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Abstract

A class of superprocesses which dies out is investigated. Under the condition of nor–
extinction, a new superprocess is constructed, its life time is infinite, and its distribution is

determined by the moment function. Several limit theorems about this superprocess and its
occupation time process are obtained.
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§1. Introduction

Let E be a topological Lusin space and M(E) denote the space of finite measures on E

with the topology of weak convergence. B(E) is the space of bounded nonnegative Borel–

measurable functions on E. Suppose that ξ = (Ω,F ,Ft, θt, ξt, P
x) is a Borel right Markov

process with state space (E,B(E)) and semigrop (St) such that St1 = 1, so that ξ has

infinite lifetime. The superprocesses X = (W, g, gt,Θt, Xt, P
µ) arising from ξ is determined

by the following Laplace functional

Eµ[exp(−⟨Xt, f⟩)] = exp(−⟨µ, ut⟩). (1.1)

Here ut is the unique positive solution of the following equation

∂

∂t
ut = Aut − u2

t ,

u(0) = f, (1.2)

where A is the infinite generator for ξ, f ∈ B(E), µ ∈ M(E).

We have known that Xt is an M(E)-valued right Markov process (see [5]). From [10, p.

286], it is extinct eventually.

Let T be the extinction time for Xt. For µ ∈ M(E)− {0}, write

Pµ
t [·] = Pµ [· | t < T < ∞].

Since Pµ(T = ∞) = 0, we have

Pµ
t [·] = Pµ [· | t < T ]. (1.3)
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Under the condition of non-extinction, we will construct a class of superprocesses (which

we call conditioned superprocesses), and investigate its property and the limit property of

its occupation time process

§2. The Construction of Conditioned Superprocesses

Write Eµ
t as the expectation corresponding to the law Pµ

t , and

Xt(f) = ⟨Xt, f⟩.

We first give a lemma.

Lemma 2.1 If Xt = 0 Pµ a.s (t > 0) for µ ∈ M(E), then for s > t

Xs = 0 Pµ a.s.

Proof. For λ > 0, by (1.1) and (1.2), we get

Eµ[exp(−λXs(1))] = Eµ[Eµ(exp(−λXs(1) | Xt)]

= Eµ[EXt exp(−λXs−t(1))]

= Eµ
[
exp

(
− ⟨Xt,

λ

1 + λ(s− t)
⟩
)]

= 1.

Hence

Xs = 0 Pµ a.s.

Suppose that G is gt-measurable. For s, t > 0, since the path of Xt is right continuous,

by Lemma 2.1 and (1.3), we get

Eµ
s+t (G) = Eµ[G | s+ t < T ]

=
Eµ (G)− Eµ [G;T ≤ s+ t]

1− Pµ(T ≤ s+ t)

=
Eµ (G)− Eµ [G;Xs+t = 0]

1− Pµ(Xs+t = 0)

and by the Markov property of Xt,

Eµ[G;Xs+t = 0] = Eµ[GEµ[I(Xs+t=0) | gt]]
= Eµ[GEµ[I(Xs+t=0) | Xt]]

= Eµ[GEXt [I(Xs=0)]]

= Eµ[GPXt (Xs = 0)]

= Eµ[G · exp(−Xt(1) · s−1)].

Hence for µ ∈ M(E)− {0},

Eµ
s+t (G) =

Eµ[G(1− exp(−Xt(1) · s−1))]

1− exp[−µ(1) · (s+ t)−1]
. (2.1)

Write

Eµ
∞ (G) = lim

s→∞
Eµ

s+t (G).

Then we get

Theorem 2.1. For µ ∈ M(E) − {0}, there exists a probability measure Pµ
∞ on W with

the expectation Eµ
∞ such that
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(1) on gt

Pµ
∞ [·] = µ(1)−1Pµ[·Xt(1)];

(2) if G is nonegative gt-measurable, and Eµ[GXt(1)] < ∞, then

Eµ
∞ (G) = µ(1)−1Eµ[GXt(1)].

Proof. Applying the inequality

x− x2

2
< 1− e−x < x (x > 0),

for fixed t > 0, and s > max(µ(1)2 , t), we get

0 ≤ G
1− exp(−Xt(1)s

−1)

1− exp[−µ(s+ t)−1]

≤ G
Xt(1)s

−1

µ(1)
s+t

[
1− µ(1)

2(s+t)

]
≤ 4µ(1)−1GXt(1).

Let s → ∞ in (2.1). By the dominated convergence theorem, we get (2) immediately. Hence

there exists a probability measure Pµ
∞ with the corresponding expectation Eµ

∞ such that (1)

holds (see [5]).

Remark. From Theorem 2.1 we have constructed a new class of superprocesses—

conditioned superprocesses, and it is the original superprocess Xt under the condition of

probability measure Pµ
∞.

Theorem 2.2. For µ ∈ M(E)− {0}, f ∈ B(E), we have

Eµ
∞ [Xt(f)]

n = µ(1)−1 Eµ[(Xt(f))
n ·Xt(1)], t > 0, n ∈ N

and the distribution of Xt(f) under Pµ
∞ is determined by the moments.

Proof. Denote ∥f∥ = sup
x∈E

|f(x)|. Then

Xt(f) ≤ ∥f∥Xt(1).

Since EXn
t (1) exists, by Theorem 2.1(2), the equality in Theorem 2.2 holds.

Applyling the property of series of power which is absolutely continuous and uniformly

convergent in the radius of convergence, we easily get that the radius of convergence of series

of power for Eµ
∞ [Xt(f)]

n is larger than zero. By [11, Theorem 1], the distribution of Xt(f)

under Pµ
∞ is determined by all the moments.

Theorem 2.3. For µ ∈ M(E)− {0}, we have

Pµ
∞ ≪ Pµ on gt (t > 0).

Proof. Since Xt is extinct, there exists an r such that r > t, so that

Xr(1) ≤ 1 Pµ a.s.

For A ∈ gt ⊂ gr, by Theorem 2.1

Pµ
∞(A) = Eµ

∞ (IA) = µ(1)−1Eµ [IA Xr(1)]

≤ µ(1)−1 Eµ (IA) = µ(1)−1 Pµ (A).

Hence on gt

Pµ
∞ ≪ Pµ.
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If ξ is a d–dimensional Browinan motion on Rd, and B(Rd) is the Borel σ-field, then the

superprocess arising from ξ is a super–Brownian motion. By Theorem 2.3 and [8, Theorem

7.3], we get

Corollary 2.1. Suppose that Xt is a super-Brownian motion. For A ∈ B(Rd), µ ∈
M(Rd)− {0}, if λ(A) = 0 (λ is Lebesgue measure), we have

Xt(A) = 0 Pµ
∞ a.s (t > 0).

§3. Some Limit Theorems

Theorem 3.1. For µ ∈ M(E)− {0}, we have

(1) for s > 0, under Pµ
s+t

t−1Xt(1)
W−→ ξ,

where
W−→ denotes convergence in distribution, ξ is an exponential distribution with param-

eter 1;

(2) under Pµ
∞

t−1Xt(1)
W−→ ξ + η,

where η is a copy of ξ;

(3) for a ∈ (0, 1), under Pµ
t

t−1Xta(1)
W−→ U + V,

where U and V are exponential distributions with parameters 1
a and 1

a(1−a) respectively ,and

are independent of each other.

Proof. For s > 0, µ ∈ M(E)− {0}, by (2.1)

Eµ
s+t[exp(−λt−1Xt(1))]

=
Eµ[exp(−λt−1Xt(1))]− Eµ[exp(−(λt−1 + s−1)Xt(1))]

1− exp[−µ(1)(t+ s)−1]

=
exp[−µ(1)λ(λ+ 1)−1t−1]− exp[−µ(1)(λt−1 + s−1)(1 + λ+ ts−1)−1]

1− exp[−µ(1)(t+ s)−1]
.

(1) For a fixed s > 0, we have

Eµ
t+s [exp(−λt−1Xt(1))]

t→∞−→ 1

1 + λ
.

We note that 1
1+λ is the Laplace functional of ξ. Hence under Pµ

t+s

t−1Xt(1)
W−→ ξ.

(2)

Eµ
t+s [exp(−λt−1Xt(1))]

=
exp[−µ(1)λ(λ+ 1)−1t−1] · [1− exp[−µ(1)(1 + λ)−1[(1 + λ)s+ t]−1]]

1− exp(−µ(1)(t+ s)−1)

s→∞−→ exp[−µ(1)λ(1 + λ)−1t−1] · 1

(1 + λ)2

t→∞−→ 1

(1 + λ)2
,
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hence

Eµ
∞ [exp(−λt−1Xt(1))]

t→∞−→ 1

(1 + λ)2
.

Since the Laplace functional of ξ + η is 1
(1+λ)2 , Theorem 3.1(2) follows.

(3) Similarly, as (2.1), we get

Eµ
t [exp(−λt−1Xta(1))]

=
Eµ[exp(−λt−1Xta(1))]− Eµ[exp[−(λt + 1

t(1−a) )Xta(1)]]

1− Pµ(Xt = 0)

=
exp[−µ(1)λt−1(1 + λa)−1]− exp[−µ(1)t−1(λ+ 1

1−a )(1 + λa+ a
1−a )

−1]

1− exp(−µ(1)t−1)
t→∞−→ (1 + λa)−1 · [1 + a(1− a)λ]−1.

Similarly, as (1.2), under Pµ
t

t−1Xta(1)
W−→ U + V.

Remark. Theorem 3.1(2) and (3) is similar to [1, Theorem I.14.3 and I.15.1].

We have known that Xt is extinct for µ ∈ M(E), but for the occupation time process Yt:

⟨Yt, f⟩ =
∫ t

0

⟨Xs, f⟩ds, f ∈ B(E).

We will investigate its limit property.

Theorem 3.2. For µ ∈ M(E)− {0}, we have

(1) For any s > 0, under Pµ
t+s

t−2Yt(1)
W−→ ξ1.

Here ξ1 has the following Laplace functional

ϕ1(λ) =
4
√
λe2

√
λ

e4
√
λ − 1

(λ > 0).

(2) Under Pµ
∞

t−2Yt(1)
W−→ ξ2.

Here ξ2 has the following Laplace functional

ϕ2(λ) =
4e2

√
λ

(e2
√
λ + 1)2

(λ > 0).

Proof. By [3, (1.43) and (1.44)], for r ≥ 0, λ > 0, µ ∈ M(E),

Eµ[exp(−rXt(1)− λYt(1))] = exp(−⟨µ, ut⟩), (3.1)

where ut is the unique positive solution of the following evolution equation

∂

∂t
u(t) = Au(t)− u2(t) + λ,

u(0) = r. (3.2)

It is easy to see that the solution is

ut =

√
λ[(

√
λ+ r)e2

√
λt − (

√
λ− r)]

(
√
λ+ r)e2

√
λt + (

√
λ− r)

. (3.3)
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For s > 0, by (2.1), (3.1) and (3.3), we get

Eµ
s+t [exp(−λt−2Yt(1))]

=
Eµ[exp(−λt−2Yt(1))]− Eµ[exp−(λt−2Yt(1) + s−1Xt(1))]

1− exp[−µ(1)(t+ s)−1]

=
exp[−µ(1)

√
λ
t · e2

√
λ−1

e2
√

λ+1
]− exp[−µ(1)

√
λ
t · (

√
λt−1+s−1)e2

√
λ−(

√
λt−1−s−1)

(
√
λt−1+s−1)e2

√
λ+(

√
λt−1−s−1)

]

1− exp[−µ(1)(t+ s)−1]

t→∞−→ 4
√
λe2

√
λ

e4
√
λ − 1

;

this proves Theorem 3.2(1).

Similarly, as the proof of Theorem3.1 (2), we have

Eµ
s+t [exp(−λt−2Yt(1))]

s→∞−→ 4e2
√
λ

(e2
√
λ + 1)2

· exp[−µ(1)

√
λ

t
· e

2
√
λ − 1

e2
√
λ + 1

]

t→∞−→ 4e2
√
λ

(e2
√
λ + 1)2

.

Hence

Eµ
∞ exp(−λt−2Yt(1))]

t→∞−→ 4e2
√
λ

(e2
√
λ + 1)2

.

Theorem 3.3. For µ ∈ M(E)− {0}, under Pµ

Yt(1)
W−→ ξ,

where ξ has the probability density

ϕ(x) =
µ(1)

2
√
πx

3
2

exp
[
− µ(1))2

4x

]
, x > 0.

Proof. From (3.1), (3.2) and (3.3), we have

Eµ[exp(−λYt(1))] = exp(−⟨µ, ut⟩), λ > 0, (3.4)

where ut is the unique positive solution of the following evolution equation

∂

∂t
u(t) = Au(t)− u2(t) + λ,

u(0) = 0. (3.5)

Its solution is

ut =
√
λ · e

2t
√
λ − 1

e2t
√
λ + 1

.

Hence

Eµ[exp(−λYt(1))] = exp(−µ(1)
√
λ · e

2t
√
λ − 1

e2t
√
λ + 1

)

t→∞−→ exp(−µ(1)
√
λ).

Since the r.v.ξ with the probability density ϕ(x) has the representation exp(−µ(1)
√
λ) of

Laplace functional, we have under Pµ

Yt(1)
W−→ ξ.



No.2 Li, C. H. & Wu, R. CONDITIONED SUPERPROCESSES 255

For a particular class of superprocesses, we can investigate the limit property for Yt. In

the following we give an example.

Example. Suppose that E is discrete. If the motion process ξ has the semigroup (Pt)

such that Pt(x, {y}) = v({y}), x, y ∈ E,∀t, then

Yt
W−→ ξ · v.

Proof. It is easy to see that v is a probability measure on E.

We note that for t > 0

Pµ(Yt = 0) = lim
λ→+∞

Eµ[exp(−λYt(1))] = 0.

Hence Yt(f)/Yt(1) is well defined under Pµ.

For ε, δ > 0

Pµ
(∣∣∣Yt(f)

Yt(1)
− v(f)

∣∣∣ > ε
)
≤ Pµ(|Yt(f)− v(f)Yt(1)| > δε) + Pµ(Yt(1) ≤ δ),

where f ∈ C(E) (the space of continuous functions).

By Theorem 3.3

lim
t→∞

Pµ(Yt(1) ≤ δ) =

∫ δ

0

µ(1)

2
√
πx

3
2

exp
(
− (µ(1))2

4x

)
dx

−→ 0 as δ → 0,

Eµ[Yt(f)− v(f)Yt(1)]
2 = Eµ[⟨Yt, f − v(f)⟩]2

= −⟨u′′(t), µ⟩+ ⟨u′(t), µ⟩2.

By [6]

u′(t) =

∫ t

0

(Psf − v(f))ds,

⟨u′′(t), µ⟩ = −2

∫ t

0

⟨Pt−s[u
′(s)]2, µ⟩ds

but

Psf(x) =

∫
E

Ps(x, dy)f(y) =

∫
E

v(dy)f(y) = v(f).

Hence

u′(t) = 0, ⟨u′′(t), µ⟩ = 0.

We get

Eµ[Yt(f)− v(f)Yt(1)]
2 = 0

and

Pµ(|Yt(f)− v(f)Yt(1)| > δε) = 0.

Therefore

lim
t→∞

Pµ
(∣∣∣Yt(f)

Yt(1)
− v(f)

∣∣∣ > ε
)
= 0,

under Pµ

Yt(f)

Yt(1)

P−→ v(f).
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By Theorem 3.3 and [7, Theorem 4.2]

Yt
W−→ ξ · v.
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