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§0. Introduction

In [7], R. E. Curto and P. S. Muhly discussed the Toeplitz C∗-algebra C∗(Ω) over the

L-shaped domain Ω in C2 by groupoid appoach, showing that C∗(Ω) is isomorphic to some

groupoid C∗-algebra C∗(G). In our former paper[20], we discussed the irrational rotation

C∗-algebra C∗(G(Cθ)) for C∗(G), presenting the maximal radical series of the rotational

C∗-algebra.

{0} ▹ C∗(G(Cθ)
′′) ▹ C∗(G(Cθ)

′) ▹ C∗(G(Cθ)),

which is invariant under the isomorphism. In this paper, we will use the method in [19] to

calculate the K-groups of the series and classify the rotaional C∗-algebra C∗(G(Cθ)).

§1. On the Simplicity of the C∗-Algebra C∗(R × T ×θ Z2)

In our former paper[20], we have seen that the transformation group C∗-algebra C∗(R×
T×θZ2), where the action of Z2 on R×T is (s, t)+p = (s+2p2 ln δ2−2p1 ln δ1, tθp1

1 θ
p2

2 ), occurs

frequently in the discussion. A natural problem arises when the C∗-algebra C∗(R×T×θZ2)

is simple. In this section we will determine the necessary and sufficient condition to the

problem.

In order to solve the problem, we need the following well-known classification theorem of

the closed groups in the Euclidian space RN .

Theorem A. Any closed subgroup in the Euclidian space RN is the orthogonal sum of

a linear subspace and a free subgroup finitely generated. The linear subspace is called the

linear part of the group, while the free subgroup is called the free part of the group.
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As a corollary, we have the following criterion for a subgroup to be dense in the Euclidian

space.

Theorem B. Suppose that G is a subgroup in the Euclidian space RN . G is dense in RN

if and only if the projection of G in every direction u (u ∈ RN ) is dense in the line Ru.
Proof. The necessity is obvious.

Conversely, if G is not dense in the whole space, there are linearly independent vectors

u1, u2, · · · , un in RN , orthogonal to the linear part of G, such that

G = L⊕ Zu1 ⊕ Zu2 ⊕ · · · ⊕ Zun,

where L is the linear part of the group G.

Since the vectors u1, u2, · · · , un are linearly independent, the matrix ((ui, uj))n×n is non

singular. Fix any rational n-tuple (s1, s2, · · · , sn) ∈ Qn \ {0}, there is a unique real n-tuple

(r1, r2, · · · , r2) ∈ Rn, such that for i = 1, 2, · · · , n,
n∑

j=1

(ui, uj)rj = si. Let u =
n∑

j=1

rjuj .

Then the projection of G in the direction u is
{( n∑

j=1

pjsj

) u

∥u∥2
∣∣∣p ∈ Zn

}
. However since

s1, s2, · · · , sn are all rational numbers, the coefficient set
{ n∑

j=1

pjsj

∣∣∣p ∈ Zn
}
must be of the

form Zγ for some γ ∈ R+, a contradiction. The conclusion follows.

Theorem 1.1 The groupoid C∗-algebra C∗(R × T ×θ Z2) is simple if and only if the

real numbers
1

ln δ1
,

1

ln δ2
,

ψ1

2π ln δ1
+

ψ2

2π ln δ2
are linearly independent over the field Q of the

rational numbers, where ψ1 and ψ2 are the arguments of θ1 and θ2, respectively.

Proof. Since the groupoid R × Tθ × Z2 is r-discrete and principal (because ln δ1/ ln δ2
is irrational), there is an order-preserving isomorphism between the family of the invariant

open subsets of the unit space T × R and the lattice of the closed ideals in the groupoid

C∗-algebra C∗(R× Tθ × Z2).

Define the distance function d on R× T by d((s, t), (s′, t′)) = |s− s′|+ |t− t|′. Then the

distance is invariant under the action of Z2 on R × T. For each v ∈ [u] there is a sequence

{pm}∞m=1 in Z2 such that v = lim
m→∞

(u+ pm). However

lim
m→∞

d(u, v − pm) = lim
m→∞

d(u+ pm, v) = 0.

It follows that the closed orbits in R × T are either disjoint or identical and therefore they

are the minimal invariant closed subsets in the unit space. Consequently one orbit’s being

dense in R× T implies other’s same property.

By the above discussion, it suffices to determine when there is a dense orbit and when

there is not.

Define the map φ : R × R → R × T by φ(s1, s2) = (s1, exp(2π
√
−1s2)). Then φ is a

continuous and open homomorphism. The orbit containing (0,1) in R × T is {(2p2 ln δ2 −
2p1 ln δ1, θ

p)|p ∈ Z2}, denoted by [(0,1)]. Then

φ−1([(0, 1)]) =
{(

2p2 ln δ2 − 2p1 ln δ1, p1
ψ1

2π
+ p2

ψ2

2π
+ q

)∣∣∣p ∈ Z2, q ∈ Z
}
,

which is a subgroup of R2. Given any direction u ∈ R2, the projection of the group
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φ−1([(0, 1)]) in it is a group

Gu =
{(
p1

(ψ1

2π
u2 − 2u1 ln δ1

)
+ p2

(ψ2

2π
u2 + 2u1 ln δ2

)
+ qu2

) u

|u|2
∣∣∣p ∈ Z2, q ∈ Z

}
.

Suppose that
1

ln δ1
,

1

ln δ2
,

ψ1

2π ln δ1
+

ψ2

2π ln δ2
are linearly independent over the field of rational

numbers.

If u2 = 0, then Gu is dense in the line Ru since
ln δ1
ln δ2

is irrational.

If u2 ̸= 0, assume without loss of generality that u2 = 1.

(1) If
ψ1

2π
− 2u1 ln δ1 is irrational, then Gu is dense in the line Ru.

(2) If
ψ1

2π
− 2u1 ln δ1 is rational, then for some r ∈ Q, u1 =

(
ψ1

2π
+ r

)
1

2 ln δ1
. The

coefficient of p2 in the group Gu is
ψ2

2π
+

(
ψ1

2π
+ r

)
ln δ2
ln δ1

, which is irrational since
1

ln δ1
,

1

ln δ2
,

ψ1

2π ln δ1
+

ψ2

2π ln δ2
are linearly independent over Q. Hence Gu is dense in the line Ru.

By Theorem B, the group φ−1([(0, 1)]) is dense in R × R and by Lemma 1.1 below the

orbit [(1, 0)] is dense in R× T.

If
1

ln δ1
,

1

ln δ2
,

ψ1

2π ln δ1
+

ψ2

2π ln δ2
are linearly dependent over the rational numbers Q, then

for some r, r1, r2 ∈ Q,

r1
ln δ1

+
r2
ln δ2

+ r

(
ψ1

2π ln δ1
+

ψ2

2π ln δ2

)
= 0.

It follows that r ̸= 0 since
ln δ2
ln δ1

is irrational. So we can choose r = 1. Set

u = (u1, u2) =
((ψ1

2π
+ r1

) 1

2 ln δ1
, 1
)
.

Then the coefficient of p2 in Gu is

ψ2

2π
+ 2u1 ln δ2 =

ψ2

2π
+
(ψ1

2π
+ r1

) ln δ2
ln δ1

= ln δ2

( ψ2

2π ln δ2
+

ψ1

2π ln δ1
+

r1
ln δ1

)
= −r2,

which is rational and the coefficient of p1 in Gu is

ψ1

2π
− 2u1 ln δ1 =

ψ1

2π
−
(
ψ1

2π
+ r1

)
= −r1,

which is also rational. Therefore the group Gu is not dense in the line Ru. By Theorem B,

the group φ−1([(1, 0)]) is not dense in R × R and therefore the orbit [(1,0)] is not dense in

the unit space R× T by Lemma 1.1 below.

Lemma 1.1. Any continuous surjective homomorphism between the locally compact and

second countable groups is open.

If f : X → Y is a surjective continuous map, the following conditions are equivalent.

(1) The map f is open.

(2) For any subset B of Y , f−1(int(B)) = intf−1(B).

(3) For any subset F of Y , f−1(F ) = f−1(F ).

§2. Main Result

From now on we will concentrate on the calssification of C∗(G(Cθ)). We will mainly
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consider the ideals

J1 = I(α(Z2
+)), J2 = I(α(Z2

+ ∪ {∞} × Z+ ∪ Z+ × {∞}),
J ′
2 = I(X \ β{−∞,+∞}),

and the quotient

J ′
2/J1 = C∗(G|α(Z+×{∞}))⊕ C∗(G|α({∞}×Z+

)⊕ C∗(β(R)× Z2)

∼= K(l2(Z+))⊗ C(T)⊕ C(T)⊗K(l2(Z+))⊕ C∗(R× Z2)

∼= K(H2(T))⊗ C(T)⊕ C(T)⊗K(H2(T))⊕ C∗(R× Z2).

Let u denote the function in C(T) given by χ(z) = z and s the unilateral shift on H2(T).
Then e = 1− ss∗ is a projection of rank 1 in K(H2(T)). Now we set

e1 = 1⊗ e, e2 = e⊗ 1, u1 = e⊗ u,
u2 = u⊗ e, s1 = s⊗ e, s2 = e⊗ s.

It is easy to calculate the K-groups in the Proposition 2.1.

Proposition 2.1. (1) K0(J1) = Z[e⊗ e] and K1(J1) = 0.

(2) K0(J
′
2/J1) = K0(C(T)⊗K⊕K⊗ C(T)⊕ C∗(R× Z2)) and

K0(C(T)⊗K) = Z[e1], K0(K⊗ C(T)) = Z[e2].

By Connes’ Thom isomorphism the group K0(C
∗(R× Z2) is free abelian of rank 2 (see the

later part of the proof of Lemma 2.9) with geneators [u]⊗ [e] and [e]⊗ [u].

(3) K1(J
′
2/J1) = K1((C(T)⊗K⊕K⊗ C(T)⊕ C∗(R× Z)) and

K1(C(T)⊗K) = Z[u1], K1(K⊗ C(T)) = Z[u2].

And again by Connes’ Thom isomorphism K1(C
∗(R × Z2)) is free abelian of rank 2 with

generators [e]⊗ [e] and [u]⊗ [u].

Proposition 2.2. K0(J
′
2) = K0(J

′
2/J1) and K1(J

′
2/J1) is free abelian with rank 3.

K1(J
′
2) has a generator [v1] such that K1(π)([v1]) = [u1]− [u2].

Proof. Applying the six-term exact sequence to the short exact sequence

0→ J1 → J ′
2 → J ′

2/J1 → 0,

we obtain the exact sequence

K0(J1)
j∗0
−−−−→ K0(J

′
2)

π∗0
−−−−→ K0(J

′
2/J1)x y0

K1(J
′
2/J1)

π∗1
←−−−− K1(J

′
2)

j∗1
←−−−− K1(J1).

SinceK1(J1) = 0 and the inclusion j : J1 → J ′
2 is the composition of the inclusion i : J2 → J ′

2

with the inclusion k : J1 → J2 while the latter’sK0-level homomorphism k∗0 is zero as shown

in [19], we get that j∗0 = 0 and therefore π∗0 is isomorphic, i.e., K0(J
′
2)
∼= K0(J

′
2/J1).

Next we will determine one generator of the group K1(J
′
2), which is important in the

calculation of other C∗-algebras’ K-groups.

The subset α((N ∪ {∞}) × {0}) is both open and compact in the unit space X and

therefore the characteristic function χα((N∪{∞})×{0})×{(−1,0)}, denoted by f , is in Cc(G).

However indδα(0)(f) = s1, hence s1 is in C∗(G) and a fortiori s2 is in C∗(G).
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Now that 1−ei+ui’s belong to U1(J
′
2/J1), it follows that if we denote [1−ei+ui} briefly

by [ui] and let

v1 =

(
1− e1 + s1 e⊗ e

1− e2 + s∗2

)
,

then v1 belongs to U2(J
′
2) and K1(π)([v1]) = [u1]− [u2].

Proposition 2.3. Let pθ be the Rieffel projection of the rotation C∗-algebra Aθ, then

K0(J
′
2/J1 ×αθ

Z) = Z8 with base {[e1], [pθ1 ], [e2], [pθ2 ], [e]⊗ [u], [u]⊗ [e], [e]⊗ [e]}.
Proof. Similar to [4.2, 19]. We just point out that αθ preserves the direct sum.

Proposition 2.4. K0(J
′
2×αθ

Z) is free abelian with rank 7 and base {[e1], [e2], di|1 ≤ i ≤
5}.

(1) The boundary map ∂ : K0(J
′
2 ×αθ

Z) → K1(J
′
2) in the Pimsner-Voiculescu sequence

is given by ∂([ek]) = 0 for 1 ≤ k ≤ 2 and ∂(d1) = v1.

(2) The induced K-group homomorphism π∗0 : K0(J
′
2 ×αθ

Z) → K0(J
′
2/J1 ×αθ

Z) is

partially given by π∗0([ek]) = [ek], for k = 1, 2, and π∗0(d1) = −[pθ1 ] + [pθ2 ].

Proof. The short exact sequences

0→ J1 → J ′
2 → J ′

2/J1 → 0, 0→ J1 ×αθ
Z→ J ′

2 ×αθ
Z→ J ′

2/J1 ×αθ
Z→ 0

yield the communicative diagram of the K-groups

0 −−−−→ K1(J1)
K1(i)
−−−−→ K1(J1 ×αθ

Z)
∂t

−−−−→ K0(J1) −−−−→ 0

∂0

x ∂0

x ∂1

x
0 −−−−→ K0(J

′
2/J1)

K0(i)
−−−−→ K0(J

′
2/J1 ×αθ

Z)
∂w

−−−−→ K1(J
′
2/J1) −−−−→ 0x K0(π)

x K1(π)

x
0 −−−−→ K0(J

′
2) −−−−→ K0(J

′
2 ×αθ

Z)
∂b

−−−−→ K1(J
′
2) −−−−→ 0.

(2.1)

Let d′1 be the lift of [v1], i.e., ∂bd
′
1 = [v1], and K0(π)d

′
1 = m1e1 +m2e2 + l1pθ1 + l2pθ2 .

Since functor Ki’s preserve the direct sum[21] and each component in the direct sum

J ′
2/J1 is invariant under the isomorphism αθ, the homomorphism ∂w : K0(J

′
2/J1 ×αθ

Z)→
K1(J

′
2/J1) preserves the direct sum.

Let d′1 = d1 −m1[e1] −m2[e2]. Since K0(π)[ei] = [ei], K0(π)(d1) = l1pθ1 + l2pθ2 and d1

is the lift of v1, we have

K1(π)∂b(d1) = [u1]− [u2], ∂w[pθi ] = −[ui].

If we set K0(π)(d1) = l1pθ1 + l2pθ2 + ∗, then ∂w∗ = 0, and therefore ∗ = 0. All these imply

l1 = −1 and l2 = 1, i.e., K0(π)(d1) = −pθ1 + pθ2 .

Proposition 2.5. ∂0 : K0(J
′
2/J1 ×αθ

Z)→ K1(J1 ×αθ
Z) = Z. ∂0([ek]) = 0, ∂0[pθk ] = 1,

the generator of K1(J1 ×αθ
Z), pre-image of [e⊗ e].

Proof.

∂0([ek]) = ∂0K0(i)([ek]) = K1(i)∂0([ek]) = 0.

∂t∂0(pθk) = ∂l∂m(pθk) = ∂l(−uk) = −[e⊗ e].

Since ∂t is isomorphic, ∂0(pθk) = 1.
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From now on, we will determine the invariants of the irrational rotation C∗-algebra

C∗(Ω)×αθ
Z.

Suppose that the irrational rotation C∗-algebras C∗(Ω) ×αθ
Z and C∗(Ω) ×αρ Z are

isomorphic with isomorphism h. Then we have the communicative diagram

C∗(G′′(Cθ)) −−−−→ C∗(G′(Cθ)) −−−−→ C∗(G(Cθ))

isom.

yh0 isom.

yh1 isom.

yh

C∗(G′′(Cρ)) −−−−→ C∗(G′(Cρ)) −−−−→ C∗(G(Cρ)),

i.e.

J1 ×αθ
Z −−−−→ J ′

2 ×αθ
Z −−−−→ C∗(G)×αθ

Z

isom.

yh0 isom.

yh1 isom.

yh

J1 ×αρ Z −−−−→ J ′
2 ×αρ Z −−−−→ C∗(G)×αρ Z.

(2.2)

The isomorphism h induces an isomorphism between the first quotient algebras

h′ :J ′
2/J1 ×αθ

Z→ J ′
2/J1 ×αρ Z. (2.3)

Equivalently we have

(K(l2(Z+))⊗ C(T))×αθ
Z⊕ (C(T)⊗K(l2(Z+)))×βθ

Z⊕ C∗(R×θ Z2)×γθ
Z

∼= (K(l2(Z+))⊗ C(T))×αρ Z⊕ (C(T)⊗K(l2(Z+)))×βρ Z⊕ C∗(R×ρ Z2)×γρ Z,
(2.4)

where αθ(x⊗ f) = uθ1xu
∗
θ1
⊗ fφθ2 , with the unitary operator uθ defined by uθ1(ϵn) = θn1 ϵn

and the homeomorphism φθ2 defined by φθ2(λ) = f(λθ2), βθ(f ⊗ x) = fφθ1 ⊗ uθ2xu∗θ2 , with
uθ2 and φθ1 defined in the same ways as uθ1 and φθ2 , respectively, and γθ(f)(x, p) = θpf(x, p)

for f ∈ C∗(R× Z2) ⊂ C0(R× Z2) (see Propositions II. 4.2, II. 5.1 and II. 5.7 in [1]).

Definition 2.1. The C∗-algebra A is non-complementary if for any proper closed ideal

I of A there is no proper closed ideal J of A such that I ∩ J = 0 and I + J = A.

Lemma 2.1. Suppose that the C∗-algebras Ai’s and Bi’s are non-complementary. Then

A1 ⊕ · · · ⊕ An
∼= B1 ⊕ · · ·Bn if and only if there is a permutation σ on {1, 2, · · · , n} such

that Ai
∼= Bσ(i) for i = 1, 2, · · · , n.

Proof. Suppose that φ :
n⊕

i=1

Ai →
n⊕

i=1

Bi is an isomorphism.

For a ∈ A1, φ(a) = (b1, · · · , bn). Since φ(A1) is a closed ideal in
n⊕

i=1

Bi, for the approxi-

mate unit uj of B1, (ujb1, 0, · · · , 0) is in φ(A). We get that (b1, 0, · · · , 0) is in φ(A1) and a

fortiori (0, b2, 0, · · · , 0), · · · , (0, 0, · · · , bn) are in φ(A1). And now we have the decomposition

φ(A1) = I11 ⊕ I12 ⊕ · · · ⊕ I1n, where I1j is the closed ideal of Bj for j = 1, 2, · · · , n. Repeat
the procedure above we get for i = 1, 2, · · · , n, φ(Ai) = Ii1⊕ Ii2⊕ · · · ⊕ I1n, where Iij is the

closed ideal of Bj for j = 1, 2, · · · , n. And now it is easy to verify that for j = 1, 2, · · · , n,
Bj = I1j⊕I2j⊕· · ·⊕Inj . Since Ai’s and Bj ’s are non-complementary, we find a permutation

σ on {1, 2, · · · , n} such that φ(Ai) = Bσ(i).

Remark 2.1. Being connected, R × T has no disjoint pair of invariant proper open

subsets U1 and U2 such that U1∪̇U2 = R × T. Hence the C∗-algebras C∗(R × T ×θ Z2) is

non-complementary. The C∗-algebras C∗(G(Cθ)|α(Z+×{∞})×T) and C
∗(G(Cθ)|α({∞}×Z+)×T)

are simple and therefore non-complementary.



No.2 Yan, S. Z. Chen, X. M. et al IRRATIONAL ROTATION GROUPOID C∗-ALGEBRAS 263

Lemma 2.2. The K-groups K∗((K⊗C(T))×αθ
Z) = Z2 and K∗((C

∗(R×Z2)×γρZ) = Z4.

As a corollary, the C∗-algebras (K⊗C(T))×αθ
Z and (C∗(R×Z2)×γρ Z are not isomorphic.

Proof. Apply the Pimsner-Voiculescu exact sequence to the crossed product (K ⊗
C(T))×αθ

Z, we obtain

K0(K⊗ C(T))
1−αθ∗
−−−−→ K0(K⊗ C(T))

l∗
−−−−→ K0((K⊗ C(T))×αθ

Z)x y
K1((K⊗ C(T))×αθ

Z)
l∗

←−−−− K1(K⊗ C(T))
1−αθ∗
←−−−− K1(K⊗ C(T))

Now that K∗(K ⊗ C(T)) = Z and the isomorphism αθ is homotopic to the identity 1 and

hence αθ∗ = 1, we get K∗((K⊗ C(T))×αθ
Z) = Z2.

Since C∗(R×Z2) ∼= C(T2)×γR (see the remark below), the Connes’ Thom isomorphisms

yield Ki(C
∗(R×Z2)) = K1−i(C(T2)) = Z2, and now again applying the Pimsner-Voiculescu

exact sequence to the crossed product C∗(R×Z2)×αθ
Z, we get thatK∗(C

∗(R×Z2)×αθ
Z) =

Z4.

Remark 2.2. Suppose that G and G′ are locally compact and second countable abelian

groups and there is a continuous homomorphism φ : G → G′. Then the transformation

group (G′, G) with action g′ + g = g′ + φ(g) is just the skew product groupoid G ×φ G
′,

while the latter’s groupoid C∗-algebra, by the Proposition 5.7 in [1], is isomorphic to the

crossed product C∗(G)×γ Ĝ
′ where γσ(f)(g) = σ(φ(g))f(g) for f ∈ Cc(G).

By Lammas 2.1, 2.2 and Remark 2.1, we get that
h′(C∗(R× T×θ Z2)) = C∗(R× T×ρ Z2),

h′((K(l2(Z+))⊗ C(T))×αθ
Z⊕ (C(T)⊗K(l2(Z+)))×βθ

Z)

=(K(l2(Z+))⊗ C(T))×αρ Z⊕ (C(T)⊗K(l2(Z+)))×βρ Z.

(2.5)

Now applying the exact sequence of the K-groups to the the following communicative dia-

gram with exact rows

0 −−−−→ J1 ×αθ
Z −−−−→ J ′

2 ×αθ
Z −−−−→ J ′

2/J1 ×αθ
Z −−−−→ 0y h0

y h1

y h′

y y
0 −−−−→ J1 ×αρ Z −−−−→ J ′

2 ×αρ Z −−−−→ J ′
2/J1 ×αρ Z −−−−→ 0

we obtain the communicative diagram

K1(J1 ×ρ Z)

∂′

x
K0(J

′
2/J1 ×αθ

Z)
hu

−−−−→ K0(J
′
2/J1 ×αρ Z) −−−−→ 0

K0(π)

x K0(π)
′
x

K0(J
′
2 ×αθ

Z)
hd

−−−−→ K0(J2 ×αρ Z) −−−−→ 0.

(2.6)

From the above, we know that {[ei], [pθi ], li} is the base of K0(J
′
2/J1 ×αθ

Z) and

hu =

(
x1 y1
z1 w1

)
⊕
(
x2 y2
z2 w2

)
⊕A,
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where we do not need the action of A. By a similar argument as in [19], we get that zi = 0

and w1 = w2 by equalities 0 = ∂′huK0(π)([ek]) = zk, 0 = ∂′huK0(π)(d1) = −w1 + w2.

The same analysis as in [19] yields{
x1 = x2 = 1,

wk = 1 =⇒ yk = 0.
(2.7)

or {
x1 = x2 = 1,

wk = −1 =⇒ yk = 1.
(2.8)

(2.7) implies θi = ρi for i = 1, 2 and (2.8) implies θi = ρi for i = 1, 2.

Finally we can state our main result.

Theorem 2.1. If the irrational rotation C∗-algebras C∗(G)×αθ
Z and C∗(G)×αρ Z are

isomorphic, then up to a permutation θ1 = ρ1 and θ2 = ρ2, or θ1 = ρ1 and θ2 = ρ2.
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