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BERGMAN TYPE OPERATOR ON MIXED

NORM SPACES WITH APPLICATIONS

Ren Guangbin* Shi Jihuai*

Abstract

The authors investigate the conditions for the boundedness of Bergman type operators Ps,t

in mixed norm space Lp,q(φ) on the unit ball of Cn (n ≥ 1), and obtain a sufficient condition

and a necessary condition for general normal function φ, and a sufficient and necessary condition
for

φ(r) = (1− r2)αlogβ(2(1− r)−1) (α > 0, β ≥ 0).

This generalizes the result of Forelli-Rudin[3] on Bergman operator in Bergman space. As
applications, a more natural method is given to compute the duality of the mixed norm space,
solve the Gleason’s problem for mixed norm space and obtain the characterization of mixed

norm space in terms of partial derivatives. Moreover, it is proved that f ∈ L
(0)
∞,q(φ) iff all the

functions (1− |z|2)|α| ∂|α|f
∂zα

(z) ∈ L
(0)
∞,q(φ) for holomorphic function f , 1 ≤ q ≤ ∞.
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§1. Introduction

Let B denote the unit ball of complex vector space Cn. v is the Lebesgue measure on

Cn normalized so that v(B) = 1, σ is the surface measure on the boundary ∂B of B with

σ(∂B) = 1.

A positive continuous function φ on [0,1) is normal, if there exist 0 < a < b, 0 ≤ r0 < 1

such that

(i) φ(r)
(1−r)a is nonincreasing for r0 ≤ r < 1 and lim

r→1

φ(r)
(1−r)a = 0;

(ii) φ(r)
(1−r)b is nondecreasing for r0 ≤ r < 1 and lim

r→1

φ(r)
(1−r)b = ∞.

For 0 < p ≤ ∞, 0 < q ≤ ∞, and a normal function φ, let Lp,q(φ) denote the space of

measurable complex function on B with

||f ||p,q,φ =

{∫ 1

0

r2n−1(1− r)−1φp(r)Mp
q (r, f)dr

}1/p

<∞, 0 < p <∞,

||f ||∞,q,φ = sup
0<r<1

φ(r)Mq(r, f) <∞,
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where

Mq(r, f) =

{∫
∂B

|f(rζ)|qdσ(ζ)
} 1

q

, 0 < q <∞,

M∞(r, f) = sup{|f(rζ)| : ζ ∈ ∂B}.
Denote

L(0)
∞,q(φ) =

{
f ∈ L∞,q(φ) : lim

r→1
φ(r)Mq(r, f) = 0

}
.

If for dvα(z) = (1 − |z|2)αdv(z) (α > −1), let Lp(vα) (0 < p < ∞) denote the space of

measurable complex function on B with∫
B

|f(z)|pdvα(z) =
∫
B

|f(z)|p(1− |z|2)αdv(z) <∞,

then from the integral formula in polar coordinates∫
B

|f(z)|p(1− |z|2)αdv(z) = 2n

∫ 1

0

r2n−1(1− r2)αMp
p (r, f)dr,

we obtain

Lp(dvα) = Lp,p((1− r2)(α+1)/p).

We use H(B) to denote the class of all holomorphic functions on B. Let

Hp,q(φ) = Lp,q(φ) ∩H(B),

H(0)
∞,q(φ) = L(0)

∞,q(φ) ∩H(B)

denote holomorphic mixed norm space. By the monotonicity of the integral means Mq(r, f)

of holomorphic function, the norm in Hp,q(φ) is equivalent to

||f ||p,q,φ =

{∫ 1

0

(1− r)−1φp(r)Mp
q (r, f)dr

}1/p

(0 < p <∞, 0 < q ≤ ∞).

For s ∈ R, t > 0, let Ps,t be the Bergman type operator defined by

Ps,tf(z) = cn,t(1− |z|2)s
∫
B

(1− |w|2)t−1f(w)

(1− ⟨z, w⟩)n+t+s
dv(z),

where the complex power is understood to be principal branches,

cn,t =

(
n+ t− 1

n

)
=

Γ(n+ t)

Γ(t)Γ(n+ 1)
,

⟨z, w⟩ =
n∑
i=1

ziwi, z = (z1, · · · , zn), w = (w1, · · · , wn).

For s = 0, Forelli-Rudin[3] first obtained a sufficient and necessary condition on the

boundedness of P0,t for L
p(v) (1 ≤ p <∞), and subsequently Kolaski[6], Gadbois[4], Choe[2]

and Zhu[13] investigated the operator Ps,t in their interesting problems and got the corre-

sponding results. In this paper we will consider the action of the operator Ps,t on the space

Lp,q(φ). Our results contain those of the above-mentioned authors. Our main result is

Theorem A. Let φ be a normal function with constants a, b as in the definition of

normal function.

(i) If Ps,t : Lp,q(φ) −→ Lp,q(φ) (1 ≤ p < ∞, 1 ≤ q < ∞) is a bounded operator, then

s > −b, t > a.
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(ii) If t > b > a > −s, then Ps,t : Lp,q(φ) −→ Lp,q(φ) (1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞) and

Ps,t : L
(0)
∞,q(φ) −→ L

(0)
∞,q(φ) (1 ≤ q ≤ ∞) are bounded operators.

(iii) If φ(r) = (1 − r2)αlogβ(2(1− r)−1) (α > 0, β ≥ 0), then Ps,t : Lp,q(φ) −→
Lp,q(φ) (1 ≤ p <∞, 1 ≤ q <∞) is a bounded operator iff t > α > −s.

(iv) If t > b, then P0,t : Lp,q(φ) −→ Hp,q(φ) (1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞) is a bounded linear

operator. Moreover P0,tf = f for any f ∈ Hp,q(φ) (1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞).

Before proving Theorem A, we first give some of its simple corollaries.

Corollary 1.1. For 1 ≤ p < ∞, α > −1, Ps,t is a bounded operator on Lp(dvα) iff

−sp < α+ 1 < pt.

Proof. Taking p = q, φ(r) = (1− r2)(α+1)/p in Theorem A(iii) gives Corollary 1.1.

For n = 1, Zhu[13] proved Corollary 1.1 on the unit disc.

Corollary 1.2. For 1 ≤ p < ∞, 1 ≤ q < ∞, α > −1, then P0,t : Lp,q((1 − r2)α) −→
Hp,q((1− r2)α) is a bounded linear operator iff pt > α+ 1.

Proof. Taking φ(r) = (1− r2)(α+1)/p in Theorem A(iii), (iv) gives Corollary 1.2.

Gadbois[4] proved the necessity of Corollary 1.2 for 1 < p < ∞, 1 ≤ q < ∞, α > −1.

Forelli-Rudin[3] and Choe[2] proved Corollary 1.2 for p = q, α = 0 and p = q, α > −1

respectively.

It is worth to point out that the proofs of the above authors depend on the following

important facts:∫
B

|Kt(z, w)|(1− |w|2)−adV (w) ≤ C(1− |z|2)−a, ∀z ∈ B, 0 < a < t,∫
B

|Kt(z, w)|(1− |z|2)−adV (z) ≤ C(1− |w|2)−a, ∀w ∈ B, 0 < a+ t− 1 < t,

where

Kt(z, w) =
(1− |w|2)t−1

(1− < z,w >)n+t
, z, w ∈ B,

and our method is different from this.

The proof of Theorem A will be given in section two.

As the first application of Theorem A, we investigate the Gleason problem on Hp,q(φ)

and H
(0)
∞,q(φ), and obtain the following

Theorem B. Gleason problem can be solved on Hp,q(φ) (1 ≤ p, q ≤ ∞) and H
(0)
∞,q(φ) (1 ≤

q ≤ ∞). More precisely , for any integer m ≥ 1, there exists bounded linear operators Aα

on Hp,q(φ) (H
(0)
∞,q(φ)) such that if f ∈ Hp,q(φ) (H

(0)
∞,q(φ)), Dαf(0) = 0 (|α| ≤ m− 1), then

f(z) =
∑

|α|=m
zαAαf(z) on B, where α = (α1, · · · , αn) is multiindex, |α| = α1 + · · ·+ αn.

For p = q, 1 ≤ p < ∞, Zhu[12] and Choe[2] proved Theorem B in the cases φ(r) =

(1− r2)1/p and φ(r) = (1− r2)(α+1)/p respectively.

Using Theorem A and Theorem B, we obtain the characterization of Hp,q(φ) in terms of

partial derivatives. That is the following

Theorem C. Let φ be a normal function, f ∈ H(B), m be an integer.

(i) f ∈ Lp,q(φ) (1 ≤ p, q ≤ ∞) iff (1− |z|2)|α| ∂
|α|f
∂zα (z) ∈ Lp,q(φ) for all α with

|α| = m.
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(ii) f ∈ L
(0)
∞,q(φ) (1 ≤ q ≤ ∞) iff (1− |z|2)|α| ∂

|α|f
∂zα (z) ∈ L

(0)
∞,q(φ) for all α with

|α| = m.

For p = q, 1 ≤ p < ∞, Zhu[12] and Choe[2] proved Theorem C(i) in the cases of φ(r) =

(1− r2)1/p and φ(r) = (1− r2)(α+1)/p respectively. Shi[8] proved Theorem C(i) in the case

of φ(r) = (1− r2)(α+1)/p and p = q, 0 < p <∞.

In the proof of Theorem C, we will use the following result of Jevtic[5] on the duality of

Hp,q(φ) (1 ≤ p <∞, 1 ≤ q ≤ ∞).

Theorem D. For 1 ≤ p < ∞, 1 ≤ q ≤ ∞, 1
p + 1

p′ = 1, 1
q + 1

q′ = 1, let φ,ψ be normal

functions, φ(r)ψ(r) = (1− r2)β. Then (Hp,q(φ))
∗ = Hp′,q′(ψ), with pairing

(f, g) =

∫
B

f(z)g(z)(1− |z|2)β−1dv(z).

Using Theorem A, we will give a new proof of Theorem D in the case of 1 ≤ p <∞, 1 ≤
q <∞, which seems to be more natural.

The proofs of Theorems B–D will be given in section three.

In what follows, C denotes a finite positive constant, not necessarily the same at each

occurrence.

§2. The Proof of Theorem A

The following lemmas will be needed in the proof of Theorem A.

Lemma 2.1. If 1 ≤ q ≤ ∞, s+ t > 0, then

Mq(ρ, Ps,tf) ≤ C(1− ρ2)s
∫ 1

0

r2n−1(1− r2)t−1

(1− rρ)t+s
Mq(r, f)dr.

Proof. By the integral formula in polar coordinates, we have

Ps,tf(z) = 2ncn,t(1− |z|2)s
∫ 1

0

r2n−1dr

∫
∂B

(1− r2)t−1f(rζ)

(1− ⟨z, rζ⟩)n+t+s
dσ(ζ).

Taking z = ρξ, ξ ∈ ∂B, gives

|(Ps,tf)(ρξ)| ≤ C(1− ρ2)s
∫ 1

0

r2n−1(1− r2)t−1dr

∫
∂B

|f(rζ)|dσ(ζ)
|1− ⟨ρξ, rζ⟩|n+t+s

= C(1− ρ2)s
∫ 1

0

r2n−1(1− r2)t−1f̃(r, ρ, ξ)dr,

(2.1)

where

f̃(r, ρ, ξ) =

∫
∂B

|f(rζ)|
|1− ⟨ρξ, rζ⟩|n+t+s

dσ(ζ). (2.2)

If 1 < q <∞, then by Holder’s inequality and the formula in [7, 1.4.10] we have

f̃(r, ρ, ξ) ≤
{∫

∂B

|f(rζ)|qdσ(ζ)
|1− ⟨ρξ, rζ⟩|n+s+t

}1/q{∫
∂B

dσ(ζ)

|1− ⟨ρξ, rζ⟩|n+s+t

}1/q′

≤ C
1

(1− rρ)
s+t
q′

{∫
∂B

|f(rζ)|qdσ(ζ)
|1− ⟨ρξ, rζ⟩|n+s+t

}1/q

,

where 1
q +

1
q′ = 1.
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Thus using Minkowski’s inequality we obtain

Mq(ρ, Ps,tf)

≤ C(1− ρ2)s

{∫
∂B

(∫ 1

0

r2n−1(1− r2)t−1f̃(r, ρ, ξ)dr

)q
dσ(ξ)

} 1
q

≤ C(1− ρ2)s
∫ 1

0

r2n−1(1− r2)t−1

{∫
∂B

(f̃(r, ρ, ξ))qdσ(ξ)

}1/q

dr

≤ C(1− ρ2)s
∫ 1

0

r2n−1(1− r2)t−1

(1− rρ)
t+s
q′

{∫
∂B

(∫
∂B

|f(rζ)|qdσ(ζ)
|1− ⟨ρξ, rζ⟩|n+s+t

)
dσ(ξ)

}1/q

dr

≤ C(1− ρ2)s
∫ 1

0

r2n−1(1− r2)t−1

(1− rρ)t+s
Mq(r, f)dr.

If q = 1, ∞, then the lemma follows from (2.1) and (2.2) directly. This proves the

assertion made about Mq(ρ, Ps,tf).

Remark 2.1 If 1 ≤ q ≤ ∞, s+ t > 0, then we have actually proved that

Mq(ρ, P̃s,tf) ≤ C(1− ρ2)s
∫ 1

0

r2n−1(1− r2)t−1

(1− rρ)t+s
Mq(r, f)dr,

where

P̃s,tf(z) = cn,t(1− |z|2)s
∫
B

(1− |w|2)t−1|f(w)|
|1− ⟨z, w⟩|n+t+s

dv(w).

Lemma 2.2.[11,Lemma 6] For 0 < ρ < 1, s1 > s2 > 0,∫ 1

0

(1− r)s2−1

(1− rρ)s1
dr ≤ C

1

(1− ρ)s1−s2
.

Lemma 2.3. Let φ be a normal function. If s+ t > b > a > s, then∫ 1

0

φp(ρ)dρ

(1− ρ)ps+1(1− rρ)pt
≤ C

φp(r)

(1− r)p(s+t)
(0 ≤ r < 1, p > 0). (2.3)

Proof. From the definition of normal function, there exists 0 ≤ r0 < 1 such that for

r0 ≤ r < 1, r → 1,

φ(r)

(1− r)a
↘ 0,

φ(r)

(1− r)b
↗ ∞.

By the assumption s+ t > b, using Lemma 2.2 gives∫ 1

0

φp(ρ)dρ

(1− ρ)ps+1(1− rρ)pt
=

∫ r0

0

+

∫ r

r0

+

∫ 1

r

≤ C + C
φp(r)

(1− r)pb
1

(1− r)pt−pb+ps
+ C

φp(r)

(1− r)pa
1

(1− r)pt−pa+ps

≤ C
φp(r)

(1− r)p(s+t)
.

The last step is because φp(r)
(1−r)p(s+t) has a positive minimum in [0,1]. Lemma 2.3 is proved.

Lemma 2.4. Let 1 < p <∞, 1 ≤ q <∞, 1p +
1
p′ = 1, 1q +

1
q′ = 1, φ be a normal function.

Then ((Lp,q(φ))
∗ = Lp′,q′(φ

p
p′ ). The pairing is given by

(f, g) =
1

2n

∫
B

f(z)g(z)(1− |z|)−1φp(|z|)dv(z). (2.4)
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More precisely, T ∈ (Lp,q(φ))
∗ iff there is a unique function g ∈ Lp′,q′(φ

p
p′ ) such that for

any f ∈ Lp,q(φ), Tf = (f, g) and ||T || = ||g||
p′,q′,φ

p
p′
.

Proof. With the notation of [1], we can write

||f ||p,q,φ =

{∫ 1

0

r2n−1(1− r)−1φp(r)Mp
q (r, f)dr

} 1
p

= || ||fr||Lq(∂B,dσ)||Lp(I,dµ), (2.5)

where fr(z) = f(rz), I = [0, 1], dµ = r2n−1(1− r)−1φp(r)dr.

Thus, according to [1], the norm of (Lp,q(φ))
∗ is

|| ||gr||Lq′ (∂B,dσ)||Lp′ (I,dµ) =

{∫ 1

0

r2n−1(1− r)−1φp(r)Mp′

q′ (r, g)dr

} 1
p′

= ||g||
p′,q′,φ

p
p′ .

Hence (Lp,q(φ))
∗ = Lp′,q′(φ

p
p′ ).

Again according to [1], the pairing is

(f, g) =

∫
I

(∫
∂B

f(rζ)g(rζ)dσ(ζ)

)
dµ =

1

2n

∫
B

f(z)g(z)(1− |z|)−1φp(|z|)dv(z).

The rest of the proof is a direct corollary of Theorem 1 in [1]. Lemma 2.4 is proved.

We are now ready to give the

Proof of Theorem A. (i) Assume that Ps,t is bounded on Lp,q(φ). Let N be a positive

integer large enough such that fN (z) = (1− |z|2)N ∈ Lp,q(φ). Thus

(Ps,tfN )(z) = cn,t(1− |z|2)s
∫
B

(1− |w|2)N+t−1

(1− ⟨z, w⟩)n+t+s
dv(w).

Write the integrand in terms of its Taylor series. It follows easily from the orthogonality of

{wα} (α be multiindex) in B that the above integral is a constant, that is (Ps,tfN )(z) =

C(1− |z|2)s. Hence the boundedness of Ps,t on Lp,q(φ) implies

∞ > ||Ps,tfN ||pp,q,φ ≥ C

∫ 1

0

(1− r)sp−1r2n−1φp(r)dr

≥ C

∫ 1

ϵ

(1− r)sp−1+pbdr, (r0 < ϵ < 1), (2.6)

thus s > −b.
On the other hand, if 1 < p < ∞, then from Lemma 2.4 the boundedness of Ps,t on

Lp,q(φ) is equivalent to that of P ∗
s,t on Lp′,q′(φ

p
p′ ), where P ∗

s,t is the adjoint operator of Ps,t.

It is easy to compute that

P ∗
s,tf(z) = cn,t

(1− |z|2)t

φp(|z|)

∫
B

(1− |w|2)s−1φp(|w|)f(w)
(1− ⟨z, w⟩)n+t+s

dv(w).

The fact that gN (z) = (1−|z|2)N
φp(|z|) ∈ Lp′,q′(φ

p
p′ ) for sufficiently large N and the boundedness

of P ∗
s,t on Lp′,q′(φ

p
p′ ) give

∞ > ||P ∗
s,tgN ||p

′

p′,q′,φ
p
p′

≥ C

∫ 1

ϵ

(1− r)p
′t−1−p′adr (r0 < ϵ < 1). (2.7)

Hence t > a

If p = 1, then from [1] and (2.5), the norm of (Lp,q(φ))
∗ is given by

|| || � ||Lq′ (∂B,dσ)||L∞(I,dµ),
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and the pairing is given by

(f, g) =

∫
I

(∫
∂B

f(rζ)g(rζ)dσ(ζ)

)
dµ =

1

2n

∫
B

f(z)g(z)(1− |z|)−1φ(|z|)dv(z).

Thus in this case the adjoint operator of Ps,t is given by

P ∗
s,tf(z) = cn,t

(1− |z|2)t

φ(|z|)

∫
B

(1− |w|2)s−1φ(|w|)f(w)
(1− ⟨z, w⟩)n+t+s

dv(w).

As in the proof of the case p > 1, since gN (z) = (1−|z|2)N
φ(|z|) ∈ (L1,q(φ))

∗ for sufficiently large

N , the boundedness of P ∗
s,t on (Lp,q(φ))

∗ gives

∞ > || ||(P ∗
s,tgN )r||Lq′ (∂B,dσ)||L∞(I,dµ) = sup

0<r<1
C
(1− r2)t

φ(r)
.

Thus the condition lim
r→1

φ(r)
(1−r)a = 0 implies t > a.

(ii) We now prove that Ps,t : Lp,q(φ) → Lp,q(φ), 1 ≤ p, q ≤ ∞ is a bounded operator.

Write t as t = t1 + t2 = t3 + t4, which satisfies

(a) ti > 0, i = 1, 2, 3, 4, (b) a+ t1 > t3 > t1,

(c) t3 + s > t1, (d) t2 > b.

For example, taking a sufficiently small ϵ > 0, and assuming

t1 = t− (1 + ϵ)b, t2 = (1 + ϵ)b, t3 = t− (1 + ϵ)b+ (1− ϵ)a, t4 = (1 + ϵ)b− (1− ϵ)a,

we see that t1, t2, t3 and t4 satisfy the above conditions.

We first prove that for 1 < p <∞, 1 ≤ q ≤ ∞,

Mq(ρ, Ps,tf) ≤
C

(1− ρ)t3−t1

{∫ 1

0

(1− r2)pt2−1rp(2n−1)

(1− rρ)pt4
Mp
q (r, f)dr

} 1
p

. (2.8)

In fact, using Lemma 2.1, Lemma 2.2 and Holder’s inequality we obtain

Mq(ρ, Ps,tf)

≤ C(1− ρ2)s
{∫ 1

0

r(2n−1)p(1− r2)pt2−1

(1− rρ)pt4
Mp
q (r, f)dr

} 1
p

{∫ 1

0

(1− r2)p
′t1−1

(1− rρ)p′(t3+s)
dr

} 1
p′

≤ C

(1− ρ)t3−t1

{∫ 1

0

rp(2n−1)(1− r2)pt2−1

(1− rρ)pt4
Mp
q (r, f)dr

} 1
p

.

Thus, when 1 < p <∞, 1 ≤ q ≤ ∞, from (2.8) and Lemma 2.3 we have

||Ps,tf ||pp,q,φ ≤ C

∫ 1

0

(1− r)pt2−1r2n−1Mp
q (r, f)dr

∫ 1

0

φp(ρ)

(1− ρ)p(t3−t1)+1(1− rρ)pt4
dρ

≤ C

∫ 1

0

(1− r)−1r2n−1φp(r)Mp
q (r, f)dr = C||f ||pp,q,φ.

When p = 1, the result follows from Lemma 2.1 and Lemma 2.3 directly.

When p = ∞, from t > b > a > −s, there exists a positive number β such that β > b

and β + s > b > a > β − t, for example β = (1 − ϵ)b + a (ϵ be sufficiently small). Let

ψ(r) = (1−r)β
φ(r) . Then ψ is a normal function as well. From Lemma 2.1 and Lemma 2.3 we
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obtain

||Ps,tf ||∞,q,φ ≤ C sup
0<ρ<1

φ(ρ)(1− ρ)s
∫ 1

0

(1− r)t−β−1ψ(r)

(1− rρ)t+s
φ(r)Mq(r, f)dr

≤ C||f ||∞,q,φ sup
0<ρ<1

φ(ρ)(1− ρ)s
∫ 1

0

ψ(r)

(1− r)β+1−t(1− rρ)t+s
dr

≤ C||f ||∞,q,φ.

Next we prove that Ps,t is also a bounded linear operator on L
(0)
∞,q(φ) (1 ≤ q ≤ ∞).

For any 0 < δ < 1,

φ(ρ)Mq(ρ, Ps,tf) ≤ Cφ(ρ)(1− ρ)s
∫ 1

0

(1− r)t−β−1ψ(r)

(1− rρ)t+s
φ(r)Mq(r, f)dr

≤ Cφ(ρ)(1− ρ)s

(∫ 1

δ

+

∫ δ

0

)

≤ Cφ(ρ)(1− ρ)s sup
δ<r<1

φ(r)Mq(r, f)

∫ 1

0

(1− r)t−β−1ψ(r)

(1− rρ)t+s
dr

+ Cφ(ρ)(1− ρ)s||f ||∞,q,φ

∫ δ

0

(1− r)t−β−1ψ(r)

(1− rρ)t+s
dr

≤ C sup
δ<r<1

φ(r)Mq(r, f) + C(δ)||f ||∞,q,φ(1− ρ)a+s = I1 + I2.

Since f ∈ L
(0)
∞,q(φ) and a > −s, we can choose δ so that the first term is less than the given

ϵ. Then the second term goes to zero as ρ → 1, thus Ps,t is a bounded linear operator on

L
(0)
∞,q(φ).

Remark 2.2. From Remark 2.1, we have actually shown that

||P̃s,tf ||p,q,φ ≤ C||f ||p,q,φ, 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞. (2.9)

This fact will be needed in the proof of Gleason’s problem below.

(iii) If φ(r) = (1− r2)α logβ(2(1− r)−1) (α > 0, β > 0), then according to the definition

of normal function we can take a = α − ϵ, b = α + ϵ, where ϵ > 0 is any sufficiently small

number.

If Ps,t is bounded on Lp,q(φ), then from Theorem A(i) we have t > α − ϵ, s > −(α + ϵ).

It follows easily that t ≥ α, s ≥ −α. But if t = α or s = −α, then Ps,t is unbounded by

(2.6) or (2.7). Hence the boundedness of Ps,t implies t > α > −s.
On the other hand, if t > α > −s, then there exists an ϵ > 0 such that t > α+ϵ > α−ϵ >

−s. Take a = α− ϵ, b = α+ ϵ. Theorem A(ii) shows that Ps,t is bounded on Lp,q(φ).

(iv) We treat the two cases 1 ≤ p <∞ and p = ∞ separately. When 1 ≤ p <∞, [7,7.1.2]

shows that P0,tf = f for f ∈ H∞(B). Hence the result is an immediate consequence of

Theorem A(ii), since H∞(B) is dense in Hp,q(φ) (1 ≤ p < ∞, 1 ≤ q ≤ ∞) (see [10,

Proposition 2.3]).

Now let p = ∞. Assume that φ(r)ψ(r) = (1 − r2)β , φ, ψ are both normal functions,

f ∈ H∞,q(φ), g ∈ H1,q′(ψ). Then from Lebesgue dominated convergence theorem we have

lim
r→1

∫
B

g(z)fr(z)(1− |z|2)β−1dv(z) =

∫
B

g(z)f(z)(1− |z|2)β−1dv(z).
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For any given w ∈ B, take g(z) = (1− ⟨z, w⟩)−(n+β) ∈ H1,q′(ψ). Thus

cn,β

∫
B

(1− |z|2)β−1

(1− ⟨w, z⟩)n+β
f(z)dv(z) = lim

r→1
cn,β

∫
B

(1− |z|2)β−1

(1− ⟨w, z⟩)n+β
f(rz)dv(z)

= lim
r→1

f(rw) = f(w),

that is, P0,tf = f. This completes the proof of Theorem A.

§3. Some Applications

We now begin the proof of Theorem B.

Proof of Theorem B. Assume m = 1. Let Akf(z) =
∫ 1

0
∂f
∂zk

(rz)dr. Then for any

f ∈ H(B), f(0) = 0, we have f(z) =
n∑
k=1

zkAkf(z), so it remains to show that Ak is

bounded on Hp,q(φ) for 1 ≤ p, q ≤ ∞ and on H
(0)
∞,q(φ) for 1 ≤ q ≤ ∞.

Given f ∈ Hp,q(φ), for t > b we have

f(z) = cn,t

∫
B

(1− |w|2)t−1

(1− ⟨z, w⟩)n+t
f(w)dv(w) (3.1)

by Theorem A(iv). Differentiate (3.1) under the integral and then substitute the result into

the integral formula of Ak. We have

Akf(z) = (n+ t)cn,t

∫ 1

0

dr

∫
B

wk(1− |w|2)t−1f(w)

(1− r⟨z, w⟩)n+t+1
dv(w)

= (n+ t)cn,t

∫
B

wk(1− |w|2)t−1f(w)

(1− ⟨z, w⟩)n+t
1− (1− ⟨z, w⟩)n+t

⟨z, w⟩
dv(w).

Take t ∈ N, t > b. Then 1−(1−⟨z,w⟩)n+t

⟨z,w⟩ is a polynomial of ⟨z, w⟩, and so is bounded on B.

Therefore we have

|Akf(z)| ≤ C

∫
B

(1− |w|2)t−1|f(w)|
|1− ⟨z, w⟩|n+t

dv(w) = CP̃0,tf(z).

From (2.9), we get

||Akf ||p,q,φ ≤ C||P̃0,tf ||p,q,φ ≤ C||f ||p,q,φ.

We see that Ak is bounded on Hp,q(φ) (1 ≤ p, q ≤ ∞). Using Theorem A(ii) gives the proof

for H
(0)
∞,q(φ) (1 ≤ q ≤ ∞).

For m in general case, the proof is the same as that of Theorem 5 in [13]. This proves

Theorem B.

Now we apply Theorem A to prove Theorem D.

Proof of Theorem D. Let f ∈ Hp,q(φ) and g ∈ Hp′,q′(ϕ). Holder’s inequality implies

that

|(f, g)| ≤ 2n

∫ 1

0

r2n−1(1− r2)−1φ(r)ψ(r)Mq(r, f)Mq′(r, g)dr

≤ 2n||f ||p,q,φ||g||p′,q′,ψ.
This shows that every g ∈ Hp′,q′(ψ) defines a bounded linear functional Tg, by the formula

Tg(f) = (f, g) on Hp,q(φ), 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, and ||Tg|| ≤ C||g||p′,q′,ψ.
Conversely, when 1 < p < ∞, 1 ≤ q < ∞, let T ∈ (Hp,q(φ))

∗, by Hahn-Banach Theorem

T ∈ (Lp,q(φ))
∗. Thus from Lemma 2.4, there exists G ∈ Lp′,q′(φ

p
p′ ) such that for any
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f ∈ Lp,q(φ),

T (f) =
1

2n

∫
B

f(z)G(z)(1− |z|)−1φp(|z|)dv(z),

and ||T || = ||G||
p′,q′,φ

p
p′ .

We define g = P0,βG̃, where G̃(z) =
1
2n (1+ |z|)φ(|z|)

p
p′

ψ(|z|) G(z). Then Theorem A shows that

||g||p′,q′,ψ ≤ C||G̃||p′,q′,ψ ≤ C||G||
p′,q′,φ

p
p′

= C||T ||,

so g ∈ Hp′,q′(ψ). It is easy to verify that T (f) = (f, g) for any f ∈ Hp,q(φ).

When p = 1, 1 ≤ q <∞, using the similar method as in the proof of Theorem A(ii) gives

the proof. This completes the proof of Theorem D.

Before proving Theorem C, we first prove

Lemma 3.1. There exists a constant C such that for any f ∈ Hp,q(φ) (0 < p, q ≤ ∞)

we have

(i)
∣∣∣∂|α|f
∂zα (0)

∣∣∣ ≤ C||f ||p,q,φ,

(ii) ||
∑

|α|≤m−1

1
α!
∂|α|f
∂zα (0)zα||p,q,φ ≤ C||f ||p,q,φ.

Proof. (i) Let t > n
q + b. For any f ∈ Hp,q(φ), the equality (3.1) gives

(1− |z|2)|α| ∂
|α|f

∂zα
(z) = C(1− |z|2)|α|

∫
B

(1− |w|2)t−1wαf(w)dv(w)

(1− ⟨z, w⟩)n+t+|α| . (3.2)

Here C = (n+ t)(n+ t+ 1) · · · (n+ t+ |α| − 1)cn,t. Take z = 0 in (3.2) to get∣∣∣∣∂|α|f∂zα
(0)

∣∣∣∣ ≤ C

∫ 1

0

(1− r2)t−1M1(r, f)dr. (3.3)

By the inequality φ(r) ≥ C(1− r)b, and Proposition 2.1 in [10],

M1(r, f) ≤ Cφ−1(r)(1− r)−
n
q ||f ||p,q,φ ≤ C(1− r)−b−

n
q ||f ||p,q,φ.

The desired inequality follows from (3.3) and the above inequality.

(ii) is a direct corollary of (i). This completes the proof of Lemma 3.1.

Proof of Theorem C. (i) For any f ∈ Hp,q(φ) (1 ≤ p, q ≤ ∞), from (3.2) we have

(1− |z|2)m ∂
mf

∂zα
(z) = (n+ t) · · · (n+ t+m− 1)Pm,tSαf(z), (3.4)

where t > b, |α| = m,Sαf(z) = zαf(z).

Since Sα and Pm,t(t > b) are bounded on Lp,q(φ) by Theorem A(ii), we have∥∥∥(1− |z|2)m ∂
mf

∂zα
(z)
∥∥∥
p,q,φ

≤ C||Pm,tSαf(z)||p,q,φ ≤ C||f ||p,q,φ.

This proves that f ∈ Hp,q(φ) implies (1− |z|2)|α| ∂
|α|f
∂zα ∈ Lp,q(φ).

Conversely we prove that f ∈ Hp,q(φ) if f ∈ H(B) and (1 − |z|2)|α| ∂
|α|f
∂zα ∈ Lp,q(φ). We

treat the two cases 1 ≤ p <∞, 1 ≤ q ≤ ∞ and p = ∞, 1 ≤ q ≤ ∞ separately.

Case 1. 1 ≤ p <∞, 1 ≤ q ≤ ∞.

For f ∈ Hp,q(φ), denote

||f ||m,p,q,φ =
∑

|α|≤m−1

∣∣∣∣∂|α|f∂zα
(0)

∣∣∣∣+ ∑
|α|=m

||(1− |z|2)m ∂
mf

∂zα
(z)||p,q,φ.
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We claim that || � ||p,q,φ and || � ||m,p,q,φ are equivalent norms on Hp,q(φ).

In fact, by Theorem D, (Hp,q(φ))
∗ = Hp′,q′(ψ), the pairing is given by

(f, g) =

∫
B

f(z)g(z)(1− |z|2)β−1dv(z).

For any g ∈ Hp′,q′(ψ), by Theorem B and Lemma 3.1(ii), we can write

g(z) = g0(z) +
∑

|α|=m

zαgα(z),

where g0(z) =
∑

|α|≤m−1

1
α!
∂|α|g
∂zα (0)zα, ||g0||p′,q′,ψ ≤ C||g||p′,q′,ψ, ||gα||p′,q′,ψ ≤ C||g||p′,q′,ψ.

Thus we have

(f, g) = (f0, g0) +
∑

|α|=m

(Sαf, gα) = (f0, g0) +
∑

|α|=m

(Sαf, P0,m+βgα),

where f0(z) =
∑

|α|≤m−1

1
α!
∂|α|f
∂zα (0)zα. A direct computation gives

(Sαf, P0,m+βgα) =
cn,m+β

cn,β
(Pm,βSαf, gα) = C(Tαf, gα),

where Tαf(z) = (1− |z|2)α ∂
|α|f
∂zα (z), and the last step uses the equality (3.4). Now we have

(f, g) = (f0, g0) + C
∑

|α|=m

(Tαf, gα). (3.5)

By Lemma 3.1, we get

|(f0, g0)| ≤ ||f0||p,q,,φ||g0||p′,q′,ψ ≤ C
∑

|α|≤m−1

∣∣∣∣∂|α|f∂zα

∣∣∣∣ ||g||p′,q′,ψ,

|(Tαf, gα)| ≤ C||Tαf ||p,q,φ||gα||p′,q′,ψ ≤ C||Tαf ||p,q,φ||g||p′,q′,ψ.
From (3.5) and the above inequality, we have

||f ||p,q,φ ≤ C sup{|(f, g)| : g ∈ Hp′,q′(ψ), ||g||p′,q′,ψ = 1}

≤ C
{ ∑

|α|≤m−1

∣∣∣∂|α|f
∂zα

(0)
∣∣∣+ ∑

|α|=m

||(1− |z|2)m ∂
mf

∂zα
(z)||p,q,φ

}
.

Together with the above results we have proved the claim.

Next by the claim we prove that f ∈ H(B), ||f ||m,p,q,φ ≤ ∞ implies f ∈ Lp,q(φ).

Let fr(z) = f(rz). Then fr ∈ Hp,q(φ). Using the claim and the monotonicity of

Mq(r,
∂mf
∂zα ) with respect to r yields ||fr||p,q,φ ≤ C||fr||m,p,q,φ ≤ C||f ||m,p,q,φ. Letting r → 1,

we obtain ||f ||p,q,φ ≤ C||f ||m,p,q,φ. This proves that f ∈ Hp,q(φ) if ||f ||m,p,q,φ < ∞ and

f ∈ H(B).

Case 2. p = ∞, 1 ≤ q ≤ ∞.

From [10], we know that (H
(0)
∞,q(φ))∗ = H1,q′(ψ). Hence the same proof as in case 1 shows

that || � ||∞,q,φ and || � ||m,∞,q,φ are equivalent norms on H
(0)
∞,q(φ). Therefore

||fr||∞,q,φ ≤ C||fr||m,p,q,φ ≤ C||f ||m,∞,q,φ.

That is, φ(ρ)Mq(rρ, f) ≤ C||f ||m,∞,q,φ, 0 ≤ ρ < 1. Letting r → 1, we get φ(ρ)Mq(ρ, f) ≤
C||f ||m,∞,q,φ, thus f ∈ H∞,q(φ). This proves Theorem C(i).

(ii) By Theorem A(ii) and (3.4), we have (1− |z|2)|α| ∂
|α|f
∂zα (z) ∈ L

(0)
∞,q(φ) if f ∈ H

(0)
∞,q(φ)

(1 ≤ q ≤ ∞).
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Conversely, if f ∈ H(B), (1 − |z|2)|α| ∂
|α|f
∂zα (z) ∈ L

(0)
∞,q(φ) (|α| = m), then by Theorem

C(i) we get f ∈ H∞,q(φ). Hence by Proposition 2.4 in [10], in order to prove f ∈ H
(0)
∞,q(φ)

we need only to prove that lim
σ→1

||f − fσ||∞,q,φ = 0. Since || � ||∞,q,φ and || � ||m,∞,q,φ are

equivalent norms on H
(0)
∞,q(φ), and

∂|α|fσ
∂zα

(rz) = σ|α| ∂
|α|f

∂zα
(rσz), (3.6)

we have
||f − fσ||∞,q,φ ≤ C||f − fσ||m,∞,q,φ

≤ C
{ ∑

|α|≤m−1

(1− σ|α|)
∂|α|f

∂zα
(0) +

∑
|α|=m

||Tα(f − fσ)||∞,q,φ

}
.

Therefore it remains to prove lim
σ→1

||Tα(f − fσ)||∞,q,φ = 0.

Recall that Tαf ∈ L
(0)
∞,q(φ). By (3.6) and the monotonicity of means Mq, there exists

0 < ρ0 < 1 such that for ρ > ρ0,

φ(ρ)Mq(ρ, Tα(f − fρ)) ≤ Cφ(ρ)Mq(ρ, Tαf) < ϵ.

On the other hand, if 0 < ρ < ρ0, since f ∈ H(B), we have

φ(ρ)Mq(ρ, Tα(f − fσ)) ≤ φ(ρ)(1− ρ2)|α|M∞

(
ρ,
∂|α|

∂zα
(f − fσ)

)
≤ Cmax

z∈B

∣∣∣∂|α|f
∂zα

(ρz)− ∂|α|fσ
∂zα

(ρz)
∣∣∣ < ϵ (σ > σ0).

Namely sup
0<ρ<1

φ(ρ)Mq(ρ, Tα(f − fσ)) < ϵ, (σ > σ0). That is,

lim
r→1

||Tα(f − fσ)||∞,q,φ = 0.

This proves Theorem C.
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