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Abstract

Let {Xk(t), t ≥ 0}, k = 1, 2, . . ., be a sequence of independent Gaussian processes with

σ2
k(h) = E(Xk(t+ h)−Xk(t))

2. Put σ(p, h) = (
∞∑

k=1

σp
k(h))

1/p, p ≥ 1. The author establishes

the large increment results for bounded σ(p, h).
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§1. Introduction

Let {Y (t), t ≥ 0} = {Xk(t), t ≥ 0}∞k=1 be a sequense of independent Gaussian processes

with EXk(t) = 0 and stationary increments σ2
k(h) = E(Xk(t + h) − Xk(t))

2, where, and

throughout this paper, σk(h) is assumed to be a non-decreasing continuous function for each

k ≥ 1. Then Y (t+ h)− Y (t) ∈ lp, 1 ≤ p < ∞, almost surely for fixed t and h if and only if

σ(p, h) < ∞, where

σ(p, h) =
( ∞∑

k=1

σp
k(h)

) 1
p

, p ≥ 1.

Csörgő and Shao[2] studied almost sure path behaviour for {Y (t), t ≥ 0} based on a general

result for Fernique type inequality[1] and the well-known Borell inequality. In particular,

they established moduli of continuity for this kind of processes. As to large increments,

the condition that σ(p, h)/hα is quasi-increasing for some α > 0 is required. But for some

Gaussian processes this condition is not satisfied. For example, σ(p, h) is bounded for the

Ornstein-Uhlenbeck processes. The aim of this paper is to establish the large increment

results for {Y (t), t ≥ 0} with bounded σ(p, h).

Let {X(t), t ≥ 0} be a stationary Gaussian process with EX(t) = 0 and stationary

increment σ2(h) = E(X(t+h)−X(t))2. In [3], we investigated its large increment properties.

Suppose that σ(h) is non-decreasing and

EX(h)X(0) → 0, as h → ∞,
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and ∫ ∞

1

σ(e−x2

) dx < ∞.

Let aT be a function of T with 0 < aT ≤ T and aT → ∞ as T → ∞. Suppose that

aT = o(T ϵ) for any ϵ > 0 as T → ∞. Then

lim
T→∞

sup
0≤t≤T−aT

sup
0≤s≤aT

|X(t+ s)−X(t)|
2σ0(log T )1/2

= 1 a.s.,

lim
t→∞

sup
0≤t≤T−aT

|X(t+ aT )−X(t)|
2σ0(log T )1/2

= 1 a.s.,

lim sup
T→∞

|X(T + aT )−X(T )|
2σ0(log T )1/2

= 1 a.s.,

where σ2
0 = EX2(0).

We now establish the similar result for lp-valued Gaussian process {Y (t), t ≥ 0}. The
above condition for {X(t), t ≥ 0} will be a special case of our theorem, and besides, the

condition aT = o(T ϵ) for any ϵ > 0 as T → ∞ can be relaxed.

§2. A Fernique Type Inequality

In order to prove our main result, we give a version of the Fernique type inequality of [1].

Lemma 2.1. Let B be a seperable Banach space with norm ∥.∥ and let {Γ(t), t ≥ 1} be

a stochastic process with values in B. Let P be the probability measure generated by Γ(·).
Assume that Γ(·) is P -almost surely continuous with respect to the norm and that for any

t ≥ 0, h ≥ 0, 0 < x∗ ≤ x there exist non-negative monotone non-decreasing functions σ1(h)

and σ2(h) such that

P{∥Γ(t+ h)− Γ(t)∥ ≥ xσ1(h) + σ2(h)} ≤ K exp(−γxβ) (2.1)

with some K, γ, β > 0. Then

P{ sup
0≤t≤T

sup
0≤s≤h

∥Γ(t+ s)− Γ(t)∥ ≥ x(σ1(h+ d(k)−1h) (2.2)

+ σ1(h, k)) + σ∗
1(h, k) + σ2(h+ d(k)−1h) + σ2(h, k)}

≤ 4K(
T

h
+ 1)d(k)2 exp (−γxβ)

for any T ≥ 0, 0 ≤ h ≤ T, x ≥ x∗ and k > 0, where

d(k) = 22
2k

,

σ1(h, k) = 22+
1
β α−1

∫ ∞

2k+1−α

σ1(h2
−2y )

y
dy,

σ∗
1(h, k) = 2(

2

γ
)

1
β (1− 2−

1
β 2k+1(1−2−α))−1

∫ ∞

2
1
β

2k+1−α
σ1(h2

−yβ

)dy,

σ2(h, k) = 4α−1

∫ ∞

2k+1−α

σ2(h2
−2y )

y
dy

for any given 0 < α < 1.

Proof. Following the proof of Lemma 2.1 in [1], for any positive real number t put

tj = [td(j)/h]/(d(j)/h).
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We have

∥Γ(t+ s)− Γ(t)∥ ≤ ∥Γ((t+ s)k)− Γ(tk)∥+
∞∑
j=0

∥Γ((t+ s)k+j+1)− Γ((t+ s)k+j)∥

+
∞∑
j=0

∥Γ(tk+j+1)− Γ(tk+j)∥ a.s.,

where the a.s. continuity of Γ(·) is used. Since

sup
0≤t≤T

sup
0≤s≤h

|(t+ s)k − tk| ≤ h+ d(k)−1h,

sup
0≤t≤T

sup
0≤s≤h

|(t+ s)k+j+1 − (t+ s)k+j | ≤ hd(k + j + 1)−1,

we obtain from (2.1) for any x > x∗ and xj > x∗,

P
{

sup
0≤t≤T

sup
0≤s≤h

∥Γ((t+ s)k)− Γ(tk)∥

≥ xσ1(h+ d(k)−1h) + σ2(h+ d(k)−1h)
}

≤ 2Kd(k)2
(T
h
+ 1

)
exp(−γxβ),

P
{

sup
0≤t≤T

sup
0≤s≤h

∥Γ((t+ s)k+j+1)− Γ((t+ s)k+j)∥

≥ xjσ1(hd(k + j + 1)−1) + σ2(hd(k + j + 1)−1)
}

≤ 2Kd(k + j + 1)
(T
h
+ 1

)
exp(−γxβ

j )

as well as

P{ sup
0≤t≤T

sup
0≤s≤h

∥Γ(tk+j+1)− Γ(tk+j)∥

≥ xjσ1(hd(k + j + 1)−1) + σ2(hd(k + j + 1)−1)}

≤ 2Kd(k + j + 1)(
T

h
+ 1) exp(−γxβ

j ).

Now put

γxβ
j = γxβ + 22

k+j+1

.

Then
∞∑
j=0

d(k + j + 1) exp(−γxβ
j ) =

∞∑
j=0

22
2k+j+1

exp(−22
k+j+1

) exp(−γxβ)

≤ exp(−γxβ)

and

2

∞∑
j=0

xjσ1(hd(k + j + 1)−1)

≤ 21+
1
β x

∞∑
j=0

σ1(hd(k + j + 1)−1) + 2(
2

γ
)

1
β

∞∑
j=0

2
1
β 2k+j+1

σ1(hd(k + j + 1)−1)
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≤ 21+
1
β α−1x

∞∑
j=0

∫ 2k+j+1

2k+j+1−α

σ1(h2
−2y )

y
dy/ln2

+ 2(
2

γ
)

1
β (1− 2−

1
β 2k+1(1−2−α))−1

∞∑
j=0

∫ 2k+j+1

2k+j+1−α

σ1(h2
−2y ) d2

1
β y

≤ 22+
1
β α−1x

∫ ∞

2k+1−α

σ1(h2
−2y )

y
dy

+ 2(
2

γ
)

1
β (1− 2−

1
β 2k+1(1−2−α)

)−1

∫ ∞

2
1
β

2k+1−α
σ1(h2

−yβ

) dy

as well as

2

∞∑
j=0

σ2(hd(k + j + 1)−1) ≤ 4α−1

∫ ∞

2k+j−α

σ2(h2
−2y )

y
dy.

Combining all the above inequalities yields (2.2).

Remark 2.1. From the proof of Lemma 2.1, it is easy to see that (2.1) implies

P{ sup
0≤s≤h

∥Γ(T + s)− Γ(T )∥ ≥ x(σ1(h+ d(k)−1h)

+ σ1(h, k)) + σ∗
1(h, k) + σ2(h+ d(k)−1h) + σ2(h, k)}

≤ 4Kd(k)exp(−γxβ) (2.2’)

for any T ≥ 0, h ≥ 0, x ≥ x∗ and k > 0.

Let

{Y (t), t ≥ 0} = {Xk(t), t ≥ 0}∞k=1

be defined as in the beginning of Section 1. Furthermore put

σ∗(h) = max
k≥1

σk(h),

σ̃(p, h) =

{
σ( 2p

2−p , h), if 1 ≤ p < 2,

σ∗(h), if p ≥ 2.

δpp = E|N(0, 1)|p.

For the lp-valued process Y (·), (2.1) has been established by Lemma 3.2 of [2].

Lemma 2.2. With p ≥ 1, we have

P{∥Y (t+ h)− Y (t)∥lp ≥ xσ̃(p, h) + δpσ(p, h)} ≤ 2 exp(−x2/2)

for any t, x, h ≥ 0.

§3. General Results for Large Increments

A function f(x) on (a, b) will be called quasi-increasing, if there exists c > 0 such that

f(x) ≤ cf(y) for any a < x < y < b. In this paper, log means logarithm with base 2.

Theorem 3.1. Let Y (·) be defined as above. let aT be a positive continuous quasi-

increasing function of T with aT → ∞ as T → ∞. Assume that

σ̃(p, T ) → σ̃p < ∞ and σ(p, T ) = o
((

log
T

aT

)1/2)
as T → ∞, (3.1)
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and ∫ ∞

1

σ̃(p, 2−x2

) dx < ∞,

∫ ∞

1

σ(p, 2−2x)/x dx < ∞. (3.2)

Assume that for any δ > 0,

aT ≤ T 1−(log T )−1/2+δ

(3.3)

and there is a0 > 0 such that for any a ≥ a0,

max
k≥1

E(Xk(ia)−Xk((i− 1)a))(Xk(ja)−Xk((j − 1)a)) ≤ 0 (3.4)

for every j > i ≥ 1. Then we have

lim
T→∞

sup
0≤t≤T−aT

sup
0≤s≤aT

∥Y (t+ s)− Y (t)∥lp
σ̃p(2 log(

T
aT

))1/2
= 1 a.s., (3.5)

lim
T→∞

sup
0≤t≤T

∥Y (t+ aT )− Y (t)∥lp
σ̃p(2 log(

T
aT

))1/2
= 1 a.s. (3.6)

and

lim sup
T→∞

∥Y (T + aT )− Y (T )∥lp
σ̃p(2 log(

T
aT

))1/2
= 1 a.s. (3.7)

If conditions (3.3) and (3.4) are replaced by

aT ≤ T 1−δ for some 0 < δ < 1 (3.3’)

and for every j > i ≥ 1,

lim sup
a→∞

max
k≥1

E(Xk(ia)−Xk((i− 1)a))(Xk(ja)−Xk((j − 1)a)) ≤ 0 (3.4’)

respectively, (3.5) and (3.6) remain true.

Proof. Note that condition (3.3) implies

log(T/aT )

log log T
→ ∞ as T → ∞. (3.8)

At first we prove

lim sup
T→∞

sup
0≤t≤T−aT

sup
0≤s≤aT

∥Y (t+ s)− Y (t)∥lp
σ̃p(2 log(T/aT ))1/2

≤ 1 a.s. (3.9)

Lemma 2.2 implies that (2.1) in Lemma 2.1 holds with K = 2, γ = 1
2 , β = 2, σ1(h) = σ̃(p, h)

and σ2(h) = δpσ(p, h). For given δ > 0 in (3.3), let 0 < α < 1 in (2.2) and δ1 > 1
2 − δ such

that

α1 := α− log(1− δ1) < 1.

Let

ϵT = (log aT )
−δ1 , k = log log log aT

ϵT

in (2.2) and k1 = log log log aT . Then d(k) = aϵTT and

k + 1− α = log
[
(log log aT )

(
1 +

log ϵT
log log aT

)]
+ 1− α

= log log log aT + log(1− δ1) + 1− α

≥ k1 + 1− α1.
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Hence using condition (3.2) we have for large T

σ1(aT , k) = 25/2α−1

∫ ∞

2k+1−α

σ1(aT 2
−2x)

x
dx

≤ 25/2α−1

∫ ∞

1

σ1(2
−22

k1 (21−α1−1)x

)

x
dx

≤ ϵ

2
σ̃p

for any given ϵ > 0 provided T is large enough. Similarly for large T

σ∗
1(aT , k) = 4(1− 2−2k(1−2−α))−1

∫ ∞

22k−α
σ1(aT 2

−x2

)dx ≤ ϵ,

σ2(aT , k) = 4α−1

∫ ∞

2k+1−α

σ2(aT 2
−2x)

x
dx ≤ ϵ.

Therefore, by the fact (3.8), condition (3.1) and Lemma 2.1, it follows that for any given

c > 0 and any T large enough

P
{

sup
0≤t≤T

sup
0≤s≤caT

||Y (t+ s)− Y (t)||lp
σ̃p(2 log (T/caT ))

1/2
≥ 1 + 5ϵ

}
≤ P

{
sup

0≤t≤T
sup

0≤s≤caT

∥Y (t+ s)− Y (t)∥lp

≥ (1 + ϵ)
(
2
[
log

T

caT
+ log log T

])1/2

(σ1(caT (1 + d(k)−1)) + σ1(caT , k))

+ σ∗
1(caT , k) + σ2(caT (1 + d(k)−1)) + σ2(caT , k)

}
≤ 9

T

caT
aT

2ϵT exp
{
− (1 + ϵ)2

(
log

T

caT
+ log log T

)}
≤ 9c2ϵT−2ϵaT

2(ϵ+ϵT )(log T )
−(1+2ϵ)

≤ 9c2ϵ(log T )
−(1+2ϵ)

(3.10)

since aT
ϵ+ϵT ≤ T ϵ−ϵ(log T )−

1
2
+δ+(log T )−δ1 ≤ T ϵ for large T if (3.3) holds. Let Tj = θj for

some θ > 1. Then by the Borel-Cantelli Lemma we have

lim sup
j→∞

sup
0≤t≤Tj

sup
0≤s≤caTj

||Y (t+ s)− Y (t)||lp
σ̃p(2 log(Tj/aTj ))

1/2
≤ 1 + 5ϵ a.s. (3.11)

Noting that aT is quasi-increasing we obtain (3.9) from (3.11). By recalling (3.8) the inverse

inequality holds from Theorem 3.3 of [2]. So now (3.5) is proved.

In order to show (3.6), it suffices to prove

lim inf
T→∞

sup
0≤t≤T

∥Y (t+ aT )− Y (t)∥lp
σ̃p(2 log(T/aT ))1/2

≥ 1 a.s. (3.12)

Assume that conditions (3.3) and (3.4) are satisfied. Let

Bnk = {T : kh ≤ aT < (k + 1)h, n− 1 ≤ T < n}

for some h > 0,

a′n = inf{aT : n− 1 ≤ T < n}, a∗n = sup{aT : n− 1 ≤ T < n}.
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Then

lim inf
T→∞

sup
0≤t≤T

∥Y (t+ aT )− Y (t)∥lp
σ̃p(2 log(T/aT ))

1/2

≥ lim inf
n→∞

min
a′
n/h−1≤k≤a∗

n/h
inf

T∈Bnk

sup
0≤t≤T

∥Y (t+ aT )− Y (t)∥lp
σ̃p(2 log(T/aT ))

1/2

≥ lim inf
n→∞

min
a′
n/h−1≤k≤a∗

n/h
sup

0≤t≤n−1

∥Y (t+ kh)− Y (t)∥lp
σ̃p(2 log(n/kh))

1/2

− lim sup
n→∞

sup
0≤t≤n

sup
0≤s≤h

∥Y (t+ s)− Y (t)∥lp
σ̃p(2 log((n− 1)/a∗n))

1/2

=: L1 − L2. (3.13)

Note that σ̃(p, h)/σ̃p → 0 as h → 0 and a∗n ≤ can since aT is quasi-increasing. Then by

imitating the proof of (3.9), we have

L2 ≤ ϵ a.s. (3.14)

provided h is small enough.

Consider L1. Assume 1 ≤ p < 2. We have (cf. (3.2) of [2])

∥Y ((j + 1)kh)− Y (jkh)∥lp ≥

∞∑
v=1

σv(kh)
2(p−1)
2−p (Xv((j + 1)kh)−Xv(jkh))( ∞∑
v=1

σv(kh)
2p

2−p

) p−1
p

.

Let

ξ(j, k) =

∞∑
v=1

σv(kh)
2(p−1)
2−p (Xv((j + 1)kh)−Xv(jkh))

σ̃(p, kh)
( ∞∑

v=1
σv(kh)

2p
2−p

) p−1
p

=

∞∑
v=1

σv(kh)
2(p−1)
2−p (Xv((j + 1)kh)−Xv(jkh))( ∞∑

v=1
σv(kh)

2p
2−p

)1/2
.

Then, using condition (3.4), we have for j > i ≥ 1

Eξ(i, k)ξ(j, k) =
( ∞∑

v=1

σv(kh)
2p

2−p

)−1 ∞∑
v=1

σv(kh)
4(p−1)
2−p

· E(Xv((i+ 1)kh)−Xv(ikh))(Xv((j + 1)kh)−Xv(jkh))
(3.15)

provided k is large enough. Therefore, by the Slepian inequality, recalling the definition of

Bnk and noting condition (3.3) and aT to be quasi-increasing, we obtain that there exists

C > 0 such that for large n

P
{

min
a′
n/h−1≤k≤a∗

n/h
max

0≤j≤n/2kh
ξ(j, k) ≤ (1− ϵ)(2 log

n

kh
)
1/2}

≤
[a∗

n/h]∑
k=[a′

n/h]−1

P
{

max
0≤j≤n/2kh

ξ(j, k) ≤ (1− ϵ)
(
2 log

n

kh

)1/2}
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≤
[a∗

n/h]∑
k=[a′

n/h]−1

(
1− exp

{
− (1− ϵ) log

n

kh

})n/2kh

≤ Can exp
{
− C

( n

an

)ϵ}
≤ Cn−2, (3.16)

which implies

L1 ≥ 1− ϵ a.s. (3.17)

Assume p ≥ 2. Take Nk such that σ2
Nk

(kh) = σ∗(kh). Clearly

∥Y ((j + 1)kh)− Y (jkh)∥lp
σ̃p

≥ (1− ϵ)
XNk

((j + 1)kh)−XNk
(jkh)

σNk
(kh)

for large k. Along the lines of the proof for the case of 1 ≤ p < 2, we have (3.17) as well.

Now (3.12) is proved and hence we complete the proof of (3.5) and (3.6) under conditions

(3.3) and (3.4).

When conditions (3.3) and (3.4) are replaced by (3.3’) and (3.4’) respectively, the proof

of (3.17) is similar. We consider only the case of 1 ≤ p < 2. Let ϵ′ = δϵ2

4(3−δ) . Similarly to

(3.15), we have for k large enough

Eξ(i, k)ξ(j, k) ≤ ϵ
′
. (3.15’)

Let {ηi, i ≥ 1} and τ be independent normal random variables with means zero and

Eηi
2 = 1− ϵ

′
and Eτ2 = ϵ

′
. Define ξi = ηi + τ . Then Eξi

2 = 1 and

E(Xv((i+ 1)kh)−Xv(ikh))(Xv((j + 1)kh)−Xv(jkh))

σ2
v(kh)

≤ Eξiξj , j − i ≥ 1

for large k. Therefore (recalling (3.16)) we have

P
{

min
a′
n/h−1≤k≤a∗

n/h
max

0≤j≤n/2kh
ξ(j, k) ≤ (1− ϵ)

(
2 log

n

kh

)1/2}
≤

[a∗
n/h]∑

k=[a′
n/h]−1

P
{

max
0≤j≤n/2kh

ξj < (1− ϵ)
(
2 log

n

kh

)1/2}

≤
[a∗

n/h]∑
k=[a′

n/h]−1

(
P
{

max
0≤j≤n/2kh

ηj < (1− ϵ

2
)
(
2 log

n

kh

)1/2}
+ P

{
τ ≥ ϵ

2

(
2 log

n

kh

)1/2})

≤
[a∗

n/h]∑
k=[a′

n/h]−1

((
1− exp

{
−
(
1− ϵ

2

)
log

n

kh

}) n
2kh

+ exp
{
− ϵ2

4ϵ′
log

n

kh

})

≤ Can

(
e−C(n/an)

ϵ/2

+
( n

an

)−ϵ2/4ϵ
′)

≤ C(ne−Cnδϵ/2

+ n−2),

which implies (3.17). The proof of (3.6) is complete.

Finally, we prove (3.7). It is enough to show

lim sup
T→∞

||Y (T + aT )− Y (T )||lp
σ̃p(2 log(T/aT ))1/2

≥ 1 a.s. (3.18)
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For given ϵ
′′
> 0, take a0 large enough such that

max
k≥1

E(Xk(ia0)−Xk((i− 1)a0))(Xk(ja0)−Xk((j − 1)a0))

σ2
k(a0)

≤ ϵ
′′
, j > i ≥ 1. (3.19)

Put a′T = a0[aT /a0]. Then

lim sup
T→∞

∥Y (T + aT )− Y (T )∥lp
σ̃p(2 log(T/aT ))1/2

≥ lim sup
T→∞

∥Y (T + a′T )− Y (T )∥lp
σ̃p(2 log(T/a′T ))

1/2

− lim sup
T→∞

sup
0≤s≤a0

∥Y (T + s)− Y (T )∥lp
σ̃p(2 log(T/aT ))1/2

=: I1 − I2. (3.20)

Noting Remark 2.1, along the lines of the proof of (3.9), we have

I2 ≤ ϵ a.s. (3.21)

for any ϵ > 0. Consider I1. Let t0 = 1. Define tk by tk = tk−1 + a′tk−1
, k = 1, 2, · · · . Then

||Y (tk + a′tk)− Y (tk)||lp
σ̃(p, a′tk)

≥

∞∑
v=1

σv(atk)
2(p−1)
2−p (Xv(tk + a′tk)−Xv(tk))

(
∞∑
v=1

σv(a′tk)
2p

2−p )1/2
.

(3.19) implies

Eηiηj ≤ ϵ
′′
, for j > i ≥ 1.

Put Dn = {k : 1
2n ≤ tk ≤ n − 1}. Obviously, by condition (3.3), for k ∈ Dn, atk = o(n) as

n → ∞. Hence ∑
k∈Dn

atk ≥
∑
k∈Dn

(tk − tk−1)− max
k∈Dn

atk ≥ 1

3
n

for large n. Let {ηi}, {ξi} and τ be defined as above with ϵ
′′
instead of ϵ

′
. By the Slepian

lemma we obtain that for large n, n− 1 < T ≤ n,

P
{

sup
T/2≤t≤T

||Y (t+ a′t)− Y (t)||lp
σ̃p(2 log(t/at))1/2

≤ 1− ϵ
}

≤ P
{
max
k∈Dn

ξk/(2 log(tk/atk))
1/2 ≤ 1− ϵ

2

}
≤

∏
k∈Dn

P
{
ηk ≤

(
1− ϵ

4

)
(2 log(tk/atk))

1/2
}
+ P{τ ≥ ϵ

4
(2 log(tk/atk))

1/2}

≤
∏

k∈Dn

(
1− exp

{
−
(
1− ϵ

4

)
log(tk/atk)

})
+ exp

{ −ϵ2

16ϵ′′
log(tk/atk)

}
≤ exp

{
−

∑
k∈Dn

(atk/tk)
1−ϵ/4

}
+ (tk/atk)

−ϵ2/16ϵ
′′

≤ exp
{
− 1

3
n(1− ϵ

4 )(logn)−1/2+δ
}
+ n−(ϵ2/16ϵ

′′
)(logn)−1/2+δ

→ 0

as n → ∞, which implies

I1 ≥ 1− ϵ a.s. (3.22)

Inserting (3.21) and (3.22) into (3.20) yields (3.18), and hence (3.7) is proved. This com-

pletes the proof of Theorem 3.1.
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§4. Fractional Ornstein-Uhlenbeck Processes

Let {Y (t), t ≥ 0} = {Xk(t), t ≥ 0}∞k=1 be a sequence of independent fractional Ornstein-

Uhlenbeck processes of order γ with coefficients γk and λk, where 0 < γ < 1, γk ≥ 0, λk > 0,

i.e., the Xk( · ) are centered stationary Gaussian processes with

EXk(t)Xk(s) =
γk
2λk

(e−2γλk(t−s) + e2γλk(s−t) − |eλk(t−s) − eλk(s−t)|2γ) (4.1)

for any t, s ≥ 0. Hence

σ2
k(h) = E(Xk(t+ h)−Xk(t))

2

=
γk
λk

(2 + |eλkh − e−λkh|2γ − e2γλkh − e−2γλkh). (4.2)

Csörgő and shao[1] studied the moduli of continuity and the laws of the iterated logarithm

for {Y (t), t ≥ 0} as an lp-valued process , p ≥ 1. By the elementary calculation, it is easy to

verify that condition (3.4) is satisfied from (4.1). Therefore, as a consequence of Theorem

3.1, we have the following large increment result.

Theorem 4.1. Let Y (·) be defined as above. Assume that conditions (3.1) and (3.2) are

satisfied. Let aT be defined as in Theorem 3.1, and assume that condition (3.3) is satisfied.

Then (3.5), (3.6) and (3.7) hold true.
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[1] Csáki, E., Csörgő, M. & Shao, Q. M., Fernique type inequalities and moduli of continuity for l2-valued

Ornstein-Uhlenbeck processes, Ann. Inst. Henri Poincaré Probabilités et Statistiques, 28(1992), 479-517.
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