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Abstract

This paper studies first order semilinear hyperbolic systems in n (n ≥ 2) space dimensions.
Under the hypothesis that the system satisfies so called ‘null condition’, the local well-posedness

for its Cauchy problem with initial data in H
n−1
2 is proved.
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§1. Introduction

As is well known, the proof of the local existence theorem for nonlinear hyperbolic systems

in Rn+1, with n ≥ 2, rests entirely on energy estimates and Sobolev inequalities. This

requires that the initial conditions have to belong to the Sobolev spacesHs(Rn) for relatively

large s. Thus, for the following Cauchy problem of the first order semilinear hyperbolic

systems

ut +
n∑

i=1

Aiuxi = Q(u), u = (u1, · · · , um), (1.1)

t = 0 : u = u0(x), x ∈ Rn, (1.2)

the minimum amount of regularity needed is

u0 ∈ Hs(Rn) for s >
n

2
. (1.3)

However, this condition is not always optimal. In this paper, we shall prove the local

well-posedness of the Cauchy problem (1.1), (1.2) for s = n−1
2 in (1.3) under the hypothesis

that the system of equations satisfies the so called ‘null condition’.

Here we assume that Ai are constant matrices and Q(u) = (Q1(u), · · · , Qm(u)) with each

Qi(u) quadratic in u, that is,

Qi(u) =
∑
jk

Γi
jku

juk (1.4)

in which Γi
jk are constants.
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Our work is motivated by the recent work of Klainerman and Machedon[3] on the Cauchy

problem for the systems of semilinear wave equations:

�ϕ = Q(ϕ,Dϕ), (1.5)

t = 0 : ϕ = f, ϕt = g, (1.6)

where � = ∂2
t − △ is the wave operator, D = (∂t, ∂x1 , · · · , ∂xn) and ϕ = (ϕ1, · · · , ϕn).

They showed in three space dimensions that if Q is quadratic in Dϕ and satisfies the ‘null

condition’, then (1.1)(1.2) is locally well-posed for

f ∈ H
n+1
2 , g ∈ H

n−1
2 . (1.3)

Later, Beals and Bezard[1] proved that the same conclusion holds in n (n ≥ 4) space dimen-

sions even without the ‘null condition’. However, In three space dimensions, Lindblad[4] has

found examples of nonlinear scalar wave equations of type (1.5) which do not satisfy the

null condition such that the initial value problem is ill posed for data f ∈ H2, g ∈ H1.

In order to state precisely our above mentioned results, we need to make some assump-

tions.

[H1]: A(ξ) =
n∑

i=1

Aiξi is diagonalizable, more precisely, there exist invertible matrix

R(ξ) = (Rij(ξ))m×m and diagonal matrix

Λ(ξ) = diag[λ1(ξ), · · ·λm(ξ)] (1.7)

such that

R−1(ξ)A(ξ)R(ξ) = Λ(ξ) (1.8)

where Rij(ξ)(i, j = 1, · · · ,m) and λi(ξ)(i = 1, · · · ,m) are homogeneous functions of ξ of

degree 0 and 1 repectively and

λi(ξ), Rij(ξ) ∈ C∞(Sn−1) (1.9)

with Sn−1 denoting the unit sphere in Rn.

The fact that

A(ξ) = −A(−ξ) (1.10,)

implies that λ(ξ) is the eigenvalue of A(ξ) if and only if −λ(−ξ) is the eigenvalue of A(ξ).

Thus, we make the following assumptions.

[H2] either

λi(ξ) ≡ λj(ξ) (1.11)

or

λi(ξ) ≡ −λj(−ξ) (1.12)

or the following conditions are satisfied:

λi(ξ)− λj(ξ) ̸= 0, ∀ξ ̸= 0 (1.13)

and

λi(ξ) + λj(−ξ) ̸= 0, ∀ξ ̸= 0 (1.14)

and

ζ · (∇λi(ξ)−∇λj(η)) ̸= 0 (1.15)
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for all ζ, η, ξ ̸= 0 such that

ζ · ξ = 0, ζ · η ̸= 0 (1.16)

in which ξ · η denotes the iner product of ξ and η.

We remark that (1.13)-(1.16) is satisfied, for instance, by λi(ξ) = ±|ξ|, λj(ξ) = 2|ξ|.
If λi(ξ) is a homogeneous function of degree 1, then∑

i

ξi∂iλ(ξ) ≡ λ(ξ), (1.17)

so ∑
i,j

ξi∂i∂jλ(ξ) ≡ 0 (j = 1, · · · , n). (1.18)

Thus, the matrix

(∂i∂jλ(ξ))n×n

has a zero eigenvalue. So we assume

[H3]

rank(λξiξj ) = n− 1 (1.19)

and moreover the n − 1 nonzero eigenvalues are all positive (or all negative) for all λ =

λi (i = 1, · · · ,m).

We define the following concept.

Definition 1.1. The system (1.1) satisfies ‘null condition’ if any plane wave solution

u = u(τt +
n∑

i=1

ξixi) (u(0) = 0 and τ, ξi are constants such that τ2 + |ξ|2 ̸= 0) to the

linearized system

ut +
n∑

i=1

Aiuxi = 0

is always a solution to the original system (1.1).

We then assume

[H4] (1.1) satisfies ‘null condition’.

The null condition will be analysed in Section 2.

Our main result is that (1.1)(1.2) is locally well-posed for

u0 ∈ H
n−1
2 ,

provided that [H1]-[H4] are satisfied in n = 2, 3 space dimensions or [H1]-[H3] are satisfied

in n (n ≥ 4) space dimensions.

We remark that if only [H1]-[H3] are satisfied in n = 2 or 3 space dimensions, then

(1.1)-(1.2) is locally well-posed for

u0 ∈ Hs, s >
3

4
if n = 2, (1.20)

u0 ∈ Hs, s > 1 if n = 3. (1.21)

This will be proved in Appendix (see [6]).

As in [3], the proof of the above metioned results were based on establishing new space-

time estimates for the null bilinear forms Qi(u). Let us state these estimates as follows
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Theorem 1.1. Under assumptions [H1]-[H4], suppose that v, w satisfy respectively

vt +

n∑
i=1

Aivxi = F, (1.22)

t = 0 : v = v0(x), x ∈ Rn (1.23)

and

wt +
n∑

i=1

Aiwxi = G, (1.24)

t = 0 : w = w0(x), x ∈ Rn (1.25)

in which n = 2, 3. Then

∥Qi(v, w)∥
H

n−1
2 (Rn+1)

≤ C
(
∥v0∥

H
n−1
2

+

∫ +∞

0

∥F (t, ·)∥
H

n−1
2

dt
)

·
(
∥w0∥

H
n−1
2

+

∫ +∞

0

∥G(t, ·)∥
H

n−1
2

dt
)
, (1.26)

where

Qi(v, w) =

m∑
j,k=1

Γi
jkv

jwk. (1.27)

Theorem 1.2. Under assumptions [H1]-[H3], suppose that v, w satisfy respectively (1.22),

(1.23) and (1.24), (1.25), in which n ≥ 4. Then (1.26) holds.

§2. Null Condition

For the simplicity of the exposition we will assume that the system is strictly hyperbolic.

If the system is nonstrictly hyperbolic with constant multiplicity, the similar analysis applies.

By strict hyperbolicity, the plane wave solution of the linearized system

ut +
n∑

i=1

Aiuxi
= 0

is of the form

ui = Rij(ξ)wj

(
− λj(ξ)t+

n∑
i=1

ξixi

)
, i = 1, · · · ,m

for some fixed j. Therefore, system (1.1) satisfies null condition if and only if∑
j,k

Γi
jkRjl(ξ)Rkl(ξ) ≡ 0, ∀ξ, (2.1)

for all j, l = 1, · · · ,m. Noticing (1.10), it follows from strict hyperbolicity that there exists

a permutation σ of the set {1, · · · ,m} such that

λi(ξ) = −λσ(i)(−ξ), (2.2)

Rij(ξ) = Ri,σ(j)(−ξ). (2.3)

Therefore, we conclude

λi(ξ) + λj(−ξ) ≥ c0|ξ|, ∀ξ ̸= 0, j ̸= σ(i), (2.4)
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j,k

Γi
jkRjl(ξ)Rkσ(l)(−ξ) ≡ 0, ∀ξ, (2.5)

for all i, l = 1, · · · ,m. We remark that (2.4) is related to the condition on the wave front

set of two distributions in order to define a product. (See [2, p.297, Theorem 8.5.3]).

§3. Preliminaries

Lemma 3.1. Let λ(ξ) be a smooth homogeneous function of degree 1 that verifies [H3].

Then we have

|ηi∂iλ(ξ)− ηi∂iλ(η)| ≥ c0|
ξ

|ξ|
− η

|η|
|2|η|, (3.1)

where c0 is a positive constant.

Proof. Without loss of generality, we assume that the nonzero eigenvalues of (∂i∂jλ(ξ))

are all positive. Let ϑ = η
|η| , ω = ξ

|ξ| . When ϑ = −ω, we have

ϑi∂iλ(ξ)− ϑi∂iλ(η) = λ(ϑ) + λ(−ϑ).

It follows from Jensen’s inequality that

λ(ϑ) + λ(−ϑ) > 2
(
λ
(ϑ− ϑ

2

))
= 0.

Thus, by continuity, there exist an ε sufficiently small such that when

ϑ · ω + 1 ≤ ε, (3.2)

we have

ϑi∂iλ(ξ)− ϑi∂iλ(η) ̸= 0; (3.3)

when

ϑ · ω + 1 ≥ ε, (3.4)

we argue as follows:
n∑

i=1

ϑi∂iλ(ξ)− ϑi∂iλ(η) =
n∑

i=1

(ϑi − ωi)∂iλ(ξ) +
λ(ξ)

|ξ|
− λ(η)

|η|

=

n∑
i=1

(ϑi − ωi)∂iλ(ω) + λ(ω)− λ(ϑ)

=
n∑

i=1

(ϑi − ωi)
(
∂iλ(ω)−

∫ 1

0

∂iλ(sω + (1− s)ϑ)ds
)

=
n∑

i,j=1

(ϑi − ωi)

∫ 1

0

∫ 1

0

(1− s)∂i∂jλ((τ + (1− τ)s)ω

+ (1− τ)(1− s)ϑ)dsdτ(ϑj − ωj). (3.5)

Noticing (3.4), we have

|(1− a)ω + aϑ|2 = (1− a)2 + a2 + 2a(1− a)ω · ϑ
= (1− 2a)2 + 2a(1− a)(1 + ω · ϑ)
≥ (1− 2a)2 + 2a(1− a)ε > 0, (3.6)
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where a = (1− τ)(1− s). So if

| ξ
|ξ|

− η

|η|
| ≥ ϵ (3.7)

for some positive constant ϵ, then (3.1) holds with some constant c0 = c0(ϵ).

If

| ξ
|ξ|

− η

|η|
| = δ ≤ ϵ (3.8)

and ϵ is sufficiently small, then
n∑

i=1

ϑi∂iλ(ξ)− ϑi∂iλ(η) ≥ c{|ϑ− ω|2 − ((ϑ− ω)r)2} (3.9)

where r is an eigenvector of∫ 1

0

∫ 1

0

(1− s)∂i∂jλ((τ + (1− τ)s)ω − (1− τ)(1− s)ϑ)dsdτ

corresponding to the smallest eigenvalue. Noticing (3.8) and the fact that∫ 1

0

∫ 1

0

(1− s)∂i∂jλ((τ + (1− τ)s)ω − (1− τ)(1− s)ϑ)dsdτ = ∂i∂jλ(ω) +O(δ),

we get

r = ω +O(δ).

Therefore

(ϑ− ω)r = (ϑ− ω)ω +O(δ2),
1

2
|ϑ+ ω|2 +O(δ2) = O(δ2).

Thus (3.1) follows from (3.5).

Replacing η by −η, we get

Lemma 3.2. Let λ(ξ) be a smooth homogeneous function of degree 1 that verifies [H3].

Then we have

|ηi∂iλ(ξ)− ηi∂iλ(−η)| ≥ c0

∣∣∣ ξ|ξ| − η

|η|

∣∣∣2|η|, (3.10)

where c0 is a positive constant.

Lemma 3.3. Let n ≥ 2 and |ω| = 1. Then∫
Sn−1

dω

|ω + ω|l
< +∞, (3.11)

where l < n− 1.

Proof. By rotational invariance, we have∫
Sn−1

dω

|ω + ω|l
=

∫
Sn−1

dω

|e1 + ω|l
=

∫
Sn−1

dω

(2 + 2ω1)
l
2

,

where e1 = (1, 0, · · · , 0). Thus, it is enough to prove∫
ω1<− 1

2

dω

(1 + ω1)
l
2

< +∞. (3.12)

Noticing ∫
ω1<− 1

2

dω

(1 + ω1)
l
2

= C

∫ π
6

0

sinn−2 θ

(1 + cos θ)
l
2

dθ = C

∫ π
6

0

sinn−2 θ

sinl θ
2

dθ < +∞,

we have (3.11).
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§4. Estimate of the ‘Null Forms’

Now we shall prove Theorem 1.1 and Theorem 1.2.

Let

Ŵ (t, ξ) = R−1(ξ)û(t, ξ). (4.1)

Then

û(t, ξ) = R(ξ)Ŵ (t, ξ). (4.2)

So

Q(u)(t, x) =
∑
jk

Γjku
j(t, x)uk(t, x) =

∑
jk

∫∫
eix(ξ+η)Γjkû

j(t, ξ)ûk(t, η)dξdη

=
∑
jk

qjk(wj , wk), (4.3)

where qjk is of the form

q(f, g) =

∫∫
eix(ξ+η)q(ξ, η)f̂(ξ)ĝ(η)dξdη (4.4)

with its symbol

qjk(ξ, η) =
∑
lm

Γlmrlj(ξ)rmk(η). (4.5)

So the null condition implies

qjj(ξ, ξ) ≡ 0, ∀ξ ̸= 0, (4.6)

and

qjσ(j)(ξ,−ξ) ≡ 0, ∀ξ ̸= 0. (4.7)

Therefore, Theorem 1.1 and Theorem 1.2 follow from the following three theorems.

Theorem 4.1. Let Fλ be the Fourier multiplier defined by

ˆFλf(t, ξ) = eiλ(ξ)tf̂(ξ), (4.8)

where λ verifies [H3]. Suppose that q(·, ·) is a bilinear form defined by (4.4), and moreover

q(ξ, ξ) ≡ 0 if n = 2, 3. (4.9)

Then

∥q(Fλf, Fλg)∥
H

n−1
2 (Rn+1)

≤ C|f |
H

n−1
2 (Rn)

|g|
H

n−1
2 (Rn)

. (4.10)

Proof. It follows from duality that we only have to prove∫∫
|ξ|

n−1
2 q(ξ − η, η)h(λ(ξ − η) + λ(η), ξ)f(ξ − η)g(η)dξdη

≤ C|f |
H

n−1
2 (Rn)

|g|
H

n−1
2 (Rn)

|h|L2(Rn+1), (4.11)

where |ξ − η| ≥ |ξ|
2 in the region of integration. Noticing∫∫

|ξ|
n−1
2 h(λ(ξ − η) + λ(η), ξ)q(ξ − η, η)f(ξ − η)g(η)dξdη

≤ |f |
H

n−1
2 (Rn)

|g|
H

n−1
2 (Rn)

·
(∫

|ξ|n−1|ξ − η|−n+1|η|−n+1q2(ξ − η, η)h2(λ(ξ − η) + λ(η), ξ)dηdξ

) 1
2
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(4.10) follows from Lemma 3.1 and Lemma 3.3 by making a transformation from λ(ξ− η)+

λ(η) to |η| for fixed ξ and η
|η| .

Theorem 4.2. Let Fλ be the Fourier multiplier as in Theorem 4.1 where λ verifies [H3].

Suppose that q(·, ·) is a bilinear form defined by (4.4), and moreover

a(ξ,−ξ) ≡ 0 if n = 2, 3. (4.12)

Then

∥q(Fλf, Fλ∗g)∥
H

n−1
2 (Rn+1)

≤ C|f |
H

n−1
2 (Rn)

|g|
H

n−1
2 (Rn)

, (4.13)

where λ∗(ξ) = −λ(−ξ).

Theorem 4.3. Let Fλ and Fµ be the Fourier multiplier as in Theorem 4.1 where λ, µ

satisfies (1.13)-(1.16). Suppose that q(·, ·) is a bilinear form defined by (4.4). Then

∥q(Fλf, Fµg)∥
H

n−1
2 (Rn+1)

≤ C|f |
H

n−1
2 (Rn)

|g|
H

n−1
2 (Rn)

. (4.14)

Proof. It follows from duality that we only have to prove∫∫
|ξ|

n−1
2 q(ξ − η, η)h(λ(ξ − η) + µ(η), ξ)f(ξ − η)g(η)dξdη

≤ C|f |
H

n−1
2 (Rn)

|g|
H

n−1
2 (Rn)

|h|L2(Rn+1). (4.15)

Without loss of generality, we may assume |ξ−η| ≥ |ξ|
2 in the region of integration. Noticing∫∫

|ξ|
n−1
2 q(ξ − η, η)h(λ(ξ − η) + µ(η), ξ)f(ξ − η)g(η)dξdη

≤ |f |
H

n−1
2 (Rn)

|g|
H

n−1
2 (Rn)

·
(∫

|ξ|n−1|ξ − η|−n+1|η|−n+1q2(ξ − η, η)h2(λ(ξ − η) + µ(η), ξ)dηdξ

) 1
2

,

we only have to prove∫∫
|η|−n+1q2(ξ − η, η)h2(λ(ξ − η) + µ(η), ξ)dηdξ ≤ C∥h∥2L2 . (4.16)

We divide the region of integration into three parts

(I) ξ−η
|ξ−η|

η
|η| ≥ 1− ε,

(II) ξ−η
|ξ−η|

η
|η| ≤ −1 + ε,

(III) −1 + ε ≤ ξ−η
|ξ−η|

η
|η| ≤ 1− ε, where ε is to be determined later.

In the first case, if

ζ

|ζ|
=

η

|η|
,

then
n∑

i=1

−ηi∂iλ(ζ) + ηi∂iµ(η) = |η|(µ( η

|η|
)− λ(

η

|η|
)) ̸= 0.

Thus, it follows that

|η|−1
n∑

i=1

−ηi∂iλ(ζ) + ηi∂iµ(η) ̸= 0

for
ζ

|ζ|
η

|η|
≥ 1− ε



No.2 Zhou, Y. LOCAL EXISTENCE THEOREM FOR HYPERBOLIC SYSTEMS 231

with ε sufficiently small. So for fixed ξ and η
|η| the transformation from λ(ξ − η) + µ(η) to

|η| is nonsingular. Thus, (4.16) follows.
The second case can be dealt with in a similar way.

Now, let us look at the third case. By the compactness of Sn−1 × Sn−1, we only have to

concentrate in a small neighbourhood. So we assume∣∣∣ ξ − η

|ξ − η|
− ζ0

∣∣∣ ≤ δ,
∣∣∣ η|η| − η0

∣∣∣ ≤ δ (4.17)

for some ζ0, η0 ∈ Sn−1 such that 1 − |ζ0 · η0| ≥ ε. By (1.15), (1.16), there exists ζ1 ∈ Sn−1

such that ζ1 ·ζ0 = 0, ζ1 ·η0 ̸= 0 and ζ1 ·(∇λ(ζ0)−∇µ(η0)) ̸= 0. It follows by continuity that

for δ sufficiently small ζ1 · η ≥ c|η| and ζ1 · (∇λ(ξ − η)−∇µ(η)) ̸= 0. So the transformation

from λ(ξ − η) + µ(η) to ζ1 · η for fixed ξ is nonsingular. (4.16) follows from making this

transformation.

§5. Main Results

The main results of this paper are

Theorem 5.1. Under assumptions [H1]-[H4], consider the Cauchy problem (1.1), (1.2)

in n = 2, 3 space dimensions. There exists a positive number T depending only on ∥u0∥
H

n−1
2

and a unique solution u of (1.1), (1.2) defined in [0, T ]×Rn verifying the following conditions

∥Qi(u)∥
H

n−1
2 ([0,T ]×Rn)

< +∞, (5.1)

sup
[0,T ]

∥u(t, ·)∥
H

n−1
2 (Rn)

< +∞. (5.2)

Theorem 5.2. Under assumptions [H1]-[H3], the same conclusions of Theorem 5.1 hold

true in n ≥ 4 space dimensions.

Using Theorem 1.1 and Theorem 1.2, Theorem 5.1 and Theorem 5.2 can be proved in the

same way as in [3].

§6. Appendix: Stichartz’s Inequality

The following estimate is a generalization of an inequality due to Strichartz[7] (see also

[5]).

Theorem 6.1. Suppose that [H3] is satisfied. Let

u = Fλf. (6.1)

Then

|u|Lr
tL

q
x
≤ C|f |Hs(Rn), (6.2)

where 2 ≤ q < ∞ and r = 4q
(n−1)(q−2) and s = n+1

(n−1)r

From Theorem 6.1 and Sobolev embedding theorem, we easily get

Corollary 6.1. Under the assumptions [H1] and [H3], let u be the solution to the Cauchy

problem

ut +

2∑
i=1

Aiuxi = F, (6.3)

t = 0 : u = u0. (6.4)
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Then it holds that

|u|L4([0,T ];L∞(R2)) ≤ CT d
(
|u0|Hs(R2) +

∫ T

0

∥F (τ, ·)∥Hs(R2)dτ
)
, (6.5)

where s > 3
4 and d < s− 3

4

Corollary 6.2. Under the assumptions [H1] and [H3], let u be the solution to the Cauchy

problem

ut +
3∑

i=1

Aiuxi = F, (6.6)

t = 0 : u = u0. (6.7)

Then it holds that

|u|L2([0,T ];L∞(R3)) ≤ CT d
(
|u0|Hs(R3) +

∫ T

0

∥F (τ, ·)∥Hs(R3)dτ
)
, (6.8)

where s > 1 and d < s− 1

Using Corollary 6.1 and Corollary 6.2, it is easy to prove the following (see [6])

Theorem 6.1. Under assumptions [H1]-[H3], consider the Cauchy problem (1.1), (1.2)

in n = 2, 3 space dimensions. There exists a positive number T depending only on ∥u0∥Hs

and a unique solution u of (1.1), (1.2) defined in [0, T ]×Rn verifying the following conditions

sup
[0,T ]

∥u(t, ·)∥Hs(Rn) < +∞,

where s > 3
4 if n = 2, s > 1 if n = 3.
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