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Abstract

A new approach is given to analyse the regularity of solutions near singular points for the

interface problems of second order elliptic partial differential equations. For general equations
with nonsymmetric dominant terms and discontinuous piecewise smooth coefficients, it is proved
that solutions in H1 can be docomposed into two parts, one of which is a finite sum of particular
solutions to the corresponding homogeneous equations with piecewise constant coefficients, and

the other one of which is the regular part. Moreover a priori estimations are proven.
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§1. Introduction

We consider the following second order elliptic partial differential equations in two inde-

pendent variables

Lu =
∂

∂xj

(
ai j(x)

∂u

∂xi

)
+ bi(x)

∂u

∂xi
+ c(x)u = f(x), x ∈ Ω, (1.1)

where Ω ⊂ R2 is a polygonal domain, i, j = 1, 2, and the summation convention is assumed.

We assume that Ω is decomposed into a finite number of polygonal subdomains Ω(k), such

that
∪
Ω(k) = Ω, and ai j ∈ C1(Ω(k)), bi ∈ L∞(Ω), c ∈ L∞(Ω). The matrix (ai j) is not

necessarily symmetric, but the condition of ellipticity,

ai jξiξj ≥ χ|ξ|2, ∀ξi, ξj ∈ R,

should be satisfied, where χ > 0 is a constant. For simplicity we impose the Dirichlet

boundary condition,

u|x∈∂Ω = 0, (1.2)

on (1.1), where ∂Ω is the boundary. If 0 is not an eigenvalue of the operator L, then the

problem (1.1), (1.2) admits a weak solution u ∈ H1
0 (Ω) provided f ∈ H−1(Ω) (see [3]). The

problem considered in this paper is: for more regular f does the solution u possess higher

regularity?
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The following points will be generally known as singular points: the crosspoints of in-

terfaces, the turning points of interfaces, the crosspoints of interfaces with the boundary

∂Ω, and the points on ∂Ω with interior angles greater than π. Let Σ be the set of singu-

lar points. We assume that Σ is finite. It is easy to prove that for each subdomain Ω(k),

u ∈ H2
loc(Ω

(k) \ Σ) if f ∈ L2(Ω), and the regularity of u can be even higher if ai j , bi, c, f

possess higher regularity. The problem is the behavior of u near the singular points.

This problem has been extensively studied. Mostly the method of separation variables,

or the Mellin transform is applied. Especially for those domains possessing corner points

or conical points we refer readers to the books [6, 4] and the survey [8]. For interface

problems Kellogg[7] has studied the case of ai j = a′i jp, where a′i j is a smooth function, and

p is a piecewise constant function, and the matrix (a′i j) is symmetric, and Blumenfeld[2]

has studied the case of ai j = δi jp, where p is a piecewise smooth function and δi j is the

Kronecker symbol.

We make use of a different approach and study the general case of the interface problems

in this paper. Our main result reads

Theorem 1.1. We assume that f ∈ L2(Ω). If x̃ ∈ Σ, and Ω̃ is a neighborhood of x̃

which contains one singular point x̃ only, then there is an integer M depending only on L

such that

u = v + w (1.3)

in Ω̃, where v ∈ H1(Ω̃) and v satisfies the equation

∂

∂xj

(
ai j(x̃)

∂u

∂xi

)
= 0, (1.4)

and the boundary condition (1.2) if x̃ ∈ ∂Ω, where ai j(x̃) are the constant coefficients frozen

in x̃, and

∥v∥1,Ω̃ + ∥w∥1,Ω̃ +
∥∥∥ D2w

(| log r|+ 1)M

∥∥∥
0,Ω̃∩Ω(k)

≤ C(∥u∥1 + ∥f∥0), (1.5)

where D2 refers to the second order derivatives and r is the distance of a point to x̃. Moreover

we have (1.3) with

∥v∥1,Ω̃ + ∥w∥2,Ω̃∩Ω(k) ≤ C(∥u∥1 + ∥(| log r|+ 1)Mf∥0), (1.6)

provided the right hand side of (1.6) is finite.

Throughout this paper C is always a generic constant, and the notations of Sobolev norms

∥ · ∥s and seminorms | · |s are applied.

The rest part of this paper is organized as follows. In §2 we study the solution to the

equation (1.4) near singular points. In §3 we construct a particular regular solution to the

nonhomogeneous equations corresponding to (1.4). In §4 we prove Theorem 1.1. In what

follows we assume that the singular point is an interior point. For those singular points on

the boundary the argument is analogous, and in fact the result can be obtained by using a

simpler approach[5].

§2. Homogeneous Equation with Constant Coefficients

Without loss of generality we assume that the domain is Ω = S(o, 1), a disk with center

o and radius 1. Let the point o be the singular point. Then the domain Ω is divided into
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some sectors Sm,m = 1, · · · ,m0, by some rays starting from the point o. We consider the

equation

L0u =
∂

∂xj

(
ai j

∂u

∂xi

)
= 0 (2.1)

on Ω, where ai j are constants on each sector Sm. Denote by Γ0 the boundary of Ω. We take

a constant ξ ∈ (0, 1). Then we define subdomains Ω0, Ω1, · · · ,Ωk, · · · , where Ωk = {ξk >

r > ξk+1}, and (r, θ) are the polar coordinates. In addition, we denote ξkΩ = {0 < r < ξk},
and Γk = {r = ξk}. Let H be the space H

1
2 (Γ0). Define a mapping Tk : x → ξkx. In the

following for simplicity we say a function g defined on Γk belongs to H if g ◦ Tk ∈ H. It is

easy to verify that the following equalities hold for any function f ,

|f ◦ Tk|s,Ω0 = ξ(s−1)k|f |s,Ωk
, s = 0, 1, 2,

provided the above norms are finite.

We take an arbitrary g ∈ H, and consider the boundary condition u|Γ0
= g. Then the

equation (2.1) admits a unique solution u ∈ H1(Ω) satisfying this boundary condition. Let

g̃ = u|Γ1 . Then by the trace theorem ∥g̃∥H ≤ C∥u∥1 ≤ C∥g∥H . Therefore X : g → g̃ is a

bounded operator from H to H.

Lemma 2.1. X is a compact operator.

Proof. Let {g(l)} ⊂ H be a bounded sequence, and the solution corresponding to it be

{u(l)}. We take two constants ξ1, ξ2 such that ξ2 < ξ1 < ξ < ξ2 < 1, and define a domain

Ω(ξ1, ξ2) = {ξ1 < r < ξ2}. Then u(l) are uniformly bounded in H1(Ω(ξ1, ξ2)). We extract

a weakly convergent subsequence, still denoted by {u(l)}. Let u be the limit. Besides,

using the technique of interior estimation[3], we obtain that u(l) are uniformly bounded in

each H3(Sm ∩ Ω(ξ1, ξ2)). Then the embedding theorem[1] implies that we can extract a

subsequence such that it is convergent on Sm ∩ Ω(ξ1, ξ2) with respect to the C1-norm, the

limit of which is still u. But u ∈ H1(Ω(ξ1, ξ2)), so the traces of u on the interface from the

both sides are equal. Therefore u ∈ C(Ω(ξ1, ξ2)). Particularly u is continuous on Γ1. And

u belongs to H1(Γ1 ∩ Sm), hence u ∈ H1(Γ1). We have

∥∇(u− u(l))∥20,Γ1
=
∑
m

∥∇(u− u(l))∥20,Γ1∩Sm
→ 0 (l → ∞),

which means {u(l)} converges strongly in H1(Γ1). Thus X is compact.

By the Riesz-Schauder Theorem, the spectrum of X consists of isolated eigenvalues and

the point o. The null spaces N((X −λI)p) for all eigenvalues are finite dimensional. We ar-

range the eigenvalues so that |λ1| ≥ |λ2| ≥ · · · , and define two spectrum sets: {λ1, · · · , λN},
{λN+1, · · · , 0}, where |λN | > |λN+1|. The space H is decomposed to two subspaces such

that H = H1⊕H2 and the spectrum of XH1 in H1 is just {λ1, · · · , λN}, the spectrum of XH2

in H2 is {λN+1, · · · , 0}. Since lim
k→∞

∥Xk
H2

∥ 1
k = |λN+1|, where ∥ · ∥ stands for the spectrum

norm, we have

∥Xk
H2

∥ ≤ (|λN+1|+ ε)k (2.2)

for any ε > 0 and sufficiently large k. We require that |λN+1|+ ε < |λN |.
For any g ∈ H, we have a unique decomposition g = g1 + g2, g1 ∈ H1, g2 ∈ H2. Let

u1, u2 be the solutions corresponding to g1, g2 respectively.
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Lemma 2.2. If |λN+1| < ξ, then u2 ∈ H2(ξΩ ∩ Sm).

Proof. For small ε > 0, we have ξ−1(|λN+1| + ε) < 1. Applying interior estimation we

have for k ≥ 1 that

|u2|22,Ωk∩Sm
= ξ−2(k−1)|u2 ◦ Tk−1|22,Ω1∩Sm

≤ Cξ−2(k−1)∥u2 ◦ Tk−1∥20,Ω\ξ3Ω.

We consider the boundary value problem on Ω \ ξ3Ω and obtain

∥u2 ◦ Tk−1∥20,Ω\ξ3Ω ≤ C(∥Xk−1g2∥2H + ∥Xk+2g2∥2H).

Hence for k large enough, we have

|u2|22,Ωk∩Sm
≤ Cξ−2(k−1)((|λN+1|+ ε)2(k−1) + (|λN+1|+ ε)2(k+2))∥g2∥2H . (2.3)

Therefore
∞∑
k=1

|u2|22,Ωk∩Sm
converges, which proves the assertion.

We turn now to the study of the solution u1. Since the space H1 can be decomposed into

the direct sum of a finite number of null spaces N((X − λI)p) with λ = λ1, · · · , λN , u1 is

the sum of a finite number of solutions, each one of which is related to an eigenvalue. We

study one of them.

Lemma 2.3. Let {λ, g} be a pair of eigenvalue and eigenfunction. Then either λ = 1,

g =const. or |λ| < 1.

Proof. Let u be the solution with boundary data g. We have Xg = λg, hence

|u|21,Ω =
∞∑
k=0

|u|21,Ωk
=

∞∑
k=0

|λ|2k|u|21,Ω0
.

Since u ∈ H1(Ω), this series converges. If |u|1,Ω0
= 0, then u =const on Ω0. So u ≡const on

every Ωk. By continuity u ≡const on Ω, which gives λ = 1. If |u|1,Ω0 ̸= 0, we have |λ| < 1.

Lemma 2.4. Let λ be an eigenvalue. Then there exists a basis {ḡ1, · · · , ḡs} of the

eigenspace such that the solutions with boundary data ḡj, j = 1, · · · , s, are rαj ḡj, where

αj =
log λ

log ξ
+ iβj , (2.4)

where βj are real numbers, such that ξiβj = 1.

Proof. Let α = log λ
log ξ , and g be an eigenfunction. Then we have

u|Γk
= Xkg = λkg = ξαkg = rαg, (2.5)

hence the assertion is valid on Γk.

Let ξ̄ ∈ (0, 1) be another constant such that ξ, ξ̄ are unreducible. Let X and {λ̄i} be the

operator and spectrum corresponding to ξ̄. We expand g as the following:

g =
∑
1

cj ḡj +
∑
2

cj ḡj + g̃,

where g̃ ∈ H̃2, H = H̃1⊕ H̃2, H̃2 is the subspace corresponding to a spectrum set consisting

of all |λ̄j | < |ξ̄|Reα, the ḡ′js in
∑
2

are the eigenfunctions corresponding to |λ̄j | = |ξ̄|Reα, and∑
1

is a finite sum of linearly independent ḡj corresponding to |λ̄j | > |ξ̄|Reα, or |λ̄j | = |ξ̄|Reα,

where ḡj ∈ N((X − λ̄jI)
p), but ḡj is not an eigenfunction.
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Let r = ξ̄k, k = 1, 2, · · · . Then we get

u|r=ξ̄k = X̄kg =
∑
1

cjX̄
kḡj +

∑
2

cjX̄
kḡj + X̄kg̃. (2.6)

Multiply it by (| log r| + 1)−
1
2 r−Reα with r = ξ̄k, and then let k → ∞. By (2.2) and the

definition of
∑
2
, the second and the third terms tend to zero. Let us consider the left hand

side . We have (2.5) on Γk, but the points with r = ξ̄k are not on Γk. However, we have

u|Ωk
◦ Tk = λku|Ω0 , (2.7)

so u = O(r−Reα) as r → 0. The left hand side also tends to zero. Therefore

lim
k→∞

(| log r|+ 1)−
1
2 r−Reα

∣∣∣∣
r=ξk

∑
1

cjX̄
kḡj = 0.

Each term tends to infinity as k → ∞, and ḡj are linearly independent, so cj = 0. Therefore

(2.6) is reduced to

X
k
g −

∑
2

cjX
k
ḡj = X

k
g̃. (2.8)

We define F (r, ω1, ·) = max
θ

|r−αu(r, θ) −
∑
2
cjωj ḡj | for ξ ≤ r ≤ 1 and |ωi| = 1. If

F (r̄, ω1, · · · ) = 0 for a certain r̄ and some complex numbers ωi, then

u(r̄, θ) = r̄α
∑
2

cjωj ḡj .

Let ūj be the solution corresponding to the boundary data r̄αcjωj ḡj . Then u =
∑
2
ūj

(r ≤ r̄). Let r = ξ. Then u(r, θ) = λg. By (2.7), ūj(r, θ) are eigenfunctions of the operator

X̄ corresponding to the eigenvalue λ̄j for any r. We set ūj(r, θ) = λḡj , where ḡj may be

different from the above, but it is still an eigenfunction. Hence

g =
∑

ḡj . (2.9)

If F (r, ω1, · · · ) > 0 always holds, then by continuity F ≥ δ for a positive constant δ. We

multiply (2.8) by r−Reα(| log r| + 1)
1
2 and let k → ∞. Then the right hand side tends to

zero as k → ∞. For each k, there is a θ such that

r−Reα(| log r|+ 1)
1
2 |X̄kg −

∑
2

cjX̄
kḡj | ≥ δ(| log r|+ 1)

1
2 ,

which tends to infinity and leads to a contradiction. Therefore (2.9) holds.

We may assume that all ḡ′js in (2.9) correspond to different eigenvalues, otherwise some

ḡ′js can merge into one. If there are s terms in (2.9), then we have

u(1, θ) = ḡ1 + · · ·+ ḡs,

u(ξ̄, θ) = λ̄1ḡ1 + · · ·+ λ̄sḡs,

· · · · · ·
u(ξ̄s−1, θ) = λ̄s−1

1 ḡ1 + · · ·+ λ̄s−1
s ḡs.

The determinant of coefficients is just the Vandermonde determinant, so we take the inverse

and obtain ḡj =
∑

dj lu(ξ̄
l, θ), j = 1, · · · , s. By (2.7) u(ξ̄l, θ) are the eigenfunctions of X

corresponding to λ, so is ḡj . Let u(j) be the solution with boundary data ḡj . Then for

r = ξk ξ̄k̄ < 1 with k, k̄ integers (not necessaryly positive) we have u(j) = λkλ̄k̄
j ḡj . Such
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r is dense in [0, 1], and u(j) is continuous, hence u(j) = R(r)ḡj , where |R(r)| = rReα. Let

R(r) = rαeiφ(r), where φ(r) is a real continuous function. Since kφ(r) = φ(rk) for all

positive integer k, we have φ =const · log r. Therefore

u(j) = rα+iβj ḡj , (2.10)

where βj is a real number. Because u(j)(ξ, θ) = λḡj , we can take the logarithm function

appropriately such that ξiβj = 1. span(ḡ1, · · · , ḡs) belongs to the eigenspace of λ of the

operator X. If they are not identical, we can take one eigenfunction g /∈ span(ḡ1, · · · , ḡs)
and repeat the above procedure, and obtain another subspace containing g. Then we take

the summation of these two spaces. Since the dimension is finite, we get a basis {ḡ1, · · · , ḡs}
by some steps finally.

Remark. It is easy to see that βj =
2kπ
log ξ , k is an integer. We can take ξ̃ = ξ

1
K , where K

is the least common multiple of all k’s. Then we set λ̃ = λ
1
K e

2kπi
K . λ̃ is the eigenvalue of the

corresponding operator X̄. The formula (2.4) is reduced to αj = log λ̃

log ξ̃
. The exponents αj

corresponding to λ̃ are the same. For notational convenience, we will donote this particular

ξ̃ by ξ, the corresponding operator by X, and the basis of eigenfunctions by {g1, · · · , gs}.
We have the solution

uj = rαgj , j = 1, · · · , s, (2.11)

with

α =
log λ

log ξ
. (2.12)

The elementary divisor may not be linear. Then we get some other particular solutions.

Lemma 2.5. If the elementary divisor is quadratic for an eigenvalue λ, h ∈ N((X−λI)2),

and (X − λI)h = g, where g is an eigenfunction, then the solution with boundary data h is

u = rα
(
h+

1

λ

log r

log ξ
g
)
, (2.13)

where α is determined by (2.12).

Proof. We have

Xkh = λkh+ kλk−1g, k = 1, 2, · · · ,

hence (2.13) is valid for r = ξk.

Multiplying the solution u by λ−k/k| log ξ| on Ωk and letting k → ∞, we study the limit

of vk = λ−k

k| log ξ|u◦Tk on Ω0. The limit on Γ0 is 1
| log ξ|λg, and the limit on Γ1 is 1

| log ξ|g. Since

vk is a solution, by uniqueness, the limit on Ω0 is 1
| log ξ|λr

αg. Next, we multiply the solution

by r−α

| log r| on Ωk, and let wk =
(

r−α

| log r|u
)
◦ Tk. Since

r−α/| log r|
λ−k/k| log ξ|

=

(
r

ξk

)−α | log ξk|
| log r|

,

we have

wk = r−α | log ξk|
| log ξkr|

vk → 1

| log ξ|λ
g.

Therefore

lim
r→0

r−α

| log r|
u =

1

| log ξ|λ
g. (2.14)
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Let ξ̄ ∈ (0, 1) be another constant such that ξ, ξ̄ are unreducible like Lemma 2.4. Then

by analogy with Lemma 2.4 we have X̄kh =
s∑

j=1

X̄kh̄j , where h̄j ∈ N((X̄ − λ̄jI)
2) with

|λ̄j | = |ξ̄|Reα. Let λ̄j = ξ̄α+iβj . We claim that βj = 0. Otherwise we would have

u(ξ̄k, θ) =
s∑

j=1

{
(ξ̄α+iβj )kh̄j + k(ξ̄α+iβj )k−1ḡj

}
,

where ḡj are eigenfunctions. The functions ḡj are linearly independent, and ξ̄iβjk has no

limit as k → ∞, which contradicts (2.14). Therefore λ̄1 = · · · = λ̄s, namely s = 1, hence

h = h̄1. Following the same lines of the proof of Lemma 2.4, we get (2.13).

If the degree of the elementary divisors is even higher, we can argue in an analogous way.

Finally we have

Theorem 2.1. The solution u1 is a finite sum of particular solutions (2.11), (2.13), and

so on.

§3. Nonhomogeneous Equation with Constant Coefficients

We need some preliminaries for the studying of nonhomogeneous equations. To begin

with, we consider one example which is useful later on,

L0u = 1, u|r=1 = 0. (3.1)

Clearly there exists a unique weak solution. Let ξ ∈ (0, 1) as the previous section, and

u|Γ1 = g. Then

u|Γk
= Xk−1g + ξ2Xk−2g + · · ·+ ξ2(k−1)g, k = 1, 2, · · · .

Let u|Ω1 = ũ and u(0) be the solution to the equation (2.1) and boundary data g. Then we

get

u|Ωk
◦ Tk = u(0)|Ωk−1

◦ Tk−1 + ξ2u(0)|Ωk−2
◦ Tk−2 + · · ·+ ξ2(k−1)ũ ◦ T1.

It can be verified that the solution to (3.1) consists of a finite number of particular solutions

to the homogeneous equation and a function in H2(ξΩ ∩ Sm) for 1 ≤ m ≤ m0.

Next, let us consider the problem on the space R2. The sectors Sm are extended to

r = ∞, and then R2 is divided into m0 sectors. We define a space

Z1(R2) =
{
u ∈ H1

loc(R2);∇u ∈ L2(R2),

∫
r<1

u dx = 0
}
.

Then equipped with the norm ∥∇u∥0 it is a Hilbert space. We assume that the right hand

side f ∈ L2(R2) and suppf ⊂ S(o, 1). Consider the equation

L0u = f, (3.2)

and define the corresponding sesquilinear form

a0(u, v) =

∫
R2

ai j
∂u

∂xi

∂v

∂xj
dx.

First we assume that ∫
r<1

f dx = 0. (3.3)
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The weak formulation of (3.2) is: find u ∈ Z1(R2) such that

a0(u, v) = (f, v), ∀v ∈ Z1(R2).

By the Lax-Milgram theorem, there exists a unique solution u.

Lemma 3.1. If b ∈ (0, 1), then

|u|1 ≤ C∥r b
2 f∥0. (3.4)

Proof. By Hölder inequality

|a0(u, u)| = |(f, u)| ≤ C∥r b
2 f∥0∥u∥0,4 ≤ C∥r b

2 f∥0|u|1.

On the other hand |a0(u, u)| ≥ χ|u|21, which gives (3.4).

Next let us get rid of the condition (3.3). For a special case, f = κ(x), where

κ =

{
1, r < 1,

0, r > 1,

we define

h =


0, r > 1,

1, 1 > r > η,

1− 1
η2 , r < η.

Then
∫
h dx = 0, hence the equation (3.2) with f = h admits a unique solution, denoted by

ũ. Let q =
∫ r

0
h dr2. Then

a0(ũ, v) =

∫
hvr dr dθ = −1

2

∫
q
∂v

∂r2
dr2 dθ = −1

2

∫
q

r

∂v

∂r
r dr dθ.

Thus |ũ|1 ≤ 1
2∥

q
r∥0 ≤ C(1− η). Let η → 1, ũ

1−η converges weakly in Z1(R2). Let w be the

limit. Define q̃ = −2rκ(x). Then w satisfies

a0(w, v) = −1

2

∫
q̃
∂v

∂r
r dr dθ =

1

2

∫
v
∂q̃r

∂r
dr dθ =

∫
q̄v dx,

where q̄ = δ(r − 1) − 2κ(x). In the disc S(o, ξ) we can use the result for the problem (3.1)

and Theorem 2.1 to conclude that w consists of a finite number of particular solutions to

the homogeneous equation and a function in H2(ξΩ ∩ Sm) for 1 ≤ m ≤ m0. Applying the

embedding theorem[1] we get that w belongs to a Hölder space C0,µ with a positive number

µ. The function w(x)−w(0) vanishes at x = 0 and satisfies the same equation, which is still

denoted by w for simplicity.

Let us define u = −
∫ r

0
w(r, θ)drr and derive the equation satisfied by u. We fix an

arbitrary point (r̄, θ) and take some points r1, r2, · · · , rn, · · · on the interval [0, r̄] such that

they are equidistributed. Let ∆r = r2 − r1, and wn(r, θ) = w( rnr̄ r, θ). Then

I = −
∑ w(rn, θ)∆r

rn
= −

∑ wn(r̄, θ)∆r

rn
.

Let w̄∆ = −
∑ wn(r̄,θ)∆r

rn
. Then we apply the differential operator L0 to w̄∆ and obtain

L0w̄∆ = −
∑ 1

rn

r2n
r̄2

q̄
(rn
r̄
r, θ
)
∆r.

Let ∆r → 0, and we define w̄ as the limit of w̄∆. Then w̄(r̄, θ) = u(r̄, θ). w̄ satisfies

L0w̄ = −
∫ r̄

0

t

r̄2
q̄
( t
r̄
x
)
dt = −

∫ r

0

s

r2
q̄
(s
r
x
)
ds.
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Therefore w̄ is in fact independent of (r̄, θ), consequently w̄ ≡ u. We obtain L0u = κ(x). So

u is the desired solution which is in H1
loc(R2). Applying the previous results we can get the

structure of u near the point o.

For general f we have

Lemma 3.2. If f ∈ L2(R2) and suppf ⊂ S(o, 1), then the equation L0u = f on R2

admits a solution u ∈ H1
loc(R2) such that on any bounded domain D,

|u|1,D ≤ C(D)∥f∥0, (3.5)

where C(D) is a constant depending on D.

Proof. We define

f0 = f − 1

π

∫
r<1

f dx.

Then
∫
f0 dx = 0. We have∣∣∣ 1

π

∫
r<1

f dx
∣∣∣ ≤ 1√

π
∥f∥0, ∥f0∥0 ≤ ∥f∥0.

The solution u is decomposed into two parts, u = u0 + ũ. u0 corresponds to f0 and satisfies

|u0|1 ≤ C∥f0∥0 ≤ C∥f∥0.

ũ corresponds to the constant, which has been already studied.

We are now in a position to study the main result of this section. In S(o, 1) we construct

a particular solution u to the equation L0u = f , f ∈ L2, such that u possesses the desired

regularity. We take ξ ∈ (0, 1) and Ω = S(o, 1) as before.

Lemma 3.3. There is a particular solution u such that for all l ≥ 1,

|u|22,Ωl∩Sm
≤ C

(
ξ−bl∥r b

2 f∥20,ξl−1Ω +

l−2∑
k=1

(
|λN+1|+ ε

ξ

)l−k

∥f∥20,Ωk

+ l2M−2
l−2∑
k=1

∥f∥20,Ωk

)
, (3.6)

where b is a positive constant, M is a positive integer both depending on L0, and |λN+1|+ε <

ξ. Moreover there is another particular solution u such that

|u|22,Ωl∩Sm
≤
(
ξ−bl∥r b

2 f∥20,ξl−1Ω +
l−2∑
k=1

(
|λN+1|+ ε

ξ

)l−k

∥f∥20,Ωk

+ l−3∥(| log r|+ 1)Mf∥20,ξl−1Ω

)
, (3.7)

provided the last norm is finite.

Proof. Let

fk =

{
f, x ∈ Ωk,

0, otherwise.

Then f =
∑

fk. Let uk be the solution in Lemma 3.2 corresponding to fk. Because

uk satisfies homogeneous equation on ξk+1Ω, according to §2 we have the decomposition

uk = u
(1)
k + u

(2)
k with u

(1)
k |Γk+1

∈ H1 and u
(2)
k |Γk+1

∈ H2. We extend u
(1)
k analytically to Ω,
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which is still denoted by u
(1)
k . Let u =

∞∑
k=1

(uk − u
(1)
k ). We estimate u on Ωl.

u =
∑

k≥l−1

uk +
∑

k<l−1

u
(2)
k −

∑
k≥l−1

u(1).

For the first term we set ũ =
( ∑
k≥l−1

uk

)
◦ Tl−1. Then ũ satisfies

L0ũ = ξ2(l−1)
( ∑

k≥l−1

fk

)
◦ Tl−1.

Let

σ =
1

π

∫
r<1

ξ2(l−1)
( ∑

k≥l−1

fk

)
◦ Tl−1 dx.

Then we define a solution ũ(1) satisfying L0ũ
(1) = σκ(x). By Lemma 3.2, |ũ(1)|1,Ω\ξ3Ω ≤

C|σ|. Applying interior estimates we get |ũ(1)|2,Ω1∩Sm ≤ C|σ|. Then we have

|ũ(1) ◦ T1−l|2,Ωl∩Sm ≤ Cξ−(l−1)|σ| = Cξ−(l−1)|
∫
ξl−1Ω

f dx|

≤ Cξ−(l−1)
(∫

ξl−1Ω

r−b dx
) 1

2
(∫

ξl−1Ω

rbf2 dx
) 1

2

≤ Cξ−
bl
2 ∥r b

2 f∥0,ξl−1Ω.

Let ũ(2) = ũ− ũ(1). Then applying Lemma 3.1 we get

|ũ(2)|1 ≤ Cξ2(l−1)
∥∥∥r b

2

( ∑
k≥l−1

fk

)
◦ Tl−1

∥∥∥
0
+ C|σ|.

Here ∥∥∥r b
2

( ∑
k≥l−1

fk

)
◦ Tl−1

∥∥∥
0
= ξ−(l−1)ξ−

b(l−1)
2 ∥r b

2 f∥0,ξl−1Ω.

Following the same lines as the estimate of ũ(1), we get

|ũ(2) ◦ T1−l|2,Ωl∩Sm ≤ Cξ−
bl
2 ∥r b

2 f∥0,ξl−1Ω.

Therefore ∣∣∣ ∑
k≥l−1

uk

∣∣∣
2,Ωl∩Sm

≤ Cξ−
bl
2 ∥r b

2 f∥0,ξl−1Ω. (3.8)

For the second term with l ≥ 3 let uk ◦Tk|Γ1 = g. Then g = g1+g2, g1 ∈ H1 and g2 ∈ H2.

Let ũ = uk ◦ Tk. Then ũ satisfies L0ũ = ξ2kfk ◦ Tk. By Lemma 3.2

|ũ|1,Ω ≤ C∥ξ2kfk ◦ Tk∥0 = Cξk∥fk∥0,

hence ∥g2∥H ≤ C∥g∥H ≤ Cξk∥fk∥0. Applying X l−k−2 to g2 gives u
(2)
k ◦Tk|Γl−k−1

. Therefore

for K0 large enough we have

∥(u(2)
k ◦ Tk)|Γl−k−1

∥H ≤ C(|λN+1|+ ε)l−k−2ξk∥fk∥0
provided l − k ≥ K0. We regard u

(2)
k ◦ Tk|Γl−k−1

as the boundary data and obtain

|u(2)
k ◦ Tl−1|1,Ω ≤ C(|λN+1|+ ε)l−k−2ξk∥fk∥0.

The interior estimate gives

|u(2)
k ◦ Tl−1|2,Ω1∩Sm ≤ C(|λN+1|+ ε)l−k−2ξk∥fk∥0,
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hence |u(2)
k |2,Ωl∩Sm ≤ C(|λN+1|+ ε)l−k−2ξk−l+1∥fk∥0. If l− k < K0, we notice the fact that

X is a bounded operator and get

|u(2)
k |2,Ωl∩Sm ≤ Cξk−l+1∥fk∥0.

The triangle inequality leads to∣∣∣ ∑
k<l−1

u
(2)
k

∣∣∣
2,Ωl∩Sm

≤
∑

k<l−1

|u(2)
k |2,Ωl∩Sm

≤ C
( l−K0∑

k=1

( |λN+1|+ ε

ξ

)l−k

∥fk∥0 +
l−2∑

k=l−K0+1

ξk−l+1∥fk∥0
)
.

By the assumption |λN+1|+ε < ξ, and there are only K0−2 terms in the second summation,

so we can take the constant C appropriately such that∣∣∣ ∑
k<l−1

u
(2)
k

∣∣∣
2,Ωl∩Sm

≤ C

l−2∑
k=1

(
|λN+1|+ ε

ξ

)l−k

∥fk∥0.

Applying the Schwarz inequality we get∣∣∣ ∑
k<l−1

u
(2)
k

∣∣∣
2,Ωl∩Sm

≤ C
( l−2∑

k=1

( |λN+1|+ ε

ξ

)l−k

∥fk∥20
) 1

2

. (3.9)

To estimate the third term we need to use the domain Ωk for negative k which is also

defined by {ξk > r > ξk+1}. We notice that u(1) ◦ Tk =
∑

wk j , which is a finite sum

of particular solutions wk j in the form of (2.11), (2.13), etc. First we consider the term

wk j = βrαg, where Reα < 1 and g is an eigenfunction. Following the argument for the

second term we get |β| ≤ Cξk∥fk∥0. Thus |D2wk j | ≤ Cξk∥fk∥0rReα−2, and

|wk j |2,Ωl−k∩Sm ≤ Cξkξ(l−k)(Reα−1)∥fk∥0.

Hence |wk j ◦ T−k|2,Ωl∩Sm ≤ Cξ(l−k)(Reα−1)∥fk∥0. The triangle inequality and the Schwarz

inequality lead to∣∣∣ ∑
k≥l−1

wk j ◦ T−k

∣∣∣
2,Ωl∩Sm

≤ C
∑

k≥l−1

ξ(l−k)(Reα−1)∥fk∥0

≤ C
( ∑

k≥l−1

ξ2(k−l)(1−Reα)−bk
) 1

2
( ∑

k≥l−1

ξbk∥fk∥20
) 1

2

,

where b > 0 is sufficiently small such that 2(1− Re α)− b > 0. Then we have∣∣∣ ∑
k≥l−1

wk j ◦ T−k

∣∣∣
2,Ωl∩Sm

≤ Cξ−
bl
2 ∥r b

2 f∥0,ξl−1Ω. (3.10)

For the particular solution (2.13) the argument is the same except there is a logarithm factor

and we have

|wk j ◦ T−k|2,Ωl∩Sm ≤ Cξ(l−k)(Reα−1)(k − l + 2)∥fk∥0.

From this inequality we also get (3.10).

Reα < 1 is equivalent to |λ| > ξ. So it remains to consider the case of |λ| = ξ. For the

particular solution (2.11) we have

|wk j ◦ T−k|2,Ωl∩Sm ≤ C∥fk∥0.
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Let M ≥ 2 be an integer. Then by the Schwarz inequality∣∣∣ ∑
k≥l−1

wk j ◦ T−k

∣∣∣
2,Ωl∩Sm

≤ Cl−
3
2 ∥(| log r|+ 1)Mf∥0,ξl−1Ω. (3.11)

For the particular solution (2.13) the argument is the same except the integer M should be

larger.

Combining the estimations (3.8), (3.9), (3.10) and (3.11) we obtain (3.7).

We can change the definition of H1, H2 so that the eigenvalue λ with |λ| = ξ belongs to

the spectrum set of H1. Then (3.6) is verified for an appropriate M .

Lemma 3.4. There is a particular solution u such that

∥u∥1,ξΩ +
∥∥∥ D2u

(| log r|+ 1)M

∥∥∥
0,ξΩ∩Sm

≤ C∥f∥0. (3.12)

Moreover there is another solution u such that

∥u∥1,ξΩ + |u|2,ξΩ∩Sm ≤ C∥(| log r|+ 1)Mf∥0, (3.13)

where M is determined by Lemma 3.3.

Proof. Let us take the summation of the first two terms of (3.6) or (3.7).

C
∞∑
l=1

(
ξ−bl∥r b

2 f∥20,ξl−1Ω +
l−2∑
k=1

(
|λN+1|+ ε

ξ

)l−k

∥f∥20,Ωk

)

= C

( ∞∑
l=1

ξ−bl
∞∑

k=l−1

∥r b
2 f∥20,Ωk

+

∞∑
l=1

l−2∑
k=1

(
|λN+1|+ ε

ξ

)l−k

∥f∥20,Ωk

)

= C

( ∞∑
k=0

k+1∑
l=1

ξ−bl∥r b
2 f∥20,Ωk

+

∞∑
k=1

∞∑
l=k+2

(
|λN+1|+ ε

ξ

)l−k

∥f∥20,Ωk

)

≤ C

( ∞∑
k=0

ξ−b(k+1)∥r b
2 f∥20,Ωk

+
∞∑
k=1

∥f∥20,Ωk

)
≤ C∥f∥20.

Multiplying (3.6) by l−M , and then taking the summation, we get∥∥∥ D2u

(| log r|+ 1)M

∥∥∥2
0,ξΩ∩Sm

≤ C∥f∥20 + C
∞∑
l=1

l−2∑
k=1

l−2∥f∥20,Ωk
≤ C∥f∥20,

which gives the estimate of second order derivatives in (3.12). It is easy to see that ∥u∥21,Ωl

is also bounded by the right hand side of (3.6). The proof for (3.13) is analogous.

§4. General Equations

The proof of Theorem 1.1 proceeds in four steps.

Step 1. We consider the disc Ω = S(o, 1) and assume that o is the unique singular point.

Let u ∈ H1(Ω) be a solution to the equation (1.1). Let v = u ◦ Tk−1 for k ≥ 1. Then v

satisfies

∂

∂xj

(
ai j

∂v

∂xi

)
= ξ2(k−1)

(
f − bi

∂u

∂xi
− cu

)
◦ Tk−1
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on Ω \ ξ3Ω. Applying the interior estimate we have

|v|2,Ω1∩Sm ≤ C

{
|v|1,Ω\ξ3Ω + ∥ξ2(k−1)

(
f − bi

∂u

∂xi
− cu

)
◦ Tk−1∥0,Ω\ξ3Ω

}
≤ C

{
∥u∥

1,ξk−1Ω\ξk+2Ω
+ ξk−1∥f∥

0,ξk−1Ω\ξk+2Ω

}
,

which gives

∥rD2u∥20,ξΩ∩Sm
≤ C{∥u∥21,Ω + ∥rf∥20,Ω}. (4.1)

Step 2. We rewrite the equation (1.1) as

a0(u, v) =

∫
Ω

ai j(0)
∂u

∂xi

∂v

∂xj
dx

=

∫
Ω

(ai j(0)− ai j)
∂u

∂xi

∂v

∂xj
dx+

∫
Ω

(
f − bi

∂u

∂xi
− cu

)
v̄ dx, ∀v ∈ H1

0 (Ω).

Integrating by parts we get∫
Ω

(ai j(0)− ai j)
∂u

∂xi

∂v

∂xj
dx

=

∫
Ω

∂

∂xj

(
(ai j(0)− ai j)

∂u

∂xi

)
v̄ dx+

∑
m

∫
∂Sm

nj
∂u

∂xi
(ai j(0)− ai j)v̄ ds,

where n = (n1, n2) is the unit exterior normal vector on ∂Sm.

We consider one sector Sm. For simplicity we drop the subscript m. We define a function

χ ∈ C∞
0 (Ω \ ξ3Ω) such that χ ≥ 0 and χ > 0 on Ω1. Then we define χk = χ ◦ T1−k.

Replace χk by χk/
∑
k

χk, still denoted by χk. By the inverse trace theorem[9], there exist

z̃k ∈ H2(Ω \ ξ3Ω) such that we have

z̃k = 0,
∂z̃k
∂n

= ξk−1
{
χk

(ai j(0)− ai j)
∂u
∂xi

nj

nTAn

}
◦ Tk−1

on ∂S ∩ {Ω \ ξ3Ω}, and

∥z̃k∥2 ≤ C
∥∥∥ξk−1

{
χk

(ai j(0)− ai j)
∂u
∂xi

nj

nTAn

}
◦ Tk−1

∥∥∥
1
,

where the matrix A = (ai j(0)). Let zk = z̃k ◦ T1−k. Then

∂zk
∂n

= χk

(ai j(0)− ai j)
∂u
∂xi

nj

nTAn
, (4.2)

and

∥zk∥2 ≤ C

{∣∣∣ (ai j(0)− ai j)
∂u
∂xi

nj

nTAn

∣∣∣
1,ξk−1Ω\ξk+2Ω

+ ξ−(k−1)
∥∥∥ (ai j(0)− ai j)

∂u
∂xi

nj

nTAn

∥∥∥
0,ξk−1Ω\ξk+2Ω

}
. (4.3)

Let z =
∞∑
k=1

zk. Then by (4.2) we have

∂z

∂n
=

(ai j(0)− ai j)
∂u
∂xi

nj

nTAn
on the boundary. But z vanishes on the boundary, hence

ai j(0)
∂z

∂xi
nj = nTA∇z = nTA

∂z

∂n
n = (ai j(0)− ai j)

∂u

∂xi
nj . (4.4)
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Since |ai j(0)− ai j | ≤ Cr, using the weighted estimate (4.1) and (4.3) we get

∥z∥22,ξΩ∩Sm
≤ C{∥u∥21,Ω + ∥rf∥20,Ω}. (4.5)

The equation becomes

a0(u, v) = −
∫
ξΩ

∂

∂xj

(
(ai j(0)− ai j)

∂u

∂xi

)
v̄ dx+

∑
m

∫
∂Sm

ai j(0)
∂z

∂xi
nj v̄ ds

+

∫
ξΩ

(
f − bi

∂u

∂xi
− cu

)
v̄ dx, ∀v ∈ H1

0 (ξΩ). (4.6)

Step 3. Integrating by parts we deduce from (4.6) that

a0(u− z, v) =

∫
ξΩ

{
− ∂

∂xj

(
(ai j(0)− ai j)

∂u

∂xi

)
+

∂

∂xj

(
ai j(0)

∂z

∂xi

)
+ f − bi

∂u

∂xi
− cu

}
v̄ dx. (4.7)

By Lemma 3.4 and (4.1), (4.5) there is a particular solution w to the equation (4.7) such

that

∥w∥1,ξ2Ω +
∑
m

∥∥∥ D2w

(| log r|+ 1)M

∥∥∥
0,ξ2Ω∩Sm

≤ C

{
∥u∥1,ξΩ +

∑
m

(
∥rD2u∥0,ξΩ∩Sm + ∥z∥2,ξΩ∩Sm

)
+ ∥f∥0,ξΩ

}
.

≤ C(∥u∥1,Ω + ∥f∥0,Ω). (4.8)

There is no singular points in Ω1, so the above estimate also holds in Ω1. The function

u− z − w satisfies the equation (2.1) in ξΩ, and from (4.8) we have

∥u− z − w∥1,ξΩ ≤ C(∥u∥1,Ω + ∥f∥0,Ω).

Then by Lemma 2.2 we have u− z − w = u1 + u2, and

∥u2∥2,ξΩ∩Sm ≤ C(∥u∥1,Ω + ∥f∥0,Ω), ∥u1∥1,ξΩ ≤ C(∥u∥1,Ω + ∥f∥0,Ω).

Step 4. Let us regard z+w+ u2 as the function w in Theorem 1.1, u1 the function v in

Theorem 1.1. Then (1.5) is verified for one singular point. The proof for (1.6) is analogous.
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