that the convergence
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of distortions of diffeomorphisms plays a fundamental role in embedding problem (see [7, 8,

17]). We will prove this convergence when f is Cr, r ≥ 2. This is the main content of §2 of

this paper.

Strategy 2. Consider f on the closed interval [a0, a+]. After obtaining smooth embed-

ding flows on [a0, a+) and (a0, a+] in Strategy 1, in order to connect these two embedding

flows to obtain a global embedding flow on [a0, a+], a necessary “connecting condition”

should be imposed. This is given in §4 by introducing a more general concept—time differ-

ence functions—as the “connecting invariants” of smooth conjugacy.

Let us now begin with the local diffeomorphisms. Denote IR+ = [0,∞). Let, for 1 ≤ r ≤
∞,

Dr
+(0) = {f : f is an orientation preserving Cr self-diffeomorphism of IR+

such that 0 is the unique fixed point of f}.

For a given f ∈ Dr
+(0), we always write λ = f ′(0) and

γ =

{
1, if λ = 1,

(log λ)/(λ− 1), if λ ̸= 1.

As f has a unique fixed point 0, there is a “direction index” σ = + or − such that

lim
n→σ∞

fn(x) = 0 on IR+.

The distortions of f are

qn(x, y) =
(fn)′(x)

(fn)′(y)
, x, y ∈ IR+.

The sufficient part of (i) and (ii) of the following theorem are derived from the works of

[7-9].

Theorem 1.1. Let f ∈ D1
+(0). Then

(i) f has a C1 embedding flow iff qn(x, y) converges to some q(x, y) uniformly for x, y in

any compact set of (0,∞) when n→ σ∞.

(ii) If f has a C1 embedding flow, then the C1 embedding flow of f is unique (denoted by

{f t}). Furthermore, the corresponding embedding vector field V = V f is given by

V (x) = γ

∫ f(x)

x

q(s, x) ds = γ lim
n→σ∞

fn+1(x)− fn(x)

(fn)′(x)
, x ∈ IR+.

For the necessary part of (i), we observe that if f has a C1 embedding flow {f t} on IR+,

then for any compact set K of (0,∞) and x, y ∈ K there exists t = t(y, x) ∈ IR such that

x = f t(y). Thus

(fn)′(x)

(fn)′(y)
=

(fn)′(f t(y))

(fn)′(y)
=

(fn+t)′(y)

(fn)′(y)(f t)′(y)
=

(f t)′(fn(y))

(f t)′(y)

tends to λt/(f t)′(y) uniformly as n→ σ∞.

There are examples in [9] which show that not all C1 diffeomorphisms of IR have C1

embedding flows. In this paper we will consider the following basic problem.

Problem. Does any f ∈ Dr
+(0) (r ≥ 2) have a Cr embedding flow?

Let f ∈ Dr
+(0). If r ≥ 2, then the function

V (x) = γ lim
n→σ∞

fn+1(x)− fn(x)

(fn)′(x)
, x ∈ IR+ (1.1)
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is well defined. The reason is that f is Cr (r ≥ 2) implies that the function log f ′ (when

σ = +) or log(f−1)′ (when σ = −) is of bounded variation on any finite interval of IR+.

Thus the distortions have a limit q(x, y) = lim
n→∞

qn(x, y), which converges uniformly on any

compact set of (0,∞) (see [8]). Therefore, if V is of some smoothness, then one can use V as

a vector field to generate an embedding flow which is also of some smoothness. Combining

Theorem 1.1 with the strategies explained above, one can easily understand the results in

[5].

In this paper we will use the ideas in [3, 17] to study the smoothness of embedding vector

fields. We will not directly study the smoothness of V (x) given in (1.1) because it follows

from the reduction from the embedding equations to ordinary differential equations in [17]

(see also Theorem 2.1 in the next section) that we need only study the smoothness of the

limiting function of the sequence

pn(x) =
(fn)′′(x)

(fn)′(x)
, x ∈ IR+.

An obvious relation between pn and qn is qn(x, y) = exp
( ∫ x

y
pn(s)ds

)
.

After proving a technical result (Lemma 2.1), we will obtain the following result (Theorem

2.2).

Let f ∈ Dr
+(0), r ≥ 2. Then f has a unique C1 embedding vector field V = V f on IR+.

Moreover, V is Cr−1 on (0,∞), and V ′′(0) always exists.

As a result, we know that any f ∈ Dr
+(0) (r ≥ 2) has a unique C1 embedding flow

on IR+ which is Cr on (0,∞). For hyperbolic fixed points, i.e., λ ̸= 1, we can obtain

further smoothness of V (Theorem 2.2). As a result, in §2 we will prove that a Cr (r ≥ 2)

diffeomorphism of IR can be Cr linearizable near hyperbolic fixed points. This result is well

known for the cases r = ∞, ω (see [14, 20]).

As an application of embedding flows, in §3 and §4 we will consider smooth conjugacy of

local and global 1-dimensional diffeomorphisms, respectively. In §3 a result of Firmo[4] for C1

normal forms of diffeomorphisms near non-hyperbolic fixed points is generalized (Theorem

3.2). In §4 we will use embedding flows to define a unique “time difference function” (TDF,

for short) for a diffeomorphism f of an interval which has only the endpoints as fixed points.

The existence of a global C1 embedding flow on such an interval is equivalent to that f

has a zero TDF. It will be shown in §4 that TDFs are just the “connecting” invariants

between fixed points under smooth conjugacy (Theorem 4.3). Such invariants have been

discovered in the works of [2, 16]. However, some new results about smooth classification of

diffeomorphisms are obtained (see Theorems 4.1 and 4.3).

For the studying of smooth conjugacy of diffeomorphisms, our main idea is to “embed” a

single global diffeomorphism into several local differential flows. Moser[10] also used this idea

to discuss monotone twist maps of the plane. Following this idea, in [18] we will give the

structure of centralizers and iterated radicals for all Cr (r ≥ 2) Morse-Smale diffeomorphisms

on the circle. The corresponding results for C∞ Morse-Smale diffeomorphisms on higher

dimensional manifolds can be found in [13]. In [19] we will use this method to obtain a

Rigidity Lemma (see, e.g., [11]) for bifurcation of families of diffeomorphisms so that it can

be applied to degenerate saddle-node bifurcation of C2 families of diffeomorphisms.
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§2. Embedding Vector Fields and Embedding Flows

In this section, we consider the existence and smoothness of (local) embedding vector

fields and flows for diffeomorphisms of IR near isolated fixed points.

If V is an embedding vector field for a diffeomorphism f of M , then V satisfies the

following functional equation (see [3, 17])

V (f t(x)) = (f t)′(x)V (x), x ∈M, t ∈ IR.

Taking t = 1 we know that V satisfies the following embedding equation

V (f(x)) = f ′(x)V (x), x ∈M. (2.1)

For f ∈ Dr
+(0) (r ≥ 2), in [17] we have used the iterates of f to reduce the functional

equation (2.1) to a linear ODE. More exactly, we have

Theorem 2.1.[17] Let f ∈ Dr
+(0) (r ≥ 2). Suppose that the sequence {pn(x)} converges

to some p(x) uniformly for x in any compact set of (0,∞) when n → σ∞. Then a C1

function V : IR+ → IR is an embedding vector field of f on IR+ iff V satisfies the following

ODE

V ′(x) + p(x)V (x) = log λ, x ∈ (0,∞), (2.2a)∫ f(c)

c

ds

V (s)
= 1, (2.2b)

V (0) = 0, (2.2c)

where c > 0 is any fixed number.

In [17], the convergence of {pn(x)} is proved for some cases. Now we give the following

technical lemma.

Lemma 2.1. Let f ∈ Dr
+(0) (r ≥ 2). We have

(i) For any integer s : 0 ≤ s ≤ (r − 2), the sequence {p(s)n (x)} converges uniformly for x

in any compact set of (0,∞) when n→ ∞.

(ii) If λ ̸= 1, then for any integer s : 0 ≤ s ≤ (r − 2) the sequence {p(s)n (x)} converges

uniformly for x in any compact set of [0,∞) when n→ σ∞.

Proof. Without loss of generality, assume that σ = +, i.e., f(x) < x on (0,∞). When

σ = −, we can consider f−1 because V f = −V f−1

.

At first we have the following equalities

pn(x) =
(fn)′′(x)

(fn)′(x)
≡

n−1∑
k=0

F (fkx)(fk)′(x), n ≥ 1, (2.3)

where F (x) = f ′′(x)/f ′(x) and fkx = fk(x). Let

Pn(x) =
n∑

k=0

(fk)′(x), n ≥ 0.

For any a ≥ 0, let M(a) = max
x∈[0,a]

|F (x)|. Then M(a) is continuous. For any fixed a > 0,

let Ia = [fa, a] ⊂ (0,∞). Then
∪

k∈Z

fk(Ia) =
∪

k∈Z

[fk+1a, fka] = (0,∞).
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For x, y ∈ Ia and k ≥ 0, we have

| log(fk)′(x)− log(fk)′(y)|

=
∣∣∣ k−1∑
i=0

(log f ′(f ix)− log f ′(f iy))
∣∣∣ = ∣∣∣ k−1∑

i=0

F (θi,k)(f
ix− f iy)

∣∣∣
≤M(a)

k−1∑
i=0

|f ix− f iy| ≤M(a)
k−1∑
i=0

(f ia− f i+1a) =M(a)(a− fka) ≤ aM(a). (2.4)

Let N = N(a) = exp(aM(a)). Then (2.4) implies

N−1(fk)′(y) ≤ (fk)′(x) ≤ N(fk)′(y), x, y ∈ Ia, k ≥ 0. (2.5)

Integrating (2.5) for y on Ia and noticing that
∫ a

fa
(fk)′(y)dy = fka− fk+1a, we get

N−1 f
ka− fk+1a

a− fa
≤ (fk)′(x) ≤ N

fka− fk+1a

a− fa
, x ∈ Ia, k ≥ 0. (2.6)

For any n ≥ m ≥ 0, (2.6) implies

N−1 f
m+1a− fn+1a

a− fa
≤ Pn(x)− Pm(x) ≤ N

fm+1a− fn+1a

a− fa
, x ∈ Ia. (2.7)

As lim
n→∞

fna = 0, (2.7) shows that {Pn(x)} converges uniformly on Ia. As
∪

k∈Z

fk(Ia) =

(0,∞), {Pn(x)} converges uniformly for x in any compact set of (0,∞). By (2.3) then so

does {pn(x)}.
Now if r > 2, we can prove that {p′n(x)} is also uniformly convergent on compact sets of

(0,∞). Differentiating (2.3) with respect to x, we obtain

p′n(x) =
n−1∑
k=0

[F ′(fkx)((fk)′(x))2 + F (fkx)(fk)′′(x)]

=
n−1∑
k=0

[F ′(fkx)((fk)′(x))2 + F (fkx)pk(x)(f
k)′(x)]. (2.8)

On any compact set S ⊂ (0,∞), {Pn(x)}, {pn(x)} are uniformly convergent, thus it

follows from (2.8) that {p′n(x)} is also uniformly convergent on S. Inductively it is not

difficult to prove that (i) holds.

In order to prove (ii), assume that λ ∈ (0, 1). For any λ < µ < 1 and a > 0, there is some

L = L(a, µ) > 0 such that (fn)′(x) ≤ Lµn, x ∈ [0, a], n ≥ 0. By the equalities (2.3), we

know that {pn(x)} is convergent uniformly on [0, a] (therefore on any compact set of IR+).

If r > 2, the convergence for {p(s)n (x)}, 1 ≤ s ≤ r − 2, can be similarly proved.

Theorem 2.2 (Embedding Vector Fields). Let f ∈ Dr
+(0), r ≥ 2. Then

(i) f has a unique C1 embedding vector field V = V f on IR+. Moreover, V is Cr−1 on

(0,∞), and V ′′(0) always exists.

(ii) If λ ̸= 1, then V is Cr−1 on IR+ and V (r)(0) exists when r <∞.

Proof. We only consider the case σ = +.

(i) By Lemma 2.1(i) and Theorem 1.1 we know that f has an embedding vector field V

given by (1.1).

As {p(s)n (x)} converges uniformly on any compact set of (0,∞) for 0 ≤ s ≤ r − 2, p(x) =

lim
n→∞

pn(x) is C
r−2 on (0,∞). Therefore Equation (2.2a) has a unique Cr−1 solution Vc on
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(0,∞) such that Vc satisfies (2.2b). It is easy to check that Vc does not depend upon c. In

fact Vc = V .

Now we are going to prove that V is C1 on IR+ and V ′′(0) always exists even when r = 2.

From (2.5) we get N(a)−1 ≤ qn(x, y) ≤ N(a), x, y ∈ Ia, n ≥ 0. Taking the limit we have

N(a)−1 ≤ q(x, y) = lim
n→∞

qn(x, y) ≤ N(a), x, y ∈ Ia. (2.9)

It follows from (1.1) and (2.9) that

γN(x)(fx− x) ≤ V (x) = γ

∫ fx

x

q(s, x)ds ≤ γN(x)−1(fx− x) < 0, x > 0. (2.10)

As lim
x→0

N(x) = 1, by (2.10) we get lim
x→0

V (x) = 0 = V (0). Once again by (2.10) we have

lim
x→0

V (x)

x
= lim

γ(fx− x)

x
= γ(λ− 1) = log λ = V ′(0).

This means that V is differentiable on IR+. For the continuity of V ′ at x = 0, we need

only to prove that V ′′(0) exists. Taking m = 0 in (2.7) we get (by noticing that P0(x) ≡ 1)

N(a)−1 fa− fn+1a

a− fa
≤ Pn(x)− 1 ≤ N(a)

fa− fn+1a

a− fa
, x ∈ Ia, n ≥ 0.

The limit gives

aN(a)− (N(a)− 1)fa

N(a)(a− fa)
≤ P (x) = lim

n→∞
Pn(x) ≤

a+ (N(a)− 1)fa

a− fa
, x ∈ Ia. (2.11)

When x→ 0, N(x) → 1 and f(x) = O(x). Thus (2.11) implies (by taking a = x)

P (x) ∼ x

x− f(x)
when x→ 0.

Combining this with (2.10) we have lim
x→0

P (x)V (x)
x = −γ.

Using (2.3) we get

p(x) =
∞∑
k=0

F (fkx)(fk)′(x)

= F (0)P (x) +
∞∑
k=0

(F (fkx)− F (0))(fk)′(x)

= (F (0) +O(K(x)))P (x),

where K(x) = max
t∈[0,x]

|F (t)−F (0)| → 0 as x→ 0. Thus p(x)V (x)/x→ −γF (0). Now we use

(2.2) to obtain

V ′′(0) = lim
x→0

V ′(x)− V ′(0)

x
= lim

x

V ′(x)− log λ

x
= − lim

x

p(x)V (x)

x
= γF (0).

(ii) It follows from Lemma 2.1(ii) that p(x) is Cr−2 on IR+. Now Equation (2.2) implies

that V is Cr−1 on IR+. Suppose r <∞. We need to prove that V (r)(0) exists. Differentiating

(2.2) (r − 2) times, we have

V (r−1)(x) = −p(r−2)(x)V (x)−W (x), x > 0,

where

W (x) =
r−2∑
i=1

(
r − 2

i

)
p(r−2−i)(x)V (i)(x)
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is C1. Thus

V (r)(0) = lim
x→0

(V (r−1)(x)− V (r−1)(0))/x

= lim
x→0

−p(r−2)(x)V (x)/x−W ′(0)

= −p(r−2)(0)V ′(0)−W ′(0).

In order to emphasize the importance of formula (2.10), we write down it as

Proposition 2.1. Let f ∈ Dr
+(0) (r ≥ 2). Then the C1 embedding vector field V satisfies

lim
x→0

V (x)

f(x)− x
= γ. (2.12)

Remark 2.1. (i) If λ = 1 then pn(0) = nf ′′(0). Thus p(0) = ∞ and Equation (2.2a) is

singular at x = 0.

(ii) From Proposition 2.1, it is easy to see that f and its embedding vector field V have

the same orders at 0 (see [5]). The same formulas as in [5, Lemma 2] are also easily derived.

Thus the restriction on the orders in the technical Lemma 2 of [5], and therefore in all results

of [5], can be dropped.

Conjecture 2.1. Let f ∈ Dr
+(0) (2 ≤ r ≤ ∞) with λ = f ′(0) = 1. Then V = V f is

Cr−1 on IR+ and V (r)(0) exists if r <∞.

For the case r = ω, the results in [1] show that for most analytic (near z = 0) f(z) =

z+az2+ · · · (a ̸= 0), V f is far from being analytic. For the case r = ∞ and f (m)(0) ̸= 0 for

some integer m ≥ 2, the conjecture is true (see [15, Theorem 4]). Lemma 2.1(i) also shows

that it is true for the case r = 2.

As a corollary of Theorems 1.1 and 2.2 we have

Theorem 2.3 (Embedding Flows). Let f ∈ Dr
+(0), 2 ≤ r ≤ ∞. Then

(i) f has a unique C1 embedding flow {f t} on IR+. Moreover, it is Cr on (0,∞).

(ii) If λ ̸= 1, then f has a unique Cr embedding flow on IR+.

Proof. The uniqueness is a corollary of Theorem 1.1. Conclusion (i) directly follows from

Theorem 2.2(i). For (ii), we will prove that there is a Cr diffeomorphism h : IR+ → IR+

such that h(0) = 0, h′(0) = 1 and

h′(x)V (x) = µh(x) (µ = V ′(0) = log λ), (2.13)

where V = V f . The proof is similar to that in [20]. Let

W (x) =

{
(V (x)− µx)/x2, x > 0,

V ′′(0)/2, x = 0.

Then V (x) ≡ µx+ x2W (x). By the property that V (r)(0) exists if r <∞, it is not difficult

to prove that W (x) is Cr−2 and xW (x) is Cr−1 on IR+.

Let h(x) = x(1 +H(x)). Then (2.13) becomes

H ′(x) + u(x)H(x) = −u(x), (2.14)

where u(x) = W (x)/(µ + xW (x)) is Cr−2. The solution of (2.14) satisfying H(0) = 0 is

H(x) = exp(−
∫ x

0
u(t)dt)− 1, which is Cr−1. As

h′(x) =
µh(x)

V (x)
=
µ(1 +H(x))

µ+ xW (x)

is also Cr−1, we obtain the required Cr solution h of (2.13).
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Now it follows from (2.13) that the embedding flow of f is given by

f t(x) ≡ h−1(λth(x)), t, x ∈ IR+. (2.15)

It is Cr. Thus Theorem 2.3 is proved.

Let t = 1 in (2.15). It means that f = f1 can be Cr linearized at 0. In general, we have

Theorem 2.4. Any Cr (r ≥ 2) diffeomorphism of IR can be Cr linearized at hyperbolic

fixed points.

Proof. Theorem 2.4 is well-known for r = ∞, ω (see [14, 20]). Now assume that r <∞.

Without loss of generality, we may assume that f : IR → IR is a global Cr diffeomorphism

with one hyperbolic fixed point x = 0. We need only consider the case that f is orientation

reversing. By the C1 linearization theorem (see [10]), there is a C1 diffeomorphism h1 of IR

such that h1(0) = 0, h′1(0) = 1 and

h1(f(x)) ≡ λh1(x). (2.16)

As f2 is orientation preserving, there is a Cr diffeomorphism h2 of IR such that h2(0) =

0, h′2(0) = 1 and

h2(f
2(x)) ≡ λ2h2(x). (2.17)

Let h = h1◦h−1
2 . It follows from (2.16) and (2.17) that h is a C1 conjugacy between linear,

hyperbolic diffeomorphism F (x) ≡ λ2x and itself. Thus h is linear: h(x) ≡ h′(0)x ≡ x.

Therefore h1 = h2 is Cr.

For the case r = 1, the corresponding result is not true.

Example 2.1. Consider the following differential equation

dx

dt
= Vµ(x) ≡ (log λ)

(
1− µ

log |x|

)
x, |x| < 1, (2.18)

where λ > 0, ̸= 1 and µ ∈ IR. Obviously, Vµ is C1 on |x| < 1. The time function of Vµ is

Tµ(x) =

∫ x ds

Vµ(s)
=

logSµ(x)

log λ
,

where Sµ(x) = x(µ− log |x|)µ, |x| ≪ 1.

Equation (2.18) generates a C1 flow

f tµ(x) = T−1
µ (Tµ(x) + t) = S−1

µ (λtSµ(x)), |x| ≪ 1.

The time one map fµ = f1µ(x) = S−1
µ (λSµ(x)) is a C

1 local diffeomorphism of IR and has a

hyperbolic fixed point 0 for any µ ∈ IR. In fact f ′µ(0) ≡ λ for any µ.

We will prove that fµ, fν are not C1 conjugate near 0 if µ ̸= ν. Especially, any fµ (µ ̸= 0)

cannot be C1 linearized at 0.

Assume that there exists a C1 diffeomorphism h such that h(0) = 0, h′(0) > 0 and

h ◦ fµ = fν ◦ h. By the uniqueness of C1 embedding flows, we have h(f tµ(x)) ≡ f tν(h(x)).

Let H = Sν ◦ h ◦ S−1
µ . Using the expressions for {f tµ}, we obtain

H(λtx) = λtH(x), |x| ≪ 1, t ∈ IR. (2.19)

Since H is C1 on x ̸= 0, the derivative of (2.19) with respect to x shows that H ′(x) is a

constant (denoted by c > 0) on x > 0. Thus we have

Sν(h(x)) = cSµ(x), 0 ≤ x≪ 1. (2.20)
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However, as x → 0, Sν(h(x)) is of order x(− log |x|)ν and Sµ(x) is of order x(− log |x|)µ.
Thus (2.20) is a contradiction.

Concerning the Strategy 1 in §1, it follows from the proof of Theorem 2.2 that we have

Theorem 2.5. Let f : IR → IR be an orientation preserving Cr diffeomorphism such

that 0 is the unique fixed point of f , where 2 ≤ r ≤ ∞. Then

(i) V = V f is C1 on IR;

(ii) V ′′(0) always exists; and

(iii) V is Cr−1 on IR\{0}. Moreover, if λ ̸= 1, then V is Cr−1 on IR and V (r)(0) exists

if r <∞.

In the following, we will use the embedding vector field V to give the embedding flow.

For any c > 0, define a “time function”

Tc(x) =

∫ x

c

ds

V (s)
, x > 0.

Obviously, for any c > 0, Tc : (0,∞) → IR is a Cr diffeomorphism. Now the C1 embedding

flow of f is

f t(x) =

{
0, if x = 0, t ∈ IR,

T−1
c (Tc(x) + t), if x > 0, t ∈ IR.

(2.21)

§3. Conjugacy of Local Diffeomorphisms

In this section, we will consider (orientation preserving) smooth conjugacy for local dif-

feomorphisms of IR.

Let f, g be diffeomorphisms. We say that f and g are Cs conjugate if there is a Cs

diffeomorphism h such that h ◦ f = g ◦ h. Such an h is called a conjugacy (between f and

g).

The following lemma is a direct result of the uniqueness for C1 embedding flows.

Lemma 3.1. Let f, g ∈ Dr
+(0). If h is a C1 conjugacy of f and g, then (i) h◦f t = gt◦h;

and (ii) h′(x)V f (x) = V g(h(x)).

Definition 3.1. Let f ∈ Dr
+(0), r ≥ 2. We say that f is not flat (with respect to id) at

0 if there are constants µ > 1, aµ ̸= 0 such that f(x) = x + aµx
µ + o(xµ) as x → 0. The

constant µ is called the order of f (at 0).

For a C∞ diffeomorphism of IR being not flat, Takens[19] gives the following normal form

under C∞ conjugacy.

Theorem 3.1.[15, Theorem 2] Let f be a C∞ diffeomorphism of IR such that f has a unique

fixed point 0 and f2(x) = x+ xkF (x), where F (0) ̸= 0 and k ≥ 2 is an integer. Then there

is a C∞ orientation preserving diffeomorphism h : IR → IR such that h ◦ f ◦ h−1(x) =

εx+ δxk + αx2k−1, where ε = signf ′(0), δ = ±1 and α are constants depending upon f .

The following is a generalization of [4, Theorem 1.1] for C1 normal forms.

Theorem 3.2. Suppose that f = x + aµx
µ + o(xµ), g = x + bνx

ν + o(xν) ∈ Dr
+(0),

2 ≤ r ≤ ∞, are not flat at x = 0. Then

(i) f, g are C1 conjugate on IR+ iff ν = µ and aµbµ > 0.

(ii) Suppose that f, g are C1 conjugate. If h is a topological conjugacy such that h is C1

on (0,∞), then h is a C1 diffeomorphism of IR+ and is Cr on (0,∞).
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(iii) Suppose that f, g are C1 conjugate. Then for any w, z > 0, there is a unique C1

conjugacy h satisfying h(w) = z.

Proof. We only give the proof for (i). By (2.12), in this case we have V f (x) ∼ (f(x)−x)
as x→ 0. Now suppose that h(x) = cx+o(x) (c = h′(0) > 0) is a C1 conjugacy. By Lemma

3.1, we have

h′(x)V f (x) ≡ V g(h(x)). (3.1)

When x→ 0,

h′(x)V f (x) ∼ caµx
µ, V g(h(x)) ∼ bνc

νxν ,

thus ν = µ and aµ/bµ = cµ−1 > 0. This proves the necessity. The above proof also shows

that all C1 conjugacies have the same derivative at 0 (see also [4]), i.e., h′(0) =
(

aµ

bµ

) 1
µ−1

.

For sufficiency, suppose that ν = µ, aµbµ > 0. For any w, z > 0, the singular ODE (3.1)

has a unique solution h on (0,∞) and satisfies h(w) = z. As V f , V g are Cr−1, h is Cr on

(0,∞). Obviously, h(x) → 0 as x→ 0.

We need to prove that lim
x→0

h′(x) exists and is positive. By (3.1) we have

h′(x) =
bµh(x)

µ

aµxµ
α(x), x > 0, (3.2)

where α(x) → 1 as x→ 0. By L’Hospital Theorem, we use (3.2) to obtain

lim
x→0

h(x)1−µ

x1−µ
= lim

x

h(x)−µ

x−µ
h′(x) =

bµ
aµ
.

Thus lim
x→0

h(x)
x =

(
bµ
aµ

) 1
1−µ

. Once again by (3.2) we get lim
x→0

h′(x) =
(

aµ

bµ

) 1
µ−1

> 0. This

shows that h is a C1 diffeomorphism on IR+.

By expressions (2.21) for embedding flows, the diffeomorphism h = hz,w in Theorem

3.2(iii) is given by

hz,w(x) =

{
0, x = 0,

T̂−1
z ◦ Tw(x), x > 0,

(3.3)

where Tw, T̂z are the time functions of f, g respectively.

Theorem 3.2 shows that the C1 normal forms for f ∈ Dr
+(0) (r ≥ 2) being not flat at 0

are fδµ(x) = x+ δxµ, where δ = ±1 and µ ∈ {2, 3, · · · , r − 1} ∪ [r,∞).

For hyperbolic fixed points, the following result can be easily derived from Theorem 2.4.

Theorem 3.3. Let f, g be Cr (r ≥ 2) diffeomorphisms of IR such that f(0) = g(0) = 0.

If f ′(0) ̸= ±1, g′(0) ̸= ±1, then f, g are Cr conjugate near 0 iff f ′(0) = g′(0).

§4. Conjugacy of Global Diffeomorphisms

For global diffeomorphisms of IR, we need only consider diffeomorphisms of the interval

which fix the endpoints of the interval (see Strategy 2 of §1). We will define, for such a

diffeomorphism, a unique “time difference function” (TDF). It will be shown that TDFs are

just the “connecting” invariants between fixed points.

Let I = [a, b] ⊂ IR be an interval. Denote Iα = [a, b), Iω = (a, b] and Io = (a, b). For
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1 ≤ r ≤ ∞, let

Dr(I) = {f : I → I : f is an orientation preserving Cr diffeomorphism of I;

f has only two fixed points x = a, b. Moreover, if r = 1, then

(fn)′(x)/(fn)′(y) converges uniformly for x, y in any compact subset of

Io when n→ +∞, n→ −∞}.

For a given f ∈ Dr(I), by the results in §2 we know that f has a unique embedding

vector field V α (resp. V ω) on the interval Iα (resp. Iω). They can be given by formulas

similar to (1.1) and are Cr−1 on Io. In general, they are not equal.

Let {f tσ}, {T σ
c } be the corresponding C1 embedding flows and time functions, where

c ∈ Io and σ = α, ω. Obviously, the time functions {Tσ
c } are Cr diffeomorphisms from Io

onto IR. Thus for any c ∈ Io we can define a Cr self-diffeomorphism of IR by

Tc(t) = Tα
c ((T

ω
c )−1(t)), t ∈ IR.

The following two lemmas are obvious.

Lemma 4.1. Let f ∈ Dr(I). For any c, d, x ∈ Io, σ = α, ω, we have (i) T σ
c (x) =

T σ
d (x) + T σ

c (d); (ii) T
σ
c (d) = −T σ

d (c); and (iii) T σ
c (f(x)) = Tσ

c (x) + 1.

Lemma 4.2. Let f ∈ Dr(I). Then (i) Tc(t + 1) ≡ Tc(t) + 1; and (ii) Tc(t) ≡ Td(t +

Tω
d (c)) + Tα

c (d).

For any c ∈ Io, define

ψc(t) = Tc(t)− t− tc, t ∈ IR, (4.1)

where tc =
∫ 1

0
(Tc(t)− t)dt.

From Lemma 4.2 and (4.1), one can check that, for any c, d ∈ Io,

ψc(t) ≡ ψd(t+ Tω
d (c)), (4.2)

tc = td + Tω
d (c)− Tα

d (c). (4.3)

Let P r = {ψ : IR → IR is Cr and ψ(t+1) ≡ ψ(t); ψ′(t) > −1; and
∫ 1

0
ψ(t)dt = 0}. Define

an equivalence ∼ on P r by ψ1 ∼ ψ2 iff there exists t0 such that ψ1(t) ≡ ψ2(t + t0). Thus

ψc ∈ P r and ψc ∼ ψd for any c, d ∈ Io.

Definition 4.1. For f ∈ Dr(I), let ψf = ψc0 and tf = tc0 , where c0 = (a+ b)/2. ψf is

called the time difference function (TDF) of f .

We will show that TDFs are the “connecting” invariants between fixed points for C1

conjugacy. In essence, TDFs coincide with those objects defined in [2, 16]. However, TDFs

are more convenient in some applications. For the realization of functions in P r as invariants,

we give the following result.

Theorem 4.1. For any 0 < λ < 1 < µ and any ψ ∈ P r (1 ≤ r ≤ ∞), there exists

f ∈ Dr(I) such that f ′(a) = λ, f ′(b) = µ and ψf ∼ ψ.

Proof. For simplicity, assume I = [0, 1]. For a given ψ ∈ P r, let p(t) = t+ψ(t) and q(t)

be the inverse function of p(t). Obviously, q(t)− t is 1-periodic. Let

G(t) = − exp(q(log t/ log λ) logµ), t ∈ (0,∞).

Then G has properties (i) G is Cr; (ii) G′(t) > 0; (iii) G maps (0,∞) onto (−∞, 0); (iv)



136 CHIN. ANN. OF MATH. Vol.18 Ser.B

G(t) → 0 as t→ ∞; and (v) G(λt) ≡ µG(t). Obviously,

G−1(t) = exp(p(log(−t)/ logµ) log λ), t ∈ (−∞, 0).

As G(t) is not good near t = 0, we modify G(t) by C(t): C(t) is a positive Cr−1 function

on [0,∞) satisfying (a) C(t) = G′(t) if t≫ 1; (b) C(0) = 1; and (c)
∫∞
0
C(t)dt = 1.

Define a Cr diffeomorphism H : (−∞, 0] 7→ (0, 1] by

H(t) =

{
1, t = 0,∫ G−1(t)

0
C(s)ds, t < 0.

Define another Cr diffeomorphism K : [0,∞) 7→ [0, 1) by

K(t) =

∫ t

0

C(s)ds =

{
0, t = 0,

H(G(t)), t > 0.

Let

f(x) =

{
1, x = 1

K(λK−1(x)), x ∈ [0, 1)

≡
{

0, x = 0,

H(µH−1(x)), x ∈ (0, 1].

Obviously, f ∈ Dr(I) and f ′(0) = λ, f ′(1) = µ. Moreover we have the following equalities

Tα
c (x) =

1

log λ
log

K−1(x)

K−1(c)
, Tω

c (x) =
1

logµ
log

H−1(x)

H−1(c)
, 0 < c, x < 1.

Thus

Tc(t) = Tα
c ◦ (Tω

c )−1(t)

= Tα
c (H(µtH−1(c)))

=
1

log λ
log

K−1 ◦H(µtH−1(c))

K−1(c)

=
1

log λ
[logG−1(µtH−1(c))− logK−1(c)]

= p
(
t+

log(−H−1(c))

logµ

)
− logK−1(c)

log λ

= t+ ψ
(
t+

log(−H−1(c))

logµ

)
+

log(−H−1(c))

logµ
− logK−1(c)

log λ
.

Therefore,

ψf
c (t) = ψ

(
t+

log(−H−1(c))

logµ

)
∼ ψ(t).

We do not know if Theorem 4.1 also holds for the case r = ω. Using TDFs, we can

improve some results in [9, 17].

Corollary 4.1. (i) f ∈ Dr(I) has a C1 embedding flows on I iff ψf = 0.

(ii) There exists f ∈ D∞(I) such that 0 < f ′(a) < 1 < f ′(b) and f has no any C1

embedding flow on I.

Let now f : IR → IR be a Cr (r ≥ 1) orientation preserving diffeomorphism with isolated

fixed points am < · · · < a0 < · · · < as, where |m|, s ≤ ∞. Moreover, if r = 1, we assume

that log f ′ and log(f−1)′ are of bounded variation on any bounded interval. Thus, on any

bounded interval [ai, ai+1], we can define a TDF ψi ∈ P r, i = m, · · · , s− 1.
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Corollary 4.2. Let f be as above. We have

(i) f has a C1 embedding flow on IR iff ψi = 0 for all i = m, · · · , s− 1.

(ii) Assume that ψi = 0 for all i. Then the unique C1 embedding flow {f t} is Cr on

IR\{am, · · · , as}. If, in addition, all fixed points of f are hyperbolic, then {f t} is Cr on IR.

Now we consider smooth conjugacy for diffeomorphisms in Dr(I). For f ∈ Dr(I), let {f tσ}
(resp. {Tσ

c }) be the embedding flows (resp. time functions) of f , σ = α, ω. For g ∈ Dr(I),

we use the notations {gtσ}, {T̂σ
d }.

Theorem 4.2. Let f, g ∈ Dr(I). Suppose that h is a C1 orientation preserving conjugacy

between f and g. Then (i) h ◦ f tσ = gtσ ◦ h, t ∈ IR, σ = α, ω; and (ii) ψf ∼ ψg.

Proof. (i) follows from the uniqueness of C1 embedding flows. For (ii), let c be the

center point of I and d = h(c) ∈ Io. By (i) we have the following equalities

h(f tσ(c)) ≡ gtσ(h(c)) = gtσ(d), σ = α, ω;

h(x) ≡ (T̂σ
d )

−1(T σ
c (x)), x ∈ Iσ, σ = α, ω;

Tc(t) ≡ T̂d(t);

ψf (t) + tf ≡ ψg
d(t) + tgd.

Let tσ = T̂σ
c (d) = T̂σ

c (h(c)) (depending upon h). By the definition of TDFs and (4.2),

(4.3), the last equality is equivalent to the following two conditions

ψf (t) ≡ ψg(t+ tω), (4.4)

tf = tg + tω − tα. (4.5)

This shows that ψf ∼ ψg.

Theorem 4.2 shows that TDFs are invariants of C1 conjugacy. By Theorems 4.1 and 4.2,

we can improve some results in [2].

Corollary 4.3. (i) There exist f, g ∈ D∞(I) such that

0 < f ′(a) = g′(a) < 1 < f ′(b) = g′(b)

and they are not C1 conjugate.

(ii) For any 1 ≤ r ≤ ∞, there exists f ∈ Dr(I) such that f is not C1 conjugate to any

Cr+1 diffeomorphism, where ∞+ 1 = ω.

The following result shows that TDFs are just the connecting invariants between fixed

points.

Theorem 4.3. Let f, g ∈ Dr(I). Then f is Cs (1 ≤ s ≤ r) conjugate to g iff (i) f, g

are Cs conjugate on Iα, Iω respectively; and (ii) ψf ∼ ψg.

Proof. We need only to prove the sufficiency. As ψf ∼ ψg, there is τω such that

ψf (t) ≡ ψg(t+ τω). Let d = gτ
ω

ω (c) ∈ Io. As f, g are Cs conjugate on Iω, there is a unique

Cs conjugacy h on Iω satisfying h(c) = d.

Now we use (4.5) to define τα = tg − tf + τω and let e = gτ
α

α (c) ∈ Io. Similarly, there is

a unique Cs conjugacy ĥ on Iα satisfying ĥ(c) = e.

We need only to prove that ĥ = h on Io. As h, ĥ are Cs conjugacies of f, g on Iω, Iα,

by formula (3.3) we have

h(x) = (T̂ω
d )−1 ◦ Tω

c (x), x ∈ Io,

ĥ(x) = (T̂α
e )

−1 ◦ Tα
c (x), x ∈ Io.
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At first we note that the equality implies d = e. Now h = ĥ is equivalent to Tc(0) =

ψf (0) + tf = 0. Thus ĥ = h is equivalent to the following equalities:

T̂α
d ((T̂

ω
d )−1(t)) ≡ Tα

c ((T
ω
c )−1(t)),

ψg
d(t) + tgd ≡ ψf (t) + tf ,

ψg(t+ T̂ω
c (d)) + tg + T̂ω

c (d)− T̂α
c (d) ≡ ψf (t) + tf ,

ψg(t+ τω) + tg + τω − τα ≡ ψf (t) + tf .

Obviously, the last one holds because of the choice for τω, τα.

Corollary 4.4. Suppose that f, g ∈ Dr(I) are Cs (1 ≤ s ≤ r) conjugate. Then f, g

have a Cs conjugacy h satisfying h(c) = d iff ψf
c = ψg

d.

Following the ideas in this paper, one can also consider orientation reversing smooth

conjugacy for local and global diffeomorphisms of IR. For global case, the inverse functions

of Tc(t), i.e., T̄c(t) ≡ Tω
c ((Tα

c )
−1(t)), will be useful.
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