
Chin. Ann. of Math.
18B: 3(1997),277-282.

ASYMPTOTIC HODGE THEORY IN

SEVERAL VARIABLES: THE FLAT CASE

Tu Lihuang*

Abstract

In the flat case, the answer to the problem posed by Steenbrink and Zucker is given.
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§1. Introduction

We consider the degeneration of Hodge structure in the geometric case. By the latter, we

mean a diagram

f ′
X∗= X − Y →X
↓ ↓
S∗ = S − T → S

f

where X is a complex Kähler manifold, S is a complex manifod, f is a proper surjective

holomorphic morphism, T and Y (= f−1(T )) are divisors with normal crossings, and f ′ =

f |X∗ is proper and smooth.

Then V= Rmf ′∗C is a local system on S∗ underlying a variation of Hodge structure

of weight m. The associated holomorphic vector bundle V = OS∗ ⊗C V ∼= Rmf ′∗Ω
·
X∗/S∗

has the decreasing Hodge filtration, given by Fp ∼= Rmf ′∗F
pΩ·

X∗/S∗ , where F denotes the

usual truncation from below. Steenbrink[6] and Clemens[1] studied the de Rham theoretic

realization of the limit mixed Hodge structure of Schmid[5], defind for abstract variations of

Hodge structure, in the geometric case when dimCS = 1. Part of their theory gives:

(i) The “canonical extension” of V (see [2, p.91]) is given by Ṽ ∼= Rmf∗Ω
·
X/S(log Y ),

with Hodge filtration F̃p ∼= Rmf∗F
pΩ·

X/S(log Y ); the fiber Ṽ(0) of Ṽ at 0 is given by

Ṽ(0) = Hm(Y,Ω·
X/S(log Y ))⊗OY ), whose filtration {Fp(0)} is induced by F .

(ii) Assume for simplicity that Y is reduced. Steenbrink constructed an F -filtered “res-

olution” A·,· of Ω·
X/S(log Y ) ⊗ OY that admits a second (useful) filtration and underlies a

cohomological mixed Hodge complex (in the sense of [4, §8]). This is shown to induce the

limit mixed Hodge structure.

Steenbrink and Zucker posed the following (see [7, p.495])

Problem. Carry out the analogue of de Rham theoretic realization of the limit mixed

Hodge structure in the geometric case when the dimension of S is greater than one.
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Assumption. Towards finding an answer to the above problem, we make the hypothesis

that f is flat over S. The mapping f : X → S then separates variables in local coordinates.

We assume, only for simplicity of notation, that dimCS = 2. The local data of this geometric

case (at a singular point of T ) is given by S = ∆2, T = T1∪T2, where Ti = {(t1, t2) ∈ ∆2|ti =
0}(i = 1, 2), Y = f−1(T ) = Y1 ∪ Y2, Yi = f−1(Ti) (i = 1, 2) and Z = Y1 ∩ Y2 = f−1(0, 0).

In a coordinate system (x, y) = (x1, · · · , xm; y1, · · · , yn) on a neighborhood of Q ∈ Z, the

mapping f can be written as f(x, y) =
( m∏
i=1

xaii ,
n∏
j=1

y
bj
j

)
with ai, bj ∈ Z and ai, bj ≥ 0.

§2. Main Results

We assume throughout that f is flat over S. Our main results are Theorems 2.1 and 2.2

below.

Theorem 2.1. The canonical extension of V is given by Ṽ ∼= Rmf∗Ω
·
X/S(log Y ) and the

fiber Ṽ(0, 0) of Ṽ at (0, 0) is given by Ṽ(0, 0) ∼= Hm(Z,Ω·
X/S(log Y )⊗OZ).

The limit mixed Hodge structure lives naturally on the fiber Ṽ(0, 0), which is the reason

why we are interested in the expression for Ṽ(0, 0) (see §1).
In order to put a mixed Hodge structure on Ṽ(0, 0), we replace the complex Ω·

X/S(log Y )⊗
OZ by B·, a bigraded complex with terms

Bp,q =
⊕

q′+q′′=q

Ωp+q+2
X (log Y )/(W ′

q′ +W ′′
q′′)Ω

p+q+2
X (log Y ) (p, q ≥ 0),

where W ′ and W ′′ are the weight filtrations with respect to Y1 and Y2 respectively, given by

W ′
q′Ω

r
X(log Y ) = Ωq

′

X(log Y )∧Ωr−q
′

X (log Y2), W ′′
q′′Ω

r
X(log Y ) = Ωq

′′

X (log Y )∧Ωr−q
′′

X (log Y1),

and differentials

d : Bp,q → Bp+1,q induced by d in Ω·
X(log Y ),

Θ : Bp,q → Bp,q+1 induced by ∧ (θ1 + θ2), where θi = f∗dti/ti (i = 1, 2).

One places filtrations M and F on B· as follows:

(i) MkB
p,q =

⊕
q′+q′′=q

Wk+2q+2Ω
p+q+2
X (log Y )/(W ′

q′ +W ′′
q′′)Ω

p+q+2
X (log Y ),

where WlΩ
r
X(log Y ) = ΩlX(log Y ) ∧ Ωr−lX .

(ii) F rBp,q =

{
Bp,q if p ≥ r,
0 if p < r.

Theorem 2.2. Assume for simplicity that Z is reduced. Then

(i) B· is an F -filtered resolution of Ω·
X/S(log Y )⊗OZ ,

(ii) B· (with a suitable rational structure) is a cohomological mixed Hodge complex that

induces the limit mixed Hodge structure on Hm(Z,Ω·
X/S(log Y )⊗OZ).

This gives the solution of the above problem in the flat case. The underlying theme of

the proof is to use the local separation of variables to reduce to the local results in [6].

Remark. The objects in Theorem 2.2 make sense even without the flatness assumption.

§3. Proof of Theorem 2.1.

The canonical extension is characterized by certain properties, so it is enough to check

that the following conditions hold:
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(i) Rmf∗Ω
·
X/S(log Y ) is locally free on S.

(ii) The Gauss-Manin connection ∇ extends to have logarithmic poles on T :

∇ : Rmf∗Ω
·
X/S(log Y )→ Ω1

S(log T )⊗Rmf∗Ω
·
X/S(log Y ).

(iii) The eigenvalues λ of the residues of ∇ on Ti(i = 1, 2) satisfy 0 ≤ Reλ < 1.

We prove (i) by showing that for any m ∈ Z, the function

hm(t1, t2) = dimCH
m(X(t1,t2),Ω

·
X/S(log Y )⊗OX(t1,t2)

)

is constant on S, where X(t1,t2) = f−1(t1, t2) for (t1, t2) ∈ ∆2. The only serious point is to

verify that hm(t1, t2) does not jump when (t1, t2) becomes (0, 0) ∈ ∆2.

Let ∆̃∗2 be the universal covering of ∆∗2. Denote X̃∗ = X ×∆2 ∆̃∗2 and let k : X̃∗ → X

be the projection, i : Z → X the injection. We introduce an intermediate complex

L· =
⊕
α1,α2

L·
α1,α2

(L·
α1,α2

= i−1t−α1
1 t−α2

2 Ω·
X(log Y )[log t1, log t2], α1, α2 ∈ Q ∩ [0, 1])

to establish a quasi-isomorphism between Ω·
X/S(log Y )⊗OZ and i−1k∗Ω

·
X̃∗ :

i−1k∗Ω
·
X̃∗

ϕ
←↩ L· ψ→ Ω·

X/S(log Y )⊗OZ ,

where the natural map ϕ is injective, ψ is defined by sending

ω = t−α1
1 t−α2

2

r∑
i=0

s∑
j=0

ωi,j(log t1)
i(log t2)

j ,

a section of L·
α1,α2

, to the image of ω0,0 under the natural map

i−1Ω·
X(log Y )→ Ω·

X/S(log Y )⊗OZ .

Both ϕ and ψ are quasi-isomorphisms, because they induce the isomorphisms of coho-

mology sheaves:

Hq(i−1k∗Ω
·
X̃∗)

∼=←−
Hq(ϕ)

Hq(L·)
∼=−→

Hq(ψ)
Hq(Ω·

X/S(log Y )⊗OZ).

This can be checked by calculating the stalks of these cohomology sheaves at a point

Q ∈ Z, as in [6, §2]. In fact, they have the same representatives.

Therefore we have

Hq(Z,Ω·
X/S(log Y )⊗OZ) ∼= Hq(Z, i−1k∗Ω

·
X̃∗) ∼= Hq(X, k∗Ω

·
X̃∗)

∼= Hq(X̃∗,C) ∼= Hq(X(t1,t2),C)

for (t1, t2) ∈ ∆∗2.

(ii) is automatic, since the Gauss-Manin connection can be constructed as the connecting

homomorphism in the long exact sequence of hypercohomology, associated to the exact

sequence of complexes:

0→ f∗Ω1
S(log T )⊗ Ω·

X/S(log Y )[−1]→ Ω·
X(log Y )→ Ω·

X/S(log Y )→ 0.

Finally, applying Steenbrink’s result (see [6, (2.20)]), we see that (iii) is true.

§4. Proof of Theorem 2.2

The rational structure that underlies B· can be constructed as a complex of Q-vector

spaces C · (see [7, §5]), as follows. For any space V , let C·(V ) denote the complex of sheaves
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of germs of rational-valued singular cochains on V . Hence Hm(V,C·(V )) ∼= Hm(V,Q). If

h : V → X is a morphism, put K ·(V ) = i−1h∗C
·(V ). For j = 1, 2, let prj : ∆

2 = ∆×∆→ ∆

be the projection from the product ∆×∆ onto its jth factor ∆. We have the composition

fj = prj ◦ f : X
f→ ∆2 prj→ ∆, and the composition πj = prj ◦ π : ∆̃∗2 π→ ∆2 prj→ ∆, where π

is the covering map, given by (u1, u2) → (e2π
√
−1u1 , e2π

√
−1u2). Denote X∗

j = X − Yj , and
let X̃∗

j = X ×∆ ∆̃∗2, kj the projection:

X̃∗
j

kj→X
↓ ↓
∆̃∗2πj→∆

fj

The monodromy transformation T1, induced by the automorphism (x, y;u1, u2) 7→ (x, y;

u1 − 1, u2) of X̃∗
1 , lifts to an automorphism of K·(X̃∗

1 ). Let
′B· =

∪
m≥0

ker{(T1 − I)m+1 :

K·(X̃∗
1 ) → K·(X̃∗

1 )}. If K· is a complex of Q-vector spaces and r ∈ Z, put K ·(r) =

(2π
√
−1)rK·. Let ρ(′B)· denote the mapping cone of the morphism δ1 = − 1

2π
√
−1

log T1 :′

B· →′ B·(−1), i.e., ρ(′B)p =′ Bp ⊕′ Bp−1(−1) and d1 : ρ(′B)p → ρ(′B)p+1 is given by

d1(x
′, y′) = (d1x

′,−dy′+δ1x′), θ1 : ρ(′B)· → ρ(′B)·(1) (see [1]) is given by θ1(x
′, y′) = (0, x′).

Starting out with the complex K·(X̃∗
2 ) and its automorphism T2, the monodromy trans-

formation induced by the automorphism (x, y;u1, u2) → (x, y;u1, u2 − 1) of X̃∗
2 , we obtain

the mapping cone ρ(′′B)· with two maps d2, θ2 by performing the same construction.

Then we put R· = ρ(′B)· ⊗Q ρ(′′B)·. The two morphisms d,Θ on Rm are given by

d = d1 ⊗ 1 + (−1)m(1⊗ d2) and Θ = θ1 ⊗ 1 + (−1)m(1⊗ θ2) respectively.
Let τrK

· be the canonical filtration of a complex K ·, given by

τrK
p =

 Kp if p < r,
kerd if p = r,
0 if p > r.

For a tensor product K · ⊗Q L· of complexes, we have partial canonical filtrations

τ ′r(K
· ⊗Q L·) = (τrK

·)⊗Q L· and τ ′′r (K
· ⊗Q L·) = K · ⊗Q (τrL

·).

Note that

Grτl (K
· ⊗Q L·) ∼= Hl(K· ⊗Q L·)[−l] =

⊕
l′+l′′=l

Hl
′
(K ·)⊗Q Hl

′′
(L·)[−l]

∼=
⊕

l′+l′′=l

Grτ
′

l′ (K
·)⊗Q Grτ

′′

l” (L·).

We finally define the double complex C· as

C ·,q =
⊕

q′+q′′=q

R·(q + 2)[q + 2]/(τ ′q′ + τ ′′q′′){R·(q + 2)[q + 2]} (q ≥ 0)

with differentials

d : Cp,q → Cp+1,q induced by d in R·, Θ : Cp,q → Cp,q+1 induced by Θ in R·.

Then C · ⊗Q C is quasi-isomorphic to B·. The filtration M on C · is given by

MkC
.,q =

⊕
q′+q′′=q

τk+2q+2{R·(q + 2)[q + 2]}/(τ ′q′ + τ ′′q′′){R·(q + 2)[q + 2]}.
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In the complex GrMk C
·,Θ induces the zero map. We have

GrMk C
· ∼=

⊕
q≥0,−k

GrMk C
.,q[−q]

=
⊕

q≥0,−k

⊕
q′+q′′=q

Grτk+2q+2

{ R·(q + 2)[q + 2]

(τ ′q′ + τ ′′q′′)(R
·(q + 2)[q + 2])

}
[−q]

∼=
⊕

q≥0,−k

⊕
q′+q′′=q

⊕
k′+k′′=k

k′≥−q′ k′′≥−q′′

Q
Ỹ

(k′+2q′+1)
1 ∩Ỹ (k′′+2q′′+1)

2

(−k − q)[−k − 2q].

In the complex GrMk B
·, we have

GrMk B
· =

⊕
q≥0,−k

⊕
q′+q′′=q

⊕
k′+k′′=k

k′≥−q′ k′′≥−q′′

GrW
′

k′+2q′+1Gr
W ′′

k′′+2q′′+1Ω
·
X(log Y )(see [2])

∼=
⊕

q≥0,−k

⊕
q′+q′′=q

⊕
k′+k′′=k

k′≥−q′ k′′≥−q′′

Ω·
Ỹ

(k′+2q′+1)
1 ∩Ỹ (k′′+2q′′+1)

2

[−k − 2q],

F pGrMk B
· ∼=

⊕
q≥0,−k

⊕
q′+q′′=q

⊕
k′+k′′=k

k′≥−q′ k′′≥−q′′

F p+q+2Ω·
Ỹ

(k′+2q′+1)
1 ∩Ỹ (k′′+2q′′+1)

2

[−k − 2q].

Thus

Hn(X,F pGrMk B
·) ∼=

⊕
q≥0,−k

⊕
q′+q′′=q

⊕
k′+k′′=k

k′≥−q′ k′′≥−q′′

F p[Hn−k−2q(Ỹ
(k′+2q′+1)
1 )

∩
Ỹ

(k′′+2q′′+1)
2 ,C)⟨−k − q⟩],

where ⟨−r⟩ indicates a Tate twist. So GrMk B
· is a direct sum of cohomological Hodge com-

plexes of weight −k−2q−2(−k− q) = k, as is required for applying Deligne’s Theorem (see

[4, (8.1.9)]): B· and the quasi-isomorphisms with its rational structure comprise a cohomo-

logical mixed Hodge complex that induces a mixed Hodge structure on its hypercohomology.

To put a mixed Hodge structure on Hm(Z,Ω·
X/S(log Y ) ⊗ OZ), we verify that B· is

actually an F -filtered resolution of Ω·
X/S(log Y )⊗OZ , thus reducing to the preceding. This

can be done by showing that

0 −→ ΩpX/S(log Y )⊗OZ
∧θ1∧θ2−→ Bp,0

∧Θ−→ Bp,1
∧Θ−→ Bp,2−→· · · (4.1)

is exact.

For this, we place another weight filtration W on B·:

WlB
p,q =

⊕
q′+q′′=q

Wl+q+2Ω
p+q+2
X (log Y )/(W ′

q′ +W ′′
q′′)Ω

p+q+2
X (log Y ) (0 ≤ l ≤ p).

The weight filtration Wl on Ω·
X/S(log Y )⊗OZ is the image of WlΩ

·
X(log Y ).

We show that the complex

0→ GrWl (ΩpX/S(log Y )⊗OZ→GrWl Bp,0→GrWl Bp,1→GrWl Bp,2→· · · (4.2)

is exact for all l. Via Poincaré residues, the complex (4.2) is isomorphic to the complex

0 −→ ΩrX
I(Z)ΩrX(log Y )

θ̃1⊗θ̃2−→ E0 Θ̃−→ E1 Θ̃−→ E2−→· · · , (4.3)
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where Ek =
⊕

k′+k′′=k

Ωr
Ỹ

(k′+1)
1 ∩Ỹ (k′′+1)

2

(k = 0, 1, · · · ); θ̃1, θ̃2 and Θ̃ are induced by θ1, θ2 and

Θ. The stalk of the complex (4.3) at Q ∈ Z is isomorphic to the complex

0 −→ C{x, y}
(x1 · · ·xm; y1 · · · yn)

δ1⊗δ2−→ K0 δ−→ K1 δ−→ K2 δ−→ · · · , (4.4)

where

Kk =
⊕

k′+k′′=k

∏
1≤i′1<···<i′

k′+1
≤m

1≤i′′1<···<i′′
k′′+1

≤n

C{x, y}
(xi′1 , · · · , xi′k+1

; yi′′1 , · · · , yi′′k+1
)
,

δ1, δ2 and δ3 are combinatorial objects induced by θ̃1, θ̃2 and Θ̃.

Instead of the complex (4.4), we look at the complex

0→ C[x, y]

(x1 · · ·xm; y1 · · · yn)
δ1⊗δ2→ L0 δ→ L1 δ→ L2→· · · , (4.5)

where

Lk =
⊕

k′+k′′=k

∏
1≤i′1<···<i′

k′+1
≤m

1≤i′′1<···<i′′
k′′+1

≤n

C[x, y]

(xi′1 , · · · , xi′k+1
; yi′′1 , · · · , yi′′k+1

)
(k = 0, 1, 2, · · · ).

The complex (4.5) can be thought of the tensor product of two exact complexes

0 −→ C[x]

(x1 · · ·xm)

δ1−→ ′L0 δ1−→ ′L1 δ1−→ ′L2−→· · · ,

0 −→ C[y]

(y1 · · · yn)
δ2−→ ′′L0 δ2−→ ′′L1 δ2−→ ′′L2−→· · · ,

where

′Lk
′
=

∏
1≤i′1<···<i′

k′+1
≤m

C[x]

(xi′1 , · · · , xi′k′+1
)
(k′ = 0, 1, 2, · · · ),

′′Lk
′′
=

∏
1≤i′′1<···<i′′

k′′+1
≤n

C[y]

(yi′′1 , · · · , xi′′k′′+1
)
(k′′ = 0, 1, 2, · · · ).

By the Künneth formula, we obtain the exactness of the complex (4.5). Since C{x, y} is
flat over C[x, y], the complex (4.4) is exact. Therefore the complex (4.1) is exact as desired.
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