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Abstract

Let {Xg(t),t > 0},k = 1,2,..., be a sequence of independent Gaussian processes with
oo
02(h) = E(Xg(t+h) — Xi(t))2. Put o(p,h) = (3> Uz(h))l/p, p > 1. The author establishes

the large increment results for bounded o(p, h).
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¢1. Introduction

Let {Y'(¢),t > 0} = {Xy(t),t > 0}32, be a sequense of independent Gaussian processes
with EX(t) = 0 and stationary increments o3 (h) = E(Xy(t + h) — X;(t))?, where, and
throughout this paper, oy (h) is assumed to be a non-decreasing continuous function for each
kE>1.Then Y(t+h)—=Y(t) € P, 1 < p < oo, almost surely for fixed ¢ and h if and only if
o(p,h) < 0o, where

o(p,h) = (iag(h)ﬁ p>1.
k=1

Cso6rgd and Shaol? studied almost sure path behaviour for {Y(¢),t > 0} based on a general
result for Fernique type inequalityl] and the well-known Borell inequality. In particular,
they established moduli of continuity for this kind of processes. As to large increments,
the condition that o(p, h)/h* is quasi-increasing for some « > 0 is required. But for some
Gaussian processes this condition is not satisfied. For example, o(p,h) is bounded for the
Ornstein-Uhlenbeck processes. The aim of this paper is to establish the large increment
results for {Y'(¢),t > 0} with bounded o(p, h).

Let {X(t),t > 0} be a stationary Gaussian process with EX(¢t) = 0 and stationary
increment 0%(h) = E(X (t+h)— X (t))%. In [3], we investigated its large increment properties.
Suppose that o(h) is non-decreasing and

EX(h)X(0) » 0, as h— oo,
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and
/ U(e_zz) dx < oo.
1

Let ar be a function of T" with 0 < ar < T and ar — oo asT — oo. Suppose that
ar = o(T¢) for any € > 0 as T — co. Then
|X(t+s) — X()|

lim su su =1 a.s.,
T—oo ogthp—aT ogsgrzzT 200 (log T')1/2
X(t — X (t
lim  sup [X( + ar) O _ 1 as,
t200 g<t<T—ap  200(log T)1/2
X(T - X(T
limsup| (T + ar) (D)l =1 as,

T—oo 200(log T)1/2
where 0 = EX?(0).
We now establish the similar result for {P-valued Gaussian process {Y (¢),¢ > 0}. The
above condition for {X(¢),t > 0} will be a special case of our theorem, and besides, the
condition ar = o(T¢) for any e >0 as T — oo can be relaxed.

§2. A Fernique Type Inequality

In order to prove our main result, we give a version of the Fernique type inequality of [1].

Lemma 2.1. Let B be a seperable Banach space with norm ||.| and let {T(t),t > 1} be
a stochastic process with values in B. Let P be the probability measure generated by I'(-).
Assume that T'(+) is P-almost surely continuous with respect to the norm and that for any
t>0,h>0,0 <a* <z there exist non-negative monotone non-decreasing functions o1(h)
and o2(h) such that

P{T(t + h) = T()]| > zo1(h) + 09 (h)} < K exp(—ya”) (2.1)
with some K,v,3 > 0. Then
P{ sup sup |[[(t+s)—T()||>z(o1(h+d(k)"'h) (2.2)
0<t<T 0<s<h

+o1(h, k) +oi(h k) + o2(h + d(k)flh) + oa(h, k)}
< 4K(% + 1)d(k)? exp (—yz”)
foranyT >0, 0<h<T, x>z* and k > 0, where

d(k) = 22,

o1(h, k) = 22+ 541 /C>O 401(h272’y)

ok+l—o Yy

dy,

oo

1 _lok4lq_og—ay _ _.B
)F(1—2752 (12277 1/2%2“17& o1 (h27Y")dy,

oi(h,k) = 2(

= |

) —2Y
o2 (h, k) :4a_1/ 2h277) 4

2k+1—o Yy
for any given 0 < av < 1.
Proof. Following the proof of Lemma 2.1 in [1], for any positive real number ¢ put

tj = [td(5)/hl/(d(5)/h)-
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We have

IT(t+5) = T < IT((+ 9)k) = D)l + D IT(E + 8)kpjrn) = T((E + 8)krj)l
§=0

+ ) T (tegjan) — Dtnay)|| as
=0
where the a.s. continuity of I'(-) is used. Since

sup sup |(t+ )k —ti| < h+d(k)"'h,
0<t<T 0<s<h

sup  sup |(t+ 8)gjr1 — (t+8)kys| < hd(k+j5+1)7"
0<t<T 0<s<h

we obtain from (2.1) for any « > z* and z; > z*,

P{ sup sup [[D((t+s)) — T(to)]
0<t<T 0<s<h

> 201 (h + d(k) " h) + oa(h + d(k)‘lh)}

< 2Kd(k:)2<% + 1) exp(—vya”),

P{ sup  sup [|T((t+ $)rqj41) — T((E + 8)ktj) |l
0<t<T 0<s<h

> zjo1(hd(k + 5 + 1)) + oo (hd(k + 5 + 1)*1)}

T
<2Kd(k+j+ 1)<E + 1) exp(f’yx?)

as well as
P{ sup sup [[U(te+j+1) = T(tets)
0<t<T 0<s<h
> ajor(hd(k +j+1)71) + oo (hd(k + 5 + 1))}
<2Kd(k+j+ 1)(% +1) exp(—vxf).
Now put
'yxf = Wxﬂ + 22k+j+1.
Then
Z dk+ 7+ 1)exp( 733 Z 222“]+1 exp( 22k+j+1) exp(—vyz?)
7=0
< eXp(—w )
and

2§:xjol(hd(k +i4+17h

Jj=0

L oo 2 1 °© 19k+j+1
<2} on(hd(h+ o+ 1)) #2007 328 oyl + 1))
i=0 7=0
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<21+1304 332/

2k+7+1 U
2
7) dy /12

k+j+l—a

9 0o noktitl
1 k+1 « 1 y 1
roS)F(1-2" Lok tl(1—27)~ 01(h272 ) d25Y
Y =0 2k+jit+l—a
oo —2Y
< 22+t%oflx/ 701@2 ) dy
PLESE Yy
2.1 1okt ) o B
+2(§)5(172 F2T (127~ 1/%2,@“_0 o1(h27Y") dy

as well as

o h2-2
2202 hd(k+j+1)~ )<4a—1/ Mdy.
7=0

Combining all the above inequalities yields (2.2).
Remark 2.1. From the proof of Lemma 2.1, it is easy to see that (2.1) implies

P{Oiljgh IT(T + 5) = D(T)|| > (o1 (h +d(k) " h)
+o1(h k) + ol (h, k) + oa(h + d(k) " h) + oo (h, k)}
< AKd(k)exp(—yz?) (2.27)

forany T'>0,h > 0,z > z* and k£ > 0.
Let

{Y(t),t > 0} = {Xk(t)vt 2 0}211
be defined as in the beginning of Section 1. Furthermore put

o*(h) = Hklgi(ak(h),

o(52£ h), if1<p<2,
T
o*(h), ifp>2.

52 = E|N(0, 1)[".

For the [P-valued process Y (), (2.1) has been established by Lemma 3.2 of [2].
Lemma 2.2. With p > 1, we have

P{IY (t+h) = Y (&)l > 26(p, h) + ,0(p, h)} < 2exp(—22/2)
for any t,z,h > 0.

§3. General Results for Large Increments

A function f(z) on (a,b) will be called quasi-increasing, if there exists ¢ > 0 such that
f(@) < cf(y) for any a < x < y < b. In this paper, log means logarithm with base 2.

Theorem 3.1. Let Y(:) be defined as above. let ar be a positive continuous quasi-
increasing function of T with ap — 0o as T — oco. Assume that

6(p,T) =6, <oo and o(p,T) = 0((10g —)1/2> as T — oo, (3.1)
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and
/ 6(p,27‘r2) dx < oo, / o(p,27 %) /zdr < co. (3.2)
1 1
Assume that for any § > 0,
ap < T1-(esT) /2% (3.3)
and there is ag > 0 such that for any a > ag,
max (X (ia) — Xi (i ~ D)) (X (ja) ~ Xu((G ~ D) <0 (3.4)
for every j > i > 1. Then we have
Y{(t —Y (@)
lim  sup sup I ~( +5) 7 @llx =1 a.s., (3.5)
T—00 0<t<T—ar 0<s<ar Op(2log(5—))1/2
Y(¢ - Y@®)|w
lim sup | ~( +ar) 7 ®ll =1 a.s. (3.6)
T—oog<i<T  Op(2 log(;))l/Q
and
Y (T —Y(T)|e
timsup LT 0n) “ YDl _ - (3.7)
Tooo  0p(2log(51)) /2
If conditions (3.3) and (3.4) are replaced by
ar <T'° for some 0 <8 < 1 (3.3")
and for every j >1i > 1,
timsup max B(X (ia) X (i ~ 1)a)) (Xs(ja) ~ Xe((G ~ D)) SO (3.4)
a—r o0 =
respectively, (3.5) and (3.6) remain true.
Proof. Note that condition (3.3) implies
log(T'/ar)
_— T . .
loglog T —ooas T — o0 (3.8)
At first we prove
Y(t -Y(¢
limsup  sup sup IVt +5) ®)llw <1as (3.9)

T—oo 0<t<T—ar 0<s<ar Op(2log(T/ar))'/? ~

Lemma 2.2 implies that (2.1) in Lemma 2.1 holds with K = 2,~ = %,ﬁ =2, o1(h) =&(p,h)
and o2(h) = 6,0(p, h). For given § > 0in (3.3), let 0 < & < 1 in (2.2) and &; > 1 — & such

that
ag == a—log(l—4d1) < 1.
Let
er = (logar) ™, k = logloglog ar®”

in (2.2) and k; = logloglogar. Then d(k) = a7’ and

I
k+1—a=log [(loglogaT)(l + &)} +1-«
loglog ar
= logloglogar + log(l — 1) + 1 — «

>ki+1—ao.
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Hence using condition (3.2) we have for large T

o) —92%
o1(ar, k) = 25/204*1/ aler2”” )
2k+1l—a

< 95/24-1 /OO o1(27?
1

S 56—])

dx
x

k1(el—a1_q)y

)dac

X

for any given € > 0 provided T is large enough. Similarly for large T

o0

ot (ap, k) = 4(1 — 272" (1=277)) =1 / or(ar2™" )dz < e,

gak—a

[ee] 272'7:
oa(ar, k) = 4ot / Md:c <e.

PLESEE x
Therefore, by the fact (3.8), condition (3.1) and Lemma 2.1, it follows that for any given
¢ > 0 and any 7T large enough

Y(t - Y ()i
P{ sipsup 1Yt +5) ()|1|§2 > 1+ 5¢)
0<t<T 0<s<car G,(2log (T'/car))

< P{ sup sup |[Y(t+s) =Y ()|
0<t<T 0<s<car

1/2
> (1+e¢) (2{log % + log logTD (o1(car(l +d(k)™Y)) + oy (car, k))

+ 0% (car, k) + oo (car(1 + d(k)Y)) + oa(car, k)}

T T
< 9—ap?T exp { -1+ 6)2(10g —— +loglog T) }
car car
S 9626T726aT2(6+6T) (log T)*(1+2€)
< 9¢*(log T) (129 (3.10)
C1s _ .
since areter < Te—cllogT) 204+ (log T)~ " < T¢ for large T if (3.3) holds. Let T; = ¢’ for
some 6 > 1. Then by the Borel-Cantelli Lemma we have

Y(E+s) YOl ;5 oo (3.11)

limsup sup su /s <

j=ee 0<t<T; 0<s<car; Gp(2log(T}/ar,))

Noting that ar is quasi-increasing we obtain (3.9) from (3.11). By recalling (3.8) the inverse
inequality holds from Theorem 3.3 of [2]. So now (3.5) is proved.

In order to show (3.6), it suffices to prove

Y (t —Y(@)|;»
liminf sup ||~( +ar) ( )H; >1 as. (3.12)
T—o0 0<t<T Up(2 log(T/aT))l/

Assume that conditions (3.3) and (3.4) are satisfied. Let

Bnk:{TZk‘hSCLT<(k+1)h,n_1ST<77/}
for some h > 0,

a, =inflar :n—1<T <n}, a, =sup{ar:n—1<T <n}
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Then

Y -Y »
liminf sup LT 0T) (t1)||21
T=oo 0<t<T  §,(2log(T/ar))"
Y (t )
> lim inf min inf Yt +ar) - (1)||2l
oo ol /h-1<k<a; /hT€B 0<i<T  G,(2log(T/ar))"/
Y(t+ kh »
> liminf min 1Y (¢ + kh) — (1)||2l
n—oo aj /h—1<k<a;/h0<t<n—1 gp(Qlog(n/kh))/

1Y (t+5) =Y ()|l
1/2

—limsup sup su
n—oo 0<t<n0<s<h G,(2log((n —1)/ak))

= Ly — L. (3.13)
Note that 6(p,h)/6p, — 0 as h — 0 and a, < ca, since ar is quasi-increasing. Then by
imitating the proof of (3.9), we have

Ly <e as. (3.14)

provided h is small enough.
Consider Ly. Assume 1 < p < 2. We have (cf. (3.2) of [2])

S 0 (kh) 5 (X, (G + 1)kh) — X, (jkh)

1Y (G + Dkh) =Y (jkh)[iw = ==

p—1
P

(2 o (k) 777 )
Let

NgE

oy (kh) 55" (X, ((j + 1)kh) — X, (jkh))
€(j k) = =2

5o k) i:jl ou(kh)?)
2 0 (kh) F57 (X,((G + 1)kh) - X, (3kR))
— v= - » 1/2
( > av(kh)ﬁ)
v=1

Then, using condition (3.4), we have for j >i>1

EE(i, k)¢ (Zav (kh)? ) 12%(

B0+ 1RR) — Xo(kR) (X, (G + DkR) — X, (jRR))

(3.15)

provided k is large enough. Therefore, by the Slepian inequality, recalling the definition of
B, and noting condition (3.3) and ar to be quasi-increasing, we obtain that there exists
C > 0 such that for large n
1/2
P{ k)< (1—e)(21 }
al, /h— 1<k<a*/h0<]<n/2kh€(j )= ( €)(2log kh)
lay,/R] 1/2
< P{ k)< (1— (21 ) }
< Z ma €(j,8) < (1) (2log

0<5<n/2kh
—fah1 ST



220 CHIN. ANN. OF MATH. Vol.18 Ser.B

[z, /1] o

< k_[(§h]_1 (1 - exp{ —(1—¢€)log %}) o
<cnem{-c(2))

<Cn™2, (3.16)

which implies
Li>1—¢ as. (3.17)
Assume p > 2. Take Ny, such that o3, (kh) = o*(kh). Clearly

Y (G + DkR) = Y(GER)[ir (1-0) Xn, ((J +1)kh) — X, (jkh)
- ON,, (kh)
for large k. Along the lines of the proof for the case of 1 < p < 2, we have (3.17) as well.

Op

Now (3.12) is proved and hence we complete the proof of (3.5) and (3.6) under conditions
(3.3) and (3.4).
When conditions (3.3) and (3.4) are replaced by (3.3”) and (3.4°) respectively, the proof
5e?

of (3.17) is similar. We consider only the case of 1 < p < 2. Let ¢ = T35y Similarly to

(3.15), we have for k large enough
& (i, k)E( k) < €. (3.15)
Let {n;,;i > 1} and 7 be independent normal random variables with means zero and
En?=1- ¢ and E12 = €. Define & = ni + 7. Then E&% =1 and
E(Xv((l + 1)kh) — Xv (lkh))(xv((] + 1)kh) _ Xv (]kh))
o2(kh)
for large k. Therefore (recalling (3.16)) we have

< E&EG, j—i>1

P k) < (1o (210g %)
. ) < (1 n
{a;b/hfflglgga;/hogjrggi(zkhg(j’ )= ( €)< 08 kzh) }
la;,/h]
n n\1/2
< . — —
= Z P{ og}rgl%}/(zkhgj <(-¢ (210g kh) }
k=la’, /h]—1
lay,/h]
- € n \1/2 € n \1/2
< P{ : 1—7(21 —) } P{ >7(21 —) })
= Z ( Ogjngl%}/%kh nj < 2) %8 Lh T = 2 \“ %8 1
k=[al, /h]—-1
< S ((end - (- ) el - S )
= P 2) % kh FPAUT 28 %k
k=[al, /h]-1
—62 6’
cufmr (2
an
< C’(ne_cnée/2 +n72),
which implies (3.17). The proof of (3.6) is complete.
Finally, we prove (3.7). It is enough to show
Y (T -Y(T
lim sup IY(T + ar) ()l >1 as. (3.18)

T—o0o  0p(2log(T/ar))!/?
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For given € > 0, take ag large enough such that

E(Xp(iag) — Xp((i — D)ao))(Xk(jao) — Xi((4 — 1ao)) < gsizl (3.19)

e o2 (ag)

Put /. = ap[ar/ag]. Then
Y(T —Y(T Y(T +d,) — Y(T
i I 00) YDl Y ) Y (D)
T—oo  0p(2log(T/ar))Y/ Tooo  Op(2log(T/af))t/
. 1Y (T +s) = Y(T)l|;»
— limsup sup —
T—oo 0<s<ag Up(2 IOg(T/aT))1/2
=L — I (3.20)

Noting Remark 2.1, along the lines of the proof of (3.9), we have
I, <e as. (3.21)
for any € > 0. Consider I;. Let tyo = 1. Define t; by tx = tp_1 + a;k_l,k =1,2,---. Then

o0 2(p—1)

ou(at,,) 77 (Xy(ty +ay, ) — X, (t
IV (te - at) — Valle 25 7))~ Xolie)

a(p,ai, ) -

(% oulay,)5)1/2

v=1

(3.19) implies
Enin; <€, forj>i>1.

Put D,, = {k : 3n < t;, < n —1}. Obviously, by condition (3.3), for k € D,,,as, = o(n) as

n — 0o. Hence
1

g ag, > E (tg —tr—1) — max as, > =n
k€D, 3
k€D, keD,,

for large n. Let {n;},{&} and 7 be defined as above with € instead of € . By the Slepian
lemma we obtain that for large n,n — 1 < T < n,

/_
Pl VO YOL
r2<t<rT  Op(2log(t/ar))'/

< P{ max €/ (2log(tx/ar,))* <1~ 7}

2
< IT P{m < (1- ) @los(te/an))/?} + Plr = Z(2log(te/ar, )"/}
keD,
< H (1 - exp{ — (1 - i) log(tk/atk)}) + exp {1_675' IOg(tk/atk)}
keD,,
< exp{ - Z (atk/tk)175/4} + (tk/atk)fsz/wéﬁ
k€Dy,

< exp{ _ %nuﬁ)(logn)—”z“} 4 (/16 ) (logm) T2 g
as n — 0o, which implies
L1 >1—€ as. (3.22)

Inserting (3.21) and (3.22) into (3.20) yields (3.18), and hence (3.7) is proved. This com-
pletes the proof of Theorem 3.1.
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¢4. Fractional Ornstein-Uhlenbeck Processes

Let {Y'(t),t > 0} = {Xx(t),t > 0}, be a sequence of independent fractional Ornstein-
Uhlenbeck processes of order v with coefficients v, and Ag, where 0 < v < 1,9, > 0, A\ > 0,
i.e., the Xi( - ) are centered stationary Gaussian processes with

EXk(t)Xk(S) _ ;Tkk(ef?y)\k(tfs) + 62’Y>"“(57t) o |e)\k(tfs) . e/\k(sft)|2'y) (41)

for any t,s > 0. Hence
o2(h) = B(Xp(t +h) — Xp(t))?

= T (g g Jodeh - MARY 2k o) (4.2)

Csorgé and shaol’! studied the moduli of continuity and the laws of the iterated logarithm
for {Y(t),t > 0} as an [P-valued process , p > 1. By the elementary calculation, it is easy to
verify that condition (3.4) is satisfied from (4.1). Therefore, as a consequence of Theorem
3.1, we have the following large increment result.

Theorem 4.1. Let Y (-) be defined as above. Assume that conditions (3.1) and (3.2) are
satisfied. Let ar be defined as in Theorem 3.1, and assume that condition (3.3) is satisfied.
Then (3.5), (3.6) and (3.7) hold true.
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