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ON A MULTILINEAR OSCILLATORY
SINGULAR INTEGRAL OPERATOR (I)**
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Abstract

The authors consider the multilinear oscillatory singular integral operator defined by

k
TAy, Ag, -, A f(T) = /Rn et @) H Rm; (Aj; %y)mf(y) dy,
j=1

where P(z,y) is a real-valued polynomial on R™ x R™, © is homogeneous of degree zero,
Rum; (Aj; z,y) denotes the m;-th order Taylor series remainder of A; at = expanded about

k
y, M = 3 mj. It is shown that if Q belongs to the space Llogt L(S™~1) and has vanishing
j=1
moment up to order M, then

k
ITas az e flle <CTT (X2 104500, ) 11,

Jj=1 \a\:mj

k
provided that 1 < p, ¢ < 00, 1 < r; < oo (j =1,2,...,k) and 1/¢ = 1/p+ > 1/r;. The
j=1

corresponding maximal operator is also considered.
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¢1. Introduction

Let us consider the following oscillatory singular integral operator

Tf(x) = po. / P @D [ (o — ) f(y) dy,

where P(z,y) is a real-valued polynomial on R™ x R™, K (x) is homogeneous of degree —n
and has mean value zero on each sphere centered at the origin. Ricci and Stein [l proved
that if K € C1(R™\{0}), then T is bounded on LP(R") for all 1 < p < oo, with bounds
depending only on n, p and the total degree of P, but not on its coefficients. Subsequently,
Chanillo and Christ [2l proved that T is also of weak type (1,1). Since oscillatory singular
integral operators with polynomial phases are very useful in the study of Hilbert transforms
along curves, singular integrals supported on lower-dimensional varieties and singular Radon
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transforms (for example, see [3, 4]), recently, there are many works about these operators
(see [5-7]).
The purpose of this paper is to consider the multilinear operator related to the oscillatory
singular integral defined by
k
; Qz —y)
_ P(z, .
TaAy, Ay, A f(2) = p.v./ eP@y) H Ry, (Aj; y)mf(y) dy,

n

=1
and the corresponding maximal operator

k
* 1P(x Oz — Y
T, aoreea @) =sun| [ o T] R () S ) ],
e>0 |z—y|>e |.’IJ - y|

where  is homogeneous of degree zero and integrable in the unit sphere, P(z,y) is a real-

j=1

valued polynomial on R” x R", R, (Aj;x,y) denotes the mj;-th Taylor series remainder of
A; at x expanded about y, i.e.,

R, (Aji,y) = Aj(0) = )

la|<m;

D*A;(y)

o @ —y)t

As well-known, operators of this type related to the singular integral operators have been
studied by Cohen and Gosselin [/, In this paper, we will show that the multilinear oscillatory
singular integral operators enjoy some properties which are parallel to that of the multilinear
singular integral operators. Our main results can be stated as follows.

Theorem 1.1. Let Q(x) be homogeneous of degree zero and belong to Llogt L(S™™1),
fsn,l Qa")2'*dz’ = 0 for all |a| < M. Suppose that for j =1,2,--- ,k, A;(z) has deriva-
tives of order mj in L™ with 1 < r; < oco. If 1 < p,q¢ < o0 and 1/qg = 1/p+ zk: 1/r;,

j=1
then

k
R PEYe [ | O S T

=1 Jal=m;
and C depends only on n, p and the total degree of P, but not on its coefficients.
Theorem 1.2. Let Q and A; (j=1,2,--- ,k) satisfy the same conditions as in Theorem
k

1.1. If1<p,g<ooand 1/g=1/p+ > 1/r;, then
j=1

k
175, w4l < CI20 o 2 TT (D0 107450, )11l

i=1 " lal=m,

and C depends only on n, p and the total degree of P, but not on its cofficients.

§2. Some Lemmas

Lemma 2.1.18 Let Q(z) be homogeneous of degree zero,belong to the space Llogt L(S™~1),
and [g,_, #'“Q(z")dz’ = 0 for all a with || < M. Suppose that for j =1,2,--- k, Aj(x)
has derivatives of order mj; in L™ with 1 < r; < co. Define the operator

Uz —y)

k
Ta,, ag,, 4, f(2) = p-v~/ ST 11 B, (A2, 0) £ () dy.
j=1

Rn |£C —
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Ifl<p,g<ooandl/q=1/p+ > 1/r;, then
j=1

k
1Ty, ool < ClUznoge s L (XD 107450, ) £
J=1 Jal=m;
where C' depends only on p, 1, ro,--- , T, M, and n. The same conclusion is also true for
the corresponding mazimal operator

Qz —y)

k
T, a4 f (@) = sup| ity L1 B, (A 2.9) S0yl
j=1

e>0 J]z—y|>e |£E Y

Lemma 2.2.8] Let Q) be homogeneous of degree zero and Qo € L*(S™~1). Suppose that

forj=1,2,--- k, Aj(x) has derivatives of order m; in L™ with 1 < r; < co. Define the
operator
k
MR 4, . 4 f (@) = supr= (" FAD / 11 B, (A3 2,9)0(z — y)f(y)‘dy-
r>0 |1;7y‘<7- j=1
k
If1<p,g<ooandl/q=1/p+ > 1/r;, then
j=1

k
1M e Flla < CU TT (D2 1D Al )11 -

J=1 Jal=m;
Lemma 2.3. Let 1 < p < oo, Qy be homogeneous of degree zero and 2y belong to the
space L>°(S™1). Let P(x,y) be a non-trivial real-valued polynomial which has the form

Px,y)= Y. aapr®y’+ D aapr™y’+ Y aasr®y’,
lal=ko, |Bl=lo || <ko, |Bl=lo || <ko,|B]<lo
with kg and ly two positive integers and > laq,g| = 1. Forl a positive integer, define
|a|=Fo,|B|=lo

the operator

k
: Qo(z —y)
T f@ :/ PO T R, (Ajs 2, y) 0 f(y) dy.
A, 4 (2) 20-1<|p—y|<2! Jl:[l (4 )|33—2/|”+M )
Suppose that for j = 1,2, ---, k, Aj(x) has derivatives of order mj in L. Then there

exists a positive constant € which depends only on ko and ly such that

k
178 4l < €270 gy TT (D2 1D 4510 )11 £ -
J=1 " lal=m;
This Lemma can be proved by the same arguement as that used in [6, pp.209-212], together
with some techniques of Cohen and Gosselin [, We omit the details for brevity.
Lemma 2.4. Let 5 be homogeneous of degree zero and integrable on the unit sphere,
b(z,y) € L¥R™ x R"), and A;(z) (j =1, 2, --- k) have derivatives of order m; in L

k
with1 <r; <oo. Letl1<p,g<ooandl/q=1/p+ > 1/r;. Suppose that the operator
j=1
k
Qz —y)

Tf(z)= | bz, y)m H R, (Aj; 2, y) f(y)dy
R yl j=1
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satisfies

k
1Tl < AT (D2 10450, ) 111

=1 |a|=m;

Then the truncated operator

Qx —
ni@ = [ ey T o (A .90 )
lz—y|<1 | y| j=1
satisfies
k

177y < CCA+ o) TT (32 1D Al )11

J=1  |al=m;
Proof. For each fixed h € R™, we split f into three parts
f=hHh+f2+ f3

where
J1(W) = fFW)Xqy=ni<1/2yW)s f2(v) = FY)Xg1/2<y—h|<5/4} ()
Let Pn € C(())O(Rn) such that Yn C {|y - h‘ < 4}a Sph(y) =1if |y - h| < 27 ||Dutthoo < o
for all multi-index v. Set
Al (y) = Ry, (Aj; y, h)on(y)-
It is easy to verify that if |x — h| < 1/4, then
Qx —
T f1(z) :/ (|n+MHRm7 AJ7 z,y)b(z, y) f1(y)dy,

| X —
j=1

which in turn implies

/x_h<1/4 Ty f1(z)|9dx < Aq(ﬁ ( Z ‘DﬁA?Hrj)Hlep)q,

Jj=1 |Bl=
For each fixed multi-index ﬁ |B] = m;, write
DﬁAh Z O;A I/Rm 7|;1,|(D A]7 Y, h)D @h( )
B=v+p

Denote (y — h)" = (y — h)/|y — h|. With the aid of the formula

y—h|
Rtz = 3 5 m [ e oy -

we have
ly—n|
| Rin,— 1 (DM ATy, h)| < © Z / |DPA;(y — t(y — h)")|dt.
1Bl=
This leads to
. 1/r;
S, <e 3 ([ A
1Bl=m; |Bl=m; Iv—hI<8

Therefore

k
a/r;
T x)|%dx < A? / DB A. id q
/|mh|<1/4| 1f1()] H( Z - h|<8| i)l y) (R

J=1 |8|=



No.2 Chen, W. G., Hu, G. E. et al ON OSCILLATORY SINGULAR INTEGRAL OPERATOR (I) 185

If [x —h| <1/4and 1/2 < |y — h| < 5/4, then 1/4 < |z —y| < 3/2. So we see that for
|z —h| <1/4,

QO _ k
Ty f2(x)] < ||b\|o<,/ (|n_y3w 11 B, (A;; x7y)f2(y)’dy
j=1

1/4<|z—y|<5/4 ‘ |z —y
< Clblloc My ay... ap f2()-

In view of Lemma 2.2, we can deduce that

v a/r;
Z/ DA dy) " el

/ T o) 7z < €)%, [
le—h|<1/4 i1 |82 —h|<8

Obviously, Ty fs(x) = 0 if |x — h| < 1/4. Hence

/ T3 £ (2))9de
lx—h|<1/4

< C(AT+||b]|9) ﬁ Z/

i=1 " |8l= —hi<8

DB A )|Tjdy)Q/Tj(/|

y—h|<2

£ () dy)

Integrating the last inequality with respect to h yields the desired estimate.

§3. Proofs of Theorems

Proof of Theorem 1.1. We shall carry out our arguement by a double induction on
the degrees in = and y of the polynomial. By Lemma 2.1 we know that Theorem 1.1 holds
if the polynomial P(z,y) depends only on z or only on y. Let kg and ly be two positive
integers and the polynomial P have degree ky in x and [y in y. We assume that Theorem
1.1 holds for all polynomials which are sums of monomials of degree less than kg in x times
monomials of any degree in y, together with monomials which are of degree kg in z times
monomials which are of degree less than [y in y. Write

P(x?y) = Z aaﬁxayﬁ + RO(-T7:U)>
|a|=ko,|B=lo

where Ro(x,y) satisfies the above induction assumption. By dilation-invariance we may

Z |aa5‘ =1L

|ae|=ko,|B|=lo

Decompose the operator Ta, | a,,..., A, as

assume that

k
. Qlr —
Taonn @)= | ezpwHRm_,(Aj;x,y)'xfyln%f(y) dy

|z—y|<1 j=1

iP(z,y) £ Qz —y)
+ € v HRmJ‘<AJ;x’y n+Mf( ) dy
|[z—y|>1 j=1 |z =yl

Q,0 £2,00
= TAl,Az,'“,Akf(x) + TAlgA27"'7Ak:f(x).

We first consider the operator TX’?A%“’AK For each fixed h € R"™, let ¢, € C°(R")
such that ¢ C {|ly — h| <4}, pr(y) =1if |y — h| < 2, | D’ pn|lec < C for all multi-index v.
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Set
Al (y) = Ry, (Aj; y, h)on(y)-
Write
Plx,y)= Y.  aap(z—0)*(y—h)"+R(z,y,h),
la|=ko, |B|=lo

with the induction assumption applying to the polynomial R(x,y,h). We have

Q2,0
Ta a5, ] (@)
a+p3

iRzyh)+ X aasytP] K _
:/ e lal=kg11Bl=lo Hij (Aj;x,y)%f(y) dy
|lz—y|<1 i1 |.13 - y|

=
iR@yh)+ Xyt F Qz —
. R y)
+/ e Prv) ¢ R R, (A5 2,y) fy)dy
lz—y|<1 { }E ! |z — y|+ M

Q2,01 Q, 02
= TA17A2, ,Akf('r> + TA1,A2’--- ,Akf(x)'

The induction assumption via Lemma 2.4 states that

k
Q, a
1Tl < Ol o  TT (0 102450, ) 1

=1 Jal=m,
Note that if [x — h| < 1/4 and |z —y| < 1, then |y — h| < 5/4 and
iR(zyp)+ 3 aas(y=h)t’

. ]
eiP@) _ ¢ jel=kosTB1=to (< Y laaplle—yl < Cle -yl
|al=ko,|81=lo
Thus for |z — h| < 1/4,
- 0z — )|
Q, -
|TA1703{2,...’Akf(m)| < /| <1 ‘ H Rm]‘ (AJ, -’I;,y)‘ ‘QJ o y|n+]y[,1 |f(y)|XB(h,5/4)(y)dy
T—Y|S

j=1
< CMX;L,AQ,... b (FxB,5/9) (@),
which together with Lemma 2.2 yields

k
||XB(h71/4)T2{?22,...,A,€f“q < ||Q||1 H ( Z ||DQA?||rj> ||XB(h,5/4)f(Z/)||p~

=1 " Jal=m,

As in the proof of Lemma 2.4, we can obtain from the last inequality that

k
Q «
178 %, e < CUeseny TT (D 10450, ) 151
i=L " laj=m;

.. . Q,01 Q, 02 . .
Combining the estimates for operators Ty Ay o oa, and Tyo 7y 4 gives the desired

. Q,0
estimate for T "y, ... 4,-
. Q .
Now we turn our attention to the operator 1%, . Write
Ay, Az, e Ay

o] k
P(a Qz —y)
koo :E : iP(z,y) I | R (A d
AI’A27...’Akf(x) l 1LL1<I$_y|22le J( J7x7y)|x_y|n+Mf(y) y

j=1

SRS k Qd(x y)
=22 e o y)—dE = Y)
= e Rmv A YT, Y f Y dy
=1 d=0 /211<ry|<2l ]_1:[1 J( 7 ) |x _ y|n+M ( )
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=D D Ta, 4 f (@),

=1 d=0

where
Q') = Q)X 00
Eo = {2’ € "1 |Q(2))] < 1},
Eg={2' e "1 2971 <|Q(z')] < 2%}, deN.

We claim that there exists a positive constant § which is independent of d such that for all
1>1,

k
1780 e < €271l TT (D2 1D Al )15 (3.1)

J=1  |a|=m;

In fact, for fixed p, ¢, ; (j =1, 2, -- -, k) with

k
1>1/p=1/qg+ Y 1/rj,
j=1

let 1/qx =1/p+ 1/ri. Choose 7 such that
1<7 <rg, and 1/p+1/f, =1/G; < 1.

Lemma 2.2 now says that

k—1
1T f e < CHI TT (X0 10" A0 ) (D2 1D Al ) Ul (3:2)
j=1 |al=m; || =my,

On the other hand, it follows from Lemma 2.3 that

k—1
1780 T < IRl T (30 10450 ) (D2 1D Abloo )11 (3:3)

=1 al=m; loe|=mg

with € > 0. We view the operator Tl?l”"’f42 ... A, 882 linear operater of Ag. Let 0 <t < 1
such that 1/ry = t/7;. Then

Vge=(1-1)/p+1t/q.

Interpolating between the inequalities (3.2) and (3.3) shows that for some positive constant

€1,
k—1
Qa,l —e1 o «@
1780w Pl < Clalloc2™ 1, TT (D2 104l ) (30 1D Ablln, ). (3:4)
=1 Jal=m; lee|=my,

Repeating the interpolating proceedure as above k times then establishes our claim.
We can now conclude the proof of Theorem 1.1. Let N be a positive integer such that
N > 2571, Write

oo oo
Q, Q0,1 Qa,l
17470, 4 fllg < Z | Ta) Ay, o A flla + Z Z ITa 4y a Tl

=1 d=11<I<Nd
o0
Qul
0 D IR e
d=1I>Nd

=L+ L+ Is
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By the estimate (3.1),

(oo}

(X 104l ) Y2 s,

|a|=m; =1

(X 10740 ) 171

|a|=m;

L <C

<C

<. <.
I > |l >
= =

Similarly, we have

e’} k
e S e, [T( S 104l

d=11>Nd J=1  |al=m;
k

<oy T (S 1074l
d=1

J=1 lal=m,

<CIT( X 1040, )£l

k
J=1 " Jal=m,

On the other hand, it follows from Lemma 2.2 that

k

L<cy S el (S 10l

d=11<I<Nd =1 |a|=m;

k 0o
<cII( X |DaAj||r].)dZdszd|||f|p
=1

J=1  |a|=m;
k
<CIT( X 1D 450 19 2o Il
i=1 " |al=m;

This finishes the proof of Theorem 1.1.

Proof of Theorem 1.2. We shall carry out the argument by a double induction on the
degrees in 2 and y of the polynomial P(z,y) as in the proof of Theorem 1.1. By Lemma 2.1
we know that Theorem 1.2 holds if the polynomial P(z,y) depends only on « or only on y.
Let kg and Iy be two positive integers and the polynomial P have degree kg in x and [y in
y. We assume that Theorem 1.2 holds for all polynomials which are sums of monomials of
degree less than k¢ in x times monomials of any degree in y, together with monomials which
are of degree ko in x times monomials which are of degree less than [y in y. For general
polynomial P(z, y) with degree ko in z and [y in y, write

P(l‘, y) = Z aaﬂzayﬁ + R(JE, y)v
le|=ko,|B|=lo
and R(z, y) satisfies our induction assumption. We may assume that

> laasl =1.

lal=ko,|B|=lo
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Decompose the operator T, 4, .. 4, as

k
Thy, Az, 2, S (2)

1T B, (Aji 2 9) 02z — )

< 0212121 /|my>‘S oiP(ey) I=1 Py f(y)dy’
_ jlf[l R, (A2, 9)Qx — y)
S e e L]
: jli Ry, (Ajs 2, y)Qz — y)
: Oiggl /c‘<|ocy<1 i |z — y|nt+M f(y)dy‘
| jli R, (Aj32,9)Q(x — y)
d /xy|>1 e & — y[n M o))
Rty
+ :1;1; ‘ /|ﬂ7y>€ et P (@) PR f(y)dy‘

k
1:11 ij (AJ,.’I},y)Q((E - y)
= T3 gy ) | /|xy>1 DI )y

+ TJZiOAm ,Akf(x)

By the familiar arguement involving Lemma 2.1 and the induction assumption, it is easy

to verify that

k
1750 e e < CN o TT (D2 1D 4500, )15

=1 Jal=m;

Observe that

Ty ng, o 4, f (@)

k
| -H1 Ry, (Ajiz,x — y)Qy)|

< JI= _ d

= Jen /zl—1<|y|<2J |y|n M f(z = y)ldy
k
-H1 R, (Aji2,y)x — y)

+ su ‘/ 6iP(av,y)J: d
Jegl:;d 9 1<|p—y|<2! |z — y|ntM f(y)dy

0,
< CMXI,AQ,--- A S (@) + Z Ta Ay a,f(@)]
1=

The same method as in the proof of Theorem 1.1 leads to

k
175 e a0 < CIl o 2 T (D2 1D Al )11

=1 " Jal=m;
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C depending only on the total degree of P, but not on its coeflicients. So we completes the
proof of Theorem 1.2.
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