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Abstract

The author considers the problem of deforming the metric on a complete negatively curved
surface conformal to another metric whose Gauss curvature is nonpositive.
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§1. Introduction

Let (M, g) be a Riemannian manifold with or without boundary (n = dimM ≥ 2), and

K̃ a continuous function on M . In this paper we consider the problem of deforming the

given metric g conformal to another metric

g̃ =

{
e2ug, n = 2,

u
4

n−2 g, n ≥ 3,

with the prescribed scalar curvature K̃. It is well known that this problem is equivalent to

solving the following elliptic differential equations:

−∆gu+ Sg = K̃eu, n = 2, (1.1){
−4

n− 1

n− 2
∆gu+ Sgu = K̃u

n+2
n−2 ,

u > 0, n ≥ 3,
(1.2)

where ∆g is the Laplacian with respect to g, namely, ∆g = trace∇2
g, and Sg is the scalar

curvature of g. This problem has been extensively investigated, mainly in the case that

(M, g) is a compact manifold. As for the case that (M, g) is the Euclidean space (Rn, g0),

since Ni’s paper [11] was published, many authors have refined and generalized his results.

For noncompact Riemannian manifolds this problem was posed in [7] and [15].

We write (1.1) in the following form:

∆u+K(x)e2u = f(x), x ∈ M, (1.3)

where M is a noncompact complete Riemannian surface. In the case M = R2, many

existence and nonexistence results for equation (1.3) were proved (see [2, 6, 8, 10, 11, 13,
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17] and references therein). In their works K(x) = O(|x|l) as |x| −→ +∞ is essential. In

[2] the authors considered the case M = D2(−1), the Poincáre disk. For the manifolds with

negative curvature it is natural to ask: if K(x) does not satisfy the decay condition, for

which kind of functions f ’s can equation (1.3) still have solutions? In this paper we obtain

some results in this direction (see Theorem A).

The main results and some discussions are given in §2, and the proofs of the results are

given in §3 and §4.

§2. Main Results and Some Discussions

One of the typical results is

Theorem A. Let (M, g) be a connected smooth complete noncompact Riemannian surface

with Gaussian curvature f(x) < 0. Then, for any negative locally Hölder continuous function

K(x) on M satisfying f(x) ≤ b2K(x), there exists a conformal complete metric g̃ whose

Gaussian curvature is K(x). Furthermore such metric is unique provided K(x) ≤ −a2 and

f(x) ≥ −C(1+ ρ2(x)) for some positive constants a and C, where ρ(x) = dist(x, o) and o is

a fixed point.

An easy consequence of this theorem is

Corrollary. If the Gaussian curvature f(x) of a complete surface (M, g) satisfies

f(x) ≤ −a2

for some constant a > 0, then there exists a complete conformal metric whose curvature is

−1.

Theorem A can also be viewed as a generalization of the well-known Ahlfors-Schwarz

Lemma[1]. In that case K(x) ≡ −1 and f(x) ≤ −b2 < 0 for some constant b. Later

Yau[16] generalized the lemma to Kähler manifolds and Troyanov[14] generalized this lemma

to generalized Riemannian surfaces. Pan[12] considered the equation (1.3) on R2 by using

the Baras-Piere’s technique. Unfortunately their method does not apply to the curved

manifolds. Before proving our theorem we would like to give some discussions of the main

theorem. Noting that we have not assumed that the manifolds is simply connected, our

results can be applied to cylinders and some other manifolds.

For Poincare disk H2 = (R2, ds2) with ds2 = dr2 + sinh2 rdθ2, we can consider the

conformal metric ds∗2 = u2(r)ds2 for some positive continuous function u(r). In order to

guarantee completeness of the new metric we assume that∫ +∞

0

u(r) dr = +∞. (2.1)

It is straightforward to calculate that the Gaussian curvature of M = (R2 , ds∗2) is

f(r) = − 1

u2(r)

[
1 +

uu′′ − u′2

u2
+

u′

u
coth r

]
. (2.2)

So, if we can choose u(r) such that (2.1) is satisfied and f(r) < 0, then by Theorem A any

negative continuous function K(r) satisfying K(x) ≥ bf(x) outside a compact subset for
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some positive constant b can be realized as a Gaussian curvature of a complete conformal

metric g̃. In particular we have

Theorem B. If K(x) is a negative continuous function on H2 satisfying K(x) ≥ −Cr2

at infinity for some positive constant C, then there exists a complete metric conformal to

ds2 with K(x) as the Gaussian curvature.

Proof. Choose u(r) = q(p+ r2)−
1
2 for r ≥ 0 where p and q are positive constants. Then

u′(r) = −q(p+ r2)−
3
2 r,

u′′(r) = −q(p+ r2)−
3
2 + 3q(p+ r2)−

5
2 r2,

and from (1.5)

f(r) =− q−2(p+ r2)

[
1 +

−(p+ r2)−2 + 2(p+ r2)−3r2

(p+ r2)−1
− (p+ r2)−1r coth r

]
=− q−2(p+ r2)

[
1 +

−p+ r2

(p+ r2)2
− r

p+ r2
coth r

]
.

We can choose p sufficiently large so that f(r) < 0 for all r. It is easy to see that K(x) ≥
f(r(x)) holds outside some compact subset when q is sufficiently small and then Theorem

A applies. This proves our conclusion.

Remark 2.1. In fact, we can obtain sharper results by choosing v(r). We can also obtain

similar results for models which are not simply connected.

The proof of Theorem A is a combination of the existence theorem and uniqueness the-

orem. We shall prove the existence theorem in section 3 and prove the uniqueness theorem

in section 4, which have independent interests in partial differential equations.

After we finished the first draft of this paper we learned that [9] also obtained some results

to the Theorem B by using a different method. We find out that our theorems allow many

special cases which cannot be concluded from [9] and our proofs are simpler.

§3. Existence Theorem

In this section we will treat equation (1.3) in the viewpoint of partial differential equations.

In [10] and [12], (1.3) was discussed when M = R2 by different methods. Here we will use

another technique which is essentially sub-upper solution method. In contrast to the previous

papers this method is simpler.

Theorem 3.1. Let (M, g) be a smooth noncompact complete Riemannian surface. As-

sume that K(x) is negative and locally Hölder continuous on M . Then for any locally Hölder

continuous function f which satisfies

lim inf
d(x,x0)→+∞

f(x)

K(x)
> 0, (3.1)

where x0 is a fixed point, equation (1.3) possesses a continuous solution. Furthermore if

f(x) ≤ K(x) for any x ∈ M then the solution is nonnegative on M .

Proof. By the condition there exists a compact set M0 ⊂ M and a constant k0 such that

f(x) ≤ k0K(x) for any x ∈ M\M0. Let ϕ ∈ C∞
0 (M) be the function such that ∆gu = 1 in
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M0 and otherwise arbitrary and φ = α + βϕ, where α , β are constants to be determined

later. Define a new conformal metric g1 = e2φg. Its Gauss curvature

f1(x) = e−2φ(f −∆gφ)

= e−2α−2βϕ(f − β), ∀x ∈ M0.

So we can choose α and β such that f1(x) ≤ K̃(x) and it suffices to prove our theorem in

case of f(x) ≤ K(x) for all x ∈ M . In what follows we only need to prove the theorem for

f(x) ≤ K(x) < 0.

For R > 0 , set B(R) = {x ∈ M : d(o, x) ≤ R }. By the assumption, there are constants

M(R) > m(R) > 0 such that

−M(R) ≤ K(x) ≤ −m(R), x ∈ BR.

We shall divide the following proof into two steps.

Step 1. Consider the elliptic problem in the ball BR.{
∆gu+K(x)e2u = f(x), for x ∈ BR,

u|∂BR
= 0.

(3.2)

It is easy to see that u− = 0 is the subsolutions of (3.2). Since f(x) is continuous and

negative, there exist constants N(R) ≥ n(R) > 0 such that

−N(R) ≤ f(x) ≤ −n(R).

So we can choose the u+ = C such that

e2Cn(R) ≥ N(R),

thus u+ is an upper solution of (3.2). By the standard iteration technique (see for example

[13] ) we know that there exists a nonnegative continuous solution of (3.2) u on BR. We can

see that such solution is unique. Otherwise, if there are two solutions u, v satisfying (3.2),

then {
∆(u− v) = −K(x)(e2u − e2v),

u− v |∂BR
= 0 .

Denote u− v by w. Suppose that inf w < 0 is achieved at some point x0 ∈ M . Then

0 ≤ ∆w(x0) = −K(x0)e
2v(x0)(e2w(x0) − 1) < 0,

this contradiction shows that inf w ≥ 0. Similarly supw ≤ 0. This shows that w ≡ 0, i.e.,

u ≡ v.

Denote Bn = {x ∈ M, d(x, 0) < n }. We conclude that, for any n ≥ 1, problem (3.2) has

a unique solution un ∈ H1
0 (Bn) ∩ C(Bn) and un ≥ 0 for all x ∈ Bn. Extend un(x) to all M

by setting un(x) = 0 x ∈ M\B̄n. Then un is continuous.

Step 2. Uniform upper bound for {un} on compact domain. Fix R > 0. We are going

to give a uniform bound for {un} on the ball BR. Let ξ ∈ C∞
0 (B2R) such that

ξ(x) =

{
1, x ∈ BR,
0, x ∈ M\BR,
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and |∇ξ| ≤ C1, |∆ξ| ≤ C1. From (3.2), when n > 2R,∫
B2R

un∆(ξ4) dv +

∫
B2R

K(x)e2unξ4 dv =

∫
B2R

fξ4 dv.

Therefore ∫
B2R

|K(x)|e2unξ4 dv ≤
∫
B2R

|f | dv + C2

∫
B2R

unξ
2 dv

≤
∫
B2R

|f | dv + C

(∫
B2R

u2ξ4 dv

) 1
2

. (3.3)

Since ∫
B2R

|K(x)|e2unξ4 dv ≥ 2m(2R)

∫
B2R

u2
nξ

4 dv, (3.4)

where m(2R) = min{|K(x)| : d(x, 0) ≤ 2R}, from (3.3), (3.4)∫
B2R

u2
nξ

4 dv ≤ C4

(
1 +

∫
B2R

|f | dv
)
,

where the constant C4 which depends on R, K(x) is independent of un. Then∫
BR

u2
n dv ≤ C5

(
1 +

∫
B2R

|f | dv
)
,∫

B2R

|K(x)|e2unξ4 dv ≤ C5

(
1 +

∫
B2R

|f | dv
)
, (3.5)

where the constant C5 which depends on R, K(x) is independent of un. From (3.2)∫
BR

|∆un| dv ≤ C6

(
1 +

∫
B2R

|f | dv
)
.

Since

∆un = −K(x)e2un + f ≥ C7un − C8 for all x ∈ B2R,

by Theorem 8.17 in [5] we know

sup
x∈BR

un ≤ C9R
−n

p ∥un∥Lp(B2R),

where C8, C9 and p > 1 are constants independent of n, and by (3.5) we know that there

exists a constant C0(R) independent of n such that

sup
x∈BR

un ≤ C0(R). (3.6)

The estimate (3.6) implies that {un} is a bounded subset of W 2,2
loc (M). By the diagonal

method we can select a subsequence, denoted again by {un}, such that un → u0 in W 2,2
loc

and un(x) → u(x) for a.e. x ∈ M . From Lemma 2.4.1 in [3] we know

K(x)e2un(x) → K(x)e2u0 in L2
loc.

Letting n → +∞ we see that u0 is a solution of (1.3). From elliptic regularity theory

u0 ∈ W 2,2
loc (M). From Sobolev’s imbedding theorem u0 is continuous in M . It is clear that

u0(x) is also nonnegative in M .

Since K(x) and f(x) are locally Hölder continuous functions, u0(x) is a classical solution

of (1.3).
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Remark 3.1. It is not hard to show that the solution obtained under the condition (3.1)

is bounded below by a constant.

§4. Uniqueness Theorem

In this section we will prove the uniqueness result by using the generalized maximum

principle of Chen and Xin[4].

Theorem 4.1. Let (M, g) be a Riemannian surface with Gaussian curvature bounded

below by −C(1 + ρ2(x)) for some constant C, where ρ(x) = dist(o, x) for some fixed point

o ∈ M . Let K(x) be a continuous function satisfying K(x) ≤ −a2. If f(x) ≤ K(x) for all

x ∈ M, then any C2 solution of (1.3) is nonnegative.

Proof. If u is a continuous solution of (1.3), consider the set

N = {x ∈ M : u(x) < 0}.

Our aim is to show that N = ∅. Notice that

∆u = f(x)−K(x)e2u ≤ K(x)(1− e2u) ≤ 0.

Case 1. u achieves its minimum and ∂N ̸= ∅. Since u is a superharmonic function on

N and u(x) ≥ 0 on ∂N , we have u(x) ≥ 0 on N . This shows that N = ∅.
Case 2. u achieves its minimum at x0 ∈ N and ∂N = ∅. Since N is an open set in M ,

we have either N = ∅ or N = M . If N = M , u is a superharmonic function on M and

u(x) < 0 on M and

0 ≤ ∆u(x0) ≤ K(x0)(1− e2u(x0)) < 0,

then N = ∅.
Case 3. u does not reach its minimum. Suppose that N ̸= emptyset. Then we can find

a point x0 ∈ N such that u(x0) = 2δ0 < 0. We can define a new function as follows:

w(x) =
1

1 + e−u(x)
. (4.1)

So w(x) is bounded from below. By the generalized maximum principle in [4] we can find a

sequence {xn} such that

w(xn) → inf
x∈M

w(x),

|∇w(xn)| <
1

n
, ∆w(xn) ≥ − 1

n
.

Then a straightforward calculation gives

∇w(xn) =
e−u(xn)(

1 + e−u(xn)
)2∇u(xn),

∆w(xn) =
e−u(xn)(

1 + e−u(xn)
)2∆u(xn) +

e−u(xn) − 1

e−u(xn)
(
1 + e−u(xn)

) |∇w(xn)|2.
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When n is sufficiently large, u(xn) ≤ δ0. Then

− 1

n
≤ − e−u(xn)[

1 + e−u(xn)
]2 a2 [1− e2u(xn)

]
+

1

n2

eu(xn)

1 + eu(xn)

≤ −a2
(1− eu(xn))

1 + e−u(xn)
+

1

n2

eδ0

1 + eδ0

= −a2
(1− eu(xn))eu(xn)

1 + eu(xn)
+

1

n2

eδ0

1 + eδ0

≤ −a2
(1− eδ0)eδ0

2
+

1

n2

eδ0

1 + eδ0
.

(4.2)

Let n → +∞.We have arrived at a contradiction which shows that N = ∅. This completes

our proof.

Remark 4.1. Since our proof of Theorem 3.1 relies heavily on Chen-Xin’s generalized

maximum principle which has been shown to be optimal in some sense (see [4]), it would be

interesting to know whether the conclusion of the Theorem 3.1 holds in the other cases.

Theorem 4.2. Let (M, g) be a noncompact complete Riemannian surface with Gaussian

curvature f(x) bounded below by −C(1+ ρ2(x)) for some positive constant C, where ρ(x) =

dist(o, x) for some fixed point o ∈ M . If K(x) ≤ −a2 for any x ∈ M and some constant a,

then equation (1.3) possesses at most one solution.

Proof. If u, v are two solutions of (1.3), then u, v are nonnegative by Theorem 4.1.

Writing w = u− v we can conclude that

∆w = −K(x)e2v(e2w − 1)

= K(x)e2v(1− e2w).

Similar to the proof of Theorem 3.1 we can prove that w ≥ 0. Since the same technique

applies to −w = v − u, i.e. we also have w ≤ 0 for any x ∈ M , we have shown that w ≡ 0

and u ≡ v. The conclusion of the theorem follows.
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