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Abstract

This paper deals with the problems on the existence and uniqueness and stability of almost
periodic solutions for functional differential equations with infinite delays. The author obtains
some sufficient conditions which ganrantee the existence and uniqueness and stability of almost
periodic solutions with module containment. The results extend all the results of the paper

[1] and solve the two open problems proposed in [1] under much weaker conditions than that
proposed in [1].
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§1. Introduction

In the paper [1], G. Seifert used Medvedev’s method[2] for some almost periodic (a. p. for

short) systems with infinite time delays to obtain an existence theorem for a.p. solutions,

but he did not obtain the uniqueness and stability for such a.p. solutions. Therefore he

proposed two open problems on uniqueness and stability of such a.p. solutions for further

study in the finality of [1]. In this paper, we study the problems on the existence and

uniqueness and stability of a.p. solutions for such systems. We obtain some sufficient

conditions which garantee the existence and uniqueness and stability of a.p. solutions with

module containment. Our results extend all the results of [1], and solve the two open

problems proposed in [1] under much weaker conditions than that proposed in [1].

§2. Notation, Definition, and Main Results

Let Rn denote the set of real n-vectors, and |x| any convenient norm for x ∈ Rn; also let

R = R1.

By CB we denote the set of Rn-valued functions continuous and bounded on (−∞, 0]; for

each ϕ ∈ CB we define ∥ϕ∥ = sup{|ϕ(s)| : s ≤ 0}. Thus {CB, ∥∥} is a real Banach space.
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If x(t) is an Rn-valued function on (−∞, b), b ≤ ∞, we define for each t ∈ (−∞, b), xt(s) =

x(t+ s), s ≤ 0. Clearly if x(t) is continuous and bounded on each interval (−∞, b1], b1 < b,

then xt ∈ CB for t ∈ (−∞, b).

The Rn-valued function F (t, x, ϕ) on R×Rn × CB is said to satisfy condition:

(A1) if it is a.p. in t uniformly for (x, ϕ) in closed bounded subsets of Rn × CB, i.e., if

S ⊂ Rn×CB is closed and bounded, then {F (t, x, ϕ) : (x, ϕ) ∈ S} is a uniformly a.p. family

in the sense of [3, p.17];

(A2) if there exists an M > 0 such that |F (t, 0, 0)| ≤ M for t ∈ R;

(A3) if for x(t) uniformly continuous and bounded on R,F (t, x(t), xt) is uniformly con-

tinuous on R;

(A4) if there exist positive numbers p, h, and r such that ph < 1, p ≥ M/r where M is

as in (A2), such that

|x(t)− y(t) + h(F (t, x(t), xt)− F (t, y(t), yt))| ≤ (1− ph)∥xt − yt∥ (2.1)

for t ∈ R and any functions x(t), y(t) uniformly continuous and such that |x(t)| ≤ r, |y(t)| ≤ r

on R;

(A5) if for each r > 0 there exists an M1(r) > 0 such that |F (t, x, ϕ)| ≤ M1(r) for

|x| ≤ r, ∥ϕ∥ ≤ r, t ∈ R;

(A6) if in the condition (A4), (2.1) is also valid for any functions x(t), y(t) continuous on

R and there is p > M/r.

Remark 2.1. It follows easily that if F is uniformly continuous on R × Rn × CB, it

satisfies (A3). In this case , however, the function F (t, x(t), xt) is not necessarily continuous

in t for x(t) only continuous and bounded on R. This follows because xt need not be

continuous in t for such x(t).

Remark 2.2. Obviously, the conditions (A2)-(A5) are much weaker than the conditions

(H2)-(H4) in [1], and we do not need the condition (H5) in [1].

Remark 2.3. The condition (A6) contains the condition (A4).

We now consider the functional differential equations with infinite time delays

x′(t) = F (t, x(t), xt). (2.2)

Definition 2.1. A bounded solution x(t, t0, ϕ1), which satisfies xt0 = ϕ1 with ϕ1 ∈ CB, of

(2.2) for t ≥ t0 is uniformly stable if, for each ε > 0 and each t0 ≥ 0, there exists a positive

number δ = δ(ε) (independent of t0) such that |x(t, t0, ϕ1) − y(t, t0, ϕ2)| < ε, whenever

∥ϕ1 − ϕ2∥ < δ and t ≥ t0, where y(t, t0, ϕ2), which satisfies yt0 = ϕ2 with ϕ2 ∈ CB, is any

solution of (2.2) for t ≥ t0.

Theorem 2.1. Let F have (A2)-(A5). Then (2.2) has only one solution x̄(t) with |x̄(t)| ≤
r for t ∈ R.

Theorem 2.2. Let F have (A2), (A3), (A5) and (A6). Then (2.2) has only one bounded

solution x̄(t) which is uniformly stable and satisfies |x̄(t)| ≤ r for t ∈ R.

Theorem 2.3. If F is periodic in t with period T independent of (x, ϕ) and if F satisfies

(A2)-(A4), then (2.2) has only one T -periodic solution x̄(t) with |x̄(t)| ≤ r for t ∈ R.

Theorem 2.4. If F is periodic in t with period T independent of (x, ϕ) and if F has (A2),

(A3), (A5) and (A6), then (2.2) has only one T -periodic solution x̄(t) which is uniformly

stable and satisfies |x̄(t)| ≤ r for t ∈ R.
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Theorem 2.5. Let F have (A1)-(A4). Then (2.2) has unique a.p. solution x̄(t) with

|x̄(t)| ≤ r for t ∈ R and mod (x̄) ⊂ mod (F ).

Theorem 2.6. If F satisfies (A1)-(A3) and (A5), (A6), then (2.2) has unique uniformly

stable a.p. solution x̄(t) with |x̄(t)| ≤ r for t ∈ R and mod (x̄) ⊂ mod (F ).

Remark 2.4. Obviously, the results of Theorems 2.1, 2.3, 2.5 are much better than all

the results of §2 in [1], and the conditions of our theorems are much weaker than that of the

theorems in §2 of [1].

Remark 2.5. Theorems 2.5 and 2.6 solve the two open problems[1] under much weaker

conditions than that proposed in [1].

Remark 2.6. From Definition 2.1, it is easy to see that the condition (A6) in Theorems

2.2, 2.4, 2.6 is reasonable.

§3. Proofs of Theorems

Proof of Theorem 2.1. First, we write (2.2) in the following form:

x′(t) = F (t, x(t), xt) = − 1

h
x(t) + g(t, x(t), xt) + F (t, 0, 0), (3.1)

where g(t, x(t), xt) =
1
h [x(t) + h(F (t, x(t), xt)− F (t, 0, 0))]. Then there is g(t, 0, 0) = 0 and

it follows from (A3) and (A4) that g(t, x(t), xt) satisfies the following condition:

(A7) it is uniformly continuous on R and satisfies

|g(t, x(t), xt)− g(t, y(t), yt)| ≤
(1− ph)

h
∥xt − yt∥ (3.2)

for t ∈ R and any functions x(t), y(t) uniformly continuous on R such that |x(t)| ≤ r, |y(t)| ≤
r.

(1) We prove that (2.2) has a solution x̄(t) with |x̄(t)| ≤ M/p for t ∈ R.

We first construct the function sequences as follows:

x0(t) =

∫ t

−∞
exp

(
− 1

h
(t− s)

)
F (s, 0, 0)ds (t ∈ R), (3.3)

xm+1(t) = x0(t) +

∫ t

−∞
exp

(
− 1

h
(t− s)

)
g(s, xm(s), xm

s )ds (t ∈ R), (3.4)

when m = 0, 1, 2, 3, · · · .
(i) We prove that xm(t)(m = 0, 1, 2, 3, · · · ) are uniformly continuous and |xm(t)| < M/p

for t ∈ R.

From (A2) and (A3), there is

|x0(t)| ≤
∫ t

−∞
exp

(
− 1

h
(t− s)

)
|F (s, 0, 0)|ds

≤ M

∫ t

−∞
exp

(
− 1

h
(t− s)

)
ds

= Mh < M/p (t ∈ R).

(3.5)

And it follows from (A3) and (3.3) that x0(t) is uniformly continuous on R. Using (A7) and
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(3.4), (3.5), we have

|x1(t)| ≤ |x0(t)|+
∫ t

−∞
exp

(
− 1

h
(t− s)

)
|g(s, x0(s), x0

s)|ds

≤ Mh+

∫ t

−∞
exp

(
− 1

h
(t− s)

) (1− ph)

h
∥x0

s∥ds

≤ Mh+ (1− ph)M

∫ t

−∞
exp

(
− 1

h
(t− s)

)
ds

= Mh[1 + (1− ph)] (t ∈ R).

(3.6)

Since 0 < 1− ph < 1, there is

1

ph
=

1

1− (1− ph)
=

∞∑
j=0

(1− ph)j . (3.7)

It follows from (3.6) and (3.7) that

|x1(t)| ≤ Mh[1 + (1− ph)] < M/p (t ∈ R). (3.8)

From (A7), (3.4)-(3.6) and the uniform continuity of x0(t) on R, we see easily that x1(t)

also is uniformly continuous on R.

In general, for any natural number k, we can assume inductively that

|xK(t)| ≤ Mh
K∑
j=0

(1− ph)j < M/p (t ∈ R), (3.9)

and xK(t) is uniformly continuous on R.

Then from (3.2), (3.4), (3.5) and (3.9), there is

|xK+1(t)| ≤ |x0(t)|+
∫ t

−∞
exp

(
− 1

h
(t− s)

)
|g(s, xK(s), xK

s )|ds

≤ Mh+

∫ t

−∞
exp

(
− 1

h
(t− s)

) (1− ph)

h
∥xK

s ∥ds

≤ Mh+ (1− ph)M
K∑
j=0

(1− ph)j
∫ t

−∞
exp

(
− 1

h
(t− s)

)
ds

= Mh
K+1∑
j=0

(1− ph)j < M/p (t ∈ R).

(3.10)

Because of (A7), (3.4) and the uniform continuity of x0(t) and xK(t) on R, xK+1(t) is

uniformly continuous on R.

Therefore by induction, for any natural number m, there is

|xm(t)| ≤ Mh
m∑
j=0

(1− ph)j < M/p (t ∈ R), (3.11)

and xm(t) is uniformly continuous on R.

(ii) We prove that {xm(t)} is uniformly convergent on R and its limit function x̄(t) is

uniformly continuous and satisfies |x̄(t)| ≤ M/p for t ∈ R.

Let

Lm+1 = sup{|xm+1(t)− xm(t)| : t ∈ R} (m = 0, 1, 2, 3, · · · ). (3.12)
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Then from (3.2), (3.4), (3.12), (A7), and (i) we have

|xm+1(t)− xm(t)| ≤
∫ t

−∞
exp

(
− 1

h
(t− s)

)
· ∥g(s, xm(s), xm

s )− g(s, xm−1(s), xm−1
s )|ds

≤ (1− ph)

h

∫ t

−∞
exp

(
− 1

h
(t− s)

)
∥xm

s − xm−1
s ∥ds

≤ (1− ph)Lm

h

∫ t

−∞
exp

(
− 1

h
(t− s)

)
ds

= (1− ph)Lm (t ∈ R).

(3.13)

Hence there is

Lm+1 ≤ (1− ph)Lm (m = 0, 1, 2, 3, · · · ).

Since 0 < 1−ph < 1, {xm(t)} is uniformly convergent on R. Let xm(t) −→ x̄(t) uniformly in

t ∈ R. Because xm(t)(m = 0, 1, 2, 3, · · · ) are uniformly continuous on R and |xm(t)| ≤ M/p

for t ∈ R, x̄(t) is uniformly continuous on R and |x̄(t)| ≤ M/p for t ∈ R.

(iii) We prove that∫ t

−∞
exp

(
− 1

h
(t− s)

)
g(s, xm(s), xm

s )ds −→
∫ t

−∞
exp

(
− 1

h
(t− s)

)
g(s, x̄(s), x̄s)ds

uniformly in t ∈ R when m −→ ∞.

Because xm(t) −→ x̄(t) uniformly on R when m −→ ∞, for each ε > 0, there is a natural

number N = N(ε) sufficiently large such that

|xm(t)− x̄(t)| < ε (t ∈ R),

when m ≥ N . Then when m ≥ N , using (A7), we have∣∣∣ ∫ t

−∞
exp

(
− 1

h
(t− s)

)
g(s, xm(s), xm

s )ds−
∫ t

−∞
exp

(
− 1

h
(t− s)

)
g(s, x̄(s), x̄s)ds

∣∣∣
≤

∫ t

−∞
exp

(
− 1

h
(t− s)

)
|g(s, xm(s), xm

s )− g(s, x̄(s), x̄s)|ds

≤ (1− ph)

h

∫ t

−∞
exp

(
− 1

h
(t− s)

)
∥xm

s − x̄s∥ds

≤ (1− ph)ε

h

∫ t

−∞
exp

(
− 1

h
(t− s)

)
ds

= (1− ph)ε < ε

for all t ∈ R, i.e.,∫ t

−∞
exp

(
− 1

h
(t− s)

)
g(s, xm(s), xm

s )ds −→
∫ t

−∞
exp

(
− 1

h
(t− s)

)
g(s, x̄(s), x̄s)ds

uniformly for t ∈ R.

Now, taking its limit from the both sides of (3.4), we obtain

x̄(t) = x0(t) +

∫ t

−∞
exp

(
− 1

h
(t− s)

)
g(s, x̄(s), x̄s)ds (t ∈ R). (3.14)

Then, from the right side of (3.14), it is easy to see that x̄(t) is continuously differentiable on

R. Immediately, differentiating the both sides of (3.14), we have that x̄′(t) = F (t, x̄(t), x̄t)
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for t ∈ R. Therefore x̄(t) is a bounded solution of (2.2) such that |x̄(t)| ≤ M/p for t ∈ R.

(2) We prove that x̄(t) is a unique bounded solution of (2.2) such that |x(t)| ≤ r for t ∈ R.

In fact, if this conclusion is not valid, then there is another bounded solution y(t) of (2.2)

such that |y(t)| ≤ r for t ∈ R and y(t) ̸≡ x̄(t). It follows from (A5) that y(t) is uniformly

continuous on R. Since

x̄′(t)− y′(t) = − 1

h
[x̄(t)− y(t)] + [g(t, x̄(t), x̄t)− g(t, y(t), yt)],

there is

x̄(t)− y(t) = exp
(
− 1

h
(t− t0)

)
[x̄(t0)− y(t0)] +

∫ t

t0

exp
(
− 1

h
(t− s)

)
· [g(s, x̄(s), x̄s)− g(s, y(s), ys)]ds (t ≥ t0).

(3.15)

Using (A7), we have

|x̄(t)− y(t)| ≤ exp
(
− 1

h
(t− t0)

)
|x̄(t0)− y(t0)|

+
(1− ph)

h

∫ t

t0

exp
(
− 1

h
(t− s)

)
∥x̄s − ys∥ds (t ≥ t0).

(3.16)

Let c1 = sup{|x̄(t)− y(t)| : t ∈ R}. Then there are c1 > 0 and t1 ∈ R such that

|x̄(t1)− y(t1)| ≥ c1(1− ph/4). (3.17)

Taking t0 = t1 − T , where T > 0 is sufficiently large such that

exp(−T/h) ≤ ph/2, (3.18)

from (3.16)-(3.18), we obtain

c1(1− ph/4) ≤ |x̄(t1)− y(t1)| ≤ exp(−T/h)c1 + (1− ph)c1

≤ phc1/2 + (1− ph)c1 = (1− ph/2)c1,

which is a contradiction because of 0 < 1 − ph < 1 and c1 > 0. Therefore x̄(t) is a unique

bounded solution of (2.2) such that |x̄(t)| ≤ r for t ∈ R. It completes the proof.

Proof of Theorem 2.2. From Remark 2.3 and Theorem 2.1, we can see that it suffices

to prove that x̄(t) is uniformly stable. In fact, for each ε > 0 (especially ε < (r−M/p)) and

each t0 ≥ 0, taking a positive number δ = δ(ε) = min{(r −M/p)/2, phε/2} (obviously, δ(ε)

is independent of t0), we see that, when ∥x̄t0 − ϕ∥ < δ, there is

|x̄(t)− y(t)| < ε (t ≥ t0), (3.19)

where y(t) = y(t, t0, ϕ), which satisfies yt0 = ϕ with ϕ ∈ CB, is any solution of (2.2) for

t ≥ t0 . Otherwise, if (3.19) is not valid, there is t1 > t0 such that

|x̄(t1)− y(t1)| = ε (3.20)

and

|x̄(t)− y(t)| < ε (t0 < t < t1). (3.21)

Therefore there is

∥x̄t − yt∥ ≤ ε (t ≤ t1). (3.22)
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Because

x̄′(t)− y′(t) = F (t, x̄(t), x̄t)− F (t, y(t), yt)

= − 1

h
[x̄(t)− y(t)] + [g1(t, x̄(t), x̄t)− g1(t, y(t), yt)] (t ≥ t0),

(3.23)

where g1(t, x(t), xt) =
1
h [x(t) + hF (t, x(t), xt)], and from (A6), we have

|g1(t, x(t), xt)− g1(t, y(t), yt)| ≤
(1− ph)

h
∥xt − yt∥ (3.24)

for any functions x(t), y(t) continuous on R such that |x(t)| ≤ r and |y(t)| ≤ r. It follows

from (3.23) that

x̄(t1)− y(t1) = exp
(
− 1

h
(t1 − t0)

)
[x̄(t0)− y(t0)] +

∫ t1

t0

exp
(
− 1

h
(t1 − s)

)
· [g1(s, x̄(s), x̄s)− g1(s, y(s), ys)]ds.

(3.25)

Using (3.20)-(3.22), (3.24) and (3.25), we can obtain

ε = |x̄(t1)− y(t1)| ≤ exp
(
− 1

h
(t1 − t0)

)
|x̄(t0)− y(t0)|

+

∫ t1

t0

exp
(
− 1

h
(t1 − s)

)
|g1(s, x̄(s), x̄s)− g1(s, y(s), ys)|ds

≤ exp
(
− 1

h
(t1 − t0)

)
δ +

(1− ph)

h

∫ t1

t0

exp
(
− 1

h
(t1 − s)

)
∥x̄s − ys∥ds

≤ δ +
(1− ph)ε

h

∫ t1

t0

exp
(
− 1

h
(t1 − s)

)
ds

≤ δ + (1− ph)ε ≤ phε/2 + (1− ph)ε = (1− ph/2)ε < ε,

which is a contradiction. Therefore x̄(t) is uniformly stable. The proof is complete.

Proof of Theorem 2.3. Because a continuous T -periodic solution of (2.2) is uniformly

continuous on R, the condition (A5) is not needed. From Theorem 2.1, obviously, it suffices

to prove that x̄(t) is a T -periodic solution of (2.2). Using (3.14) and the conditions of this

theorem, we obtain

x̄(t+ T ) =

∫ t+T

−∞
exp

(
− 1

h
(t+ T − s)

)
[g(s, x̄(s), x̄s) + F (s, 0, 0)]ds

s = u+ T

∫ t

−∞
exp

(
− 1

h
(t− u)

)
[g(u+ T, x̄(u+ T ), x̄u+T )

+ F (u+ T, 0, 0)]du

=

∫ t

−∞
exp

(
− 1

h
(t− u)

)
[g(u, x̄(u+ T ), x̄u+T ) + F (u, 0, 0)]du

=

∫ t

−∞
exp

(
− 1

h
(t− s)

)
[g(s, x̄(s+ T ), x̄s+T ) + F (s, 0, 0)]ds.

(3.26)

Let L = sup{|x̄(t)− x̄(t+ T )| : t ∈ R}. Then from (3.14), (3.26) and (A7), we have

|x̄(t)− x̄(t+ T )| ≤
∫ t

−∞
exp

(
− 1

h
(t− s)

)
|g(s, x̄(s), x̄s)− g(s, x̄(s+ T ), x̄s+T )|ds

≤ (1− ph)L

h

∫ t

−∞
exp

(
− 1

h
(t− s)

)
ds = (1− ph)L,
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i.e., L ≤ (1−ph)L . It follows from 0 < 1−ph < 1 that L = 0. Therefore x̄(t) is a T -periodic

solution of (2.2). The proof is complete.

Proof of Theorem 2.4. The proof of this theorem follows immediately from Theorems

2.2 and 2.3.

Proof of Theorem 2.5. Because an a.p. solution of (2.2) is uniformly continuous on R,

the condition (A5) is not needed. From Theorem 2.1, obviously, it suffices to prove that x̄(t)

is an a.p. solution of (2.2) which satisfies mod (x̄) ⊂ mod (F ). Using (3.14), we have

x̄(t+ τ) =

∫ t+τ

−∞
exp

(
− 1

h
(t+ τ − s)

)
[g(s, x̄(s), x̄s) + F (s, 0, 0)]ds

s = u+ τ

∫ t

−∞
exp

(
− 1

h
(t− u)

)
[g(u+ τ, x̄(u+ τ), x̄u+τ ) + F (u+ τ, 0, 0)]du

=

∫ t

−∞
exp

(
− 1

h
(t− s)

)
[g(s+ τ, x̄(s+ τ), x̄s+τ ) + F (s+ τ, 0, 0)]ds

(3.27)

for all t, τ ∈ R. It follows from (3.14) and (3.27) that

x̄(t)− x̄(t+ τ) =

∫ t

−∞
exp

(
− 1

h
(t− s)

) 1

h
[x̄(s)− x̄(s+ τ) + h(F (s, x̄(s), x̄s)

− F (s+ τ, x̄(s+ τ), x̄s+τ ))]ds

=

∫ t

−∞
exp

(
− 1

h
(t− s)

)
{ 1
h
[x̄(s)− x̄(s+ τ) + h(F (s, x̄(s), x̄s)

− F (s, x̄(s+ τ), x̄s+τ ))] + [F (s, x̄(s+ τ), x̄s+τ )

− F (s+ τ, x̄(s+ τ), x̄s+τ )]}ds

(3.28)

for all t, τ ∈ R. By (A1), for each ε > 0, there exists an l(ε) > 0 such that every interval of

R of length l(ε) contains a τ = τ(ε) such that

|F (t, x̄(t+ τ), x̄t+τ )− F (t+ τ, x̄(t+ τ), x̄t+τ )| < ε (3.29)

for all t ∈ R. Let L0 = sup{|x̄(t)− x̄(t+ τ)| : t ∈ R, τ = τ(ε)}. Thus, for such a τ , it follows

from (A7) and (3.28), (3.29) that

|x̄(t)− x̄(t+ τ)| ≤
∫ t

−∞
exp

(
− 1

h
(t− s)

)[ (1− ph)

h
∥x̄s − x̄s+τ∥+ ε

]
ds

≤ (1− ph)L0 + hε,

i.e., L0 ≤ (1−ph)L0+hε. Therefore there is L0 ≤ ε/p. Thus τ is an ε/p-translation number

for x̄(t), and since ε > 0 is arbitrary, x̄(t) is a.p. and the module of x̄(t) is contained in the

module of F . The proof is complete.

Proof of Theorem 2.6. The proof of this theorem follows immediately from Theorems

2.2 and 2.5.

§4. An Application

The following equation can arise in a study of the dynamics of a single-species population

model (cf. [4, p.123]):

N ′(t) = N(t)(1− k(t)N(t)− l(t)

∫ 0

−∞
N(t+ s)dη(s)). (4.1)
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Since in this equationN(t) represents population density, we are only concerned with positive

solutions, and can make the change of variable x = logN to get the equation

x′(t) = 1− k(t) expx(t)− l(t)

∫ 0

−∞
(expx(t+ s))dη(s). (4.2)

This is in the form of the scalar case of (2.2) with

F (t, x, ϕ) = 1− k(t) expx(t)− l(t)

∫ 0

−∞
(expϕ(s))dη(s). (4.3)

We assume that

(A8) η(s) is nondecreasing on (−∞, 0] with
∫ 0

−∞ dη(s) = B < ∞.

(A9) k(t) and l(t) are a.p. with inf{k(t) : t ∈ R} = k > 0, and l(t) ≥ 0 for t ∈ R.

(A10) Define d = sup{|1− k(t)| : t ∈ R}, L = sup{l(t) : t ∈ R}. Then there is

d+ LB < k (4.4)

and there exists at least an r > 0 such that

d+ LB < (ke−r − LBer)r. (4.5)

Remark 4.1. Obviously, if d and LB are sufficiently small, then k must be near 1, and

thus (A10) must be valid.

The conditions (A8)-(A10) contain the conditions (A1)-(A3) and (A5), (A6) for (4.3). In

fact, setting M = d+LB and M1 = 1+d1e
r+LBer, where d1 = sup{k(t) : t ∈ R}, we have

|F (t, 0, 0)| = |1− k(t)− l(t)

∫ 0

−∞
dη(s)| ≤ |1− k(t)|+ l(t)

∫ 0

−∞
dη(s) ≤ M

and |F (t, x, ϕ)| ≤ M1 for t ∈ R, |x| ≤ r and ∥ϕ∥ ≤ r. Therefore it is easy to see that the

conditions (A1)-(A3) and (A5) are satisfied. Taking p = (ke−r − LBer) > 0, where r is as

in (A10), and taking h > 0 such that ph < 1 and h < d1e
r/2, from (4.5) we have M < pr.

And it follows from the Mean Value Theorem that

|x(t)− y(t) + h(F (t, x(t), xt)− F (t, y(t), yt))|
≤ |x(t)− y(t)− hk(t)(expx(t)− exp y(t))|

+ hl(t)

∫ 0

−∞
| expx(t+ s)− exp y(t+ s)|dη(s)

≤ |1− hk(t) exp x̄(t)| |x(t)− y(t)|+ hl(t)

∫ 0

−∞
(exp x̄(t+ s))

· |x(t+ s)− y(t+ s)|dη(s)

≤ (1− hke−r)∥xt − yt∥+ hLer∥xt − yt∥
∫ 0

−∞
dη(s)

= [1− h(ke−r − LBer)]∥xt − yt∥
= (1− ph)∥xt − yt∥

(4.6)

for all t ∈ R, and any functions x(t), y(t) with |x(t)| ≤ r and |y(t)| ≤ r; here x̄(t) =

y(t)+ θ(t)(x(t)− y(t)) for some function θ(t), 0 < θ(t) < 1 (thus there is |x̄(t)| ≤ r), i.e., the

condition (A6) also is valid. Therefore from Theorem 2.6, we have

Theorem 4.1. If the conditions (A8)-(A10) are satisfied, then (4.1), and hence also (4.2),

has only one a.p. solution x̄(t) with mod (x̄) ⊂ mod (l(t), k(t)) and |x̄(t)| ≤ r for t ∈ R
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where r is as in (A10). Moreover, this a.p. solution x̄(t) is uniformly stable.

Remark 4.2. Theorem 4.1 is much better than Theorem 3 of [1].
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