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Abstract

The author introduces a notion of weak I sequences and characterizes such sequences by
means of homological methods. This notion extends the notion of weak M -sequences and thus

extends the notions of generalized Cohen-Macaulay modules and Buchsbaum modules to more
general cases
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§1. Introduction

The goal of this paper is to characterize weak I sequences and M -standard ideal by means

of homological methods. The notion of weak I sequence is closely related to the finiteness

property of local cohomology groups with support in V(I). Our characterization is similar

to that of regular sequences given in [7].

Let A be a commutative Noetherian local ring with the maximal ideal m and I be an

ideal of A. Let M be a finite A-module of dimension d. We say that a sequence x1, · · · , xr

contained in I is a weak I sequence with respect to M , if the inclusion

(xn1
1 , · · · , xni−1

i−1 )M : xni
i ⊆ (xn1

1 , · · · , xni−1

i−1 )M : In

holds, where 1 6 i 6 r, xn0
0 = 0, n being a fixed positive integer and n1, · · · , nr running

through all positive integers. Recall that if I = m and r = d, then that a weak m sequence

x1, · · · , xd with respect to M exists implies that M is a generalized Cohen-Macaulay A-

module and that x1, · · · , xd must be a system of parameters for M . In this case, every

system of parameters for M forms a weak m sequence[3]. Then it raises a natural question

whether all the maximal weak I sequences have the same length. After we get a necessary

and suffcient characterization of weak I sequences by means of the homology of Koszul

complex ([Theorem 3.1]), we obtain a positive answer to the question ([Theorem 3.4]). At

the end of the paper we consider the case that the length of the maximal weak I sequence

is d and extend the notion of standard ideals in [13] to general cases.

Throughout this paper, let A be a commutative Notherian local ring with unit and m

the maximal ideal of A. We always denote by I a proper ideal of A and by M a finite

A-module. Let Hi
I(·) stand for the ith local cohomology group relative to I and ΓI(M)

stand for H0
I (M). Finally we use Z+ to denote the set of positive integers.
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§2. Weak I Sequences

In this section we will give the defintion of weak I sequences with respect to M and

discuss some basic properties.

Definition 2.1. Let I be an ideal of A and M a finite A-module. A sequence x1, · · · , xr

contained in I is said to be a weak I sequence with respect to M , if for 1 ≤ i ≤ r, n a fixed

positive integer

(xn1
1 , · · · , xni−1

i−1 )M : xni
i ⊆ (xn1

1 , · · · , xni−1

i−1 )M : In (2.1)

holds for n1, n2, · · · , nr running through all positive integers.

In the rest of the paper we will simply call x1, · · · , xr a weak I sequence if it causes no

confusion. Clearly, any M -sequence contained in I is a weak I sequence. If x1, · · · , xr is a

weak I sequence and n1, · · · , nr ∈ Z+, xn1
1 , · · · , xnr

r is also a weak I sequence. If ΓI(M) ̸= M

and M ′ = M/ΓI(M), a weak I sequence x1, x2, · · · , xr with respect to M is also a weak I

sequence with respect to M ′. In fact, if x1, x2, · · · , xr satisfies (2.1), then

(xn1
1 , · · · , xni−1

ni−1
)M ′ : xni

i ⊆ (xn1
1 , · · · , xni−1

i−1 )M ′ : I2n.

Furthermore, if x1, · · · , xr is a weak I sequence, by definition xi, · · · , xr is a weak I sequence

with respect to M/(xn1
1 , · · · , xni−1

i−1 )M .

The following proposition is a simple generalization of a result in [4].

Proposition 2.1 (i) If ΓI(M) = M , then Hi
I(M) = 0 for all i > 0.

(ii) If x ∈ I and (0 :M x) ⊆ ΓI(M), then we have the local cohomology long exact sequence

0 −→ (0 :M x) −→ H0
I (M)

x−→ H0
I (M) −→ H0

I (M/xM)

−→ H1
I (M)

x−→ H1
I (M) −→ · · · .

Lemma 2.1. Let I be an ideal of A and M a finite A-module. Then every maximal weak

I sequence has the length r ≥ 1.

Proof. Since A is Noetherian and M a finite A-module, the accending chain of submod-

ules

(0 :M I) ⊆ (0 :M I2) ⊆ (0 :M I3) ⊆ · · ·

must stop at some s (s ∈ Z+). Hence ΓI(M) = (0 :M Is). If ΓI(M) = M , then any element

x ∈ I is a weak I sequence. If ΓI(M) ̸= M , put M ′ = M/ΓI(M). Consider the short exact

sequence

0 −→ ΓI(M) −→ M −→ M ′ −→ 0,

from it we can deduce that H0
I (M

′) = 0. Thus there exists an M ′-regular element x ∈ I

such that 0 :M xn ⊆ (0 :M Is) for all n > 0.

Now, we consider the converse to the part (i) of Proposition 2.1.

Proposition 2.2. Let I be an ideal of the local ring A and M a finite A-module. If there

exists a positive integer n such that InHi
I(M) = 0 for all i ≥ 0, then M = ΓI(M).

Proof. We use induction on the dimension of M . For dimM = 0, the result is trivial.

Now suppose the statement holds for those A-modules with dimension less than dimM . If

M ̸= ΓI(M), then we put M ′ = M/ΓI(M). Clearly ΓI(M
′) ̸= M ′. Consider the short exact

sequence

0 −→ H0
I (M) −→ M −→ M ′ −→ 0,
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this implies Hi
I(M

′) ≃ Hi
I(M) for all i ≥ 1. Since H0

I (M
′) = 0, there exists an M ′-regular

element x ∈ I. For a positive integer s such that s > 2n, consider the following short exact

sequence

0 −→ M ′ xs

−→ M ′ −→ M ′/xsM ′ −→ 0.

We have the long exact sequence

0 −→ H0
I (M

′/xsM ′) −→ H1
I (M

′)
xs

−→ H1
I (M

′) −→ · · · .

From this we have I2nHi
I(M

′/xsM ′) = 0 for all i ≥ 0. Since

dim M ≥ dim M ′ > dim (M ′/xsM ′),

by the induction hypothesis, we have

ΓI(M
′/xsM ′) = M ′/xsM ′, i.e. I2nM ′ ⊆ xsM ′.

So I2nM ′ ⊆ xs−2nI2nM ′. By Nakayama lemma, we have I2nM ′ = 0. Hence ΓI(M) = M ,

this is a contradiction.

Proposition 2.3. Let I be an ideal of A and M a finite A-module. If there exists a weak

I sequence x1, · · · , xs such that

(xn1
1 , · · · , xni−1

i−1 )M : xni
i ⊆ (xn1

1 , · · · , xni−1

i−1 )M : Ir,

where 1 ≤ i ≤ s, r is a fixed positive integer and n1, · · · , ns run through all positive integers.

Then there exists an integer k ∈ Z+ which depends only on r such that IkHi
I(M) = 0 for

i < s.

Proof. We use induction on the dimension d of M . For d = 0, the result is trivial.

Suppose the conclusion holds for those A-modules M1 with dimM1 < d. If ΓI(M) = M , the

result follows from Proposition 2.1. Now, If ΓI(M) ̸= M , put M ′ = M/ΓI(M), then x1 is

M ′-regular. For n ∈ Z+, consider the following long exact sequence

· · · −→ H0
I (M

′/xn
1M

′) −→ H1
I (M

′)
xn
1−→ H1

I (M
′) −→ H1

I (M
′/xn

1M
′) −→ · · · .

Since x2, · · · , xs is a weak I sequence with respect to M ′/xn
1M

′, the integer r in the theorem

may be selected such that r does not change for each A-module M ′/xn
1M

′(n ∈ Z+). On the

other hand, dimM ≥dimM ′ >dim(M ′/xn
1M

′). Hence we can use our induction hypothesis

to assert that there exists an integer k > 0 such that

IkHi
I(M

′/xn
1M

′) = 0 for all i < s− 1, and all n ∈ Z+.

Now, for any a ∈ Hi
I(M

′) (i < s), we can choose n ∈ Z+ such that xn
1a = 0. Hence it can

be seen easily from the long exact sequence that Ika = 0. This implies IkHi
I(M) = 0 for

i < s.

One can prove immediately the following by Proposition 2.2 and Proposition 2.3.

Corollary 2.1. Let I be an ideal of A and M a finite A-module. If ΓI(M) ̸= M , then

any maximal weak I sequence has length r ≤dimM .

By means of Proposition 2.1 and by induction on r, we have

Propostion 2.4. Suppose IkHi
I(M) = 0, for i < r. Let x1, · · · , xr be a weak I sequence.

Then

(xn1
1 , · · · , xni−1

i−1 )M : xni
i ⊆ (xn1

1 , · · · , xni−1

i−1 )M : I2
rk (2.2)
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where 1 ≤ i ≤ r, and n1, · · · , nr run through all positive integers.

In the following, we use Hp(xj ,M) to denote the p-th Koszul homology group of a module

M with respect to a sequence x1, · · · , xn. For properties of Koszul homology one can refer

to [1].

Proposition 2.5. Let A, I,M be as in Proposition 2.3 and I = (y1, y2, · · · , yn). If

x1, · · · , xs is a weak I sequence such that

(xr1
1 , · · · , xri−1

i−1 )M : xri
i ⊆ (xr1

1 , · · · , xri−1

i−1 )M : Ir,

where r is a fixed positive integer and r1, · · · , rs run through all positive integers, then there

exists an integer k ∈ Z+ which depends only on r such that IkHi(y
rj
j ,M) = 0, for all

i > n− s and r1, · · · , rs running through all positive integers.

Proof. If M = ΓI(M), the result is trivial. Suppose M ̸= ΓI(M). Put M ′ = M/ΓI(M).

We apply induction on the dimension d. Suppose the conclusion holds for those A-modules

with dimension less than d. Consider the following short exact sequence

0 −→ ΓI(M) −→ M −→ M ′ −→ 0.

For any r1, · · · , rn ∈ Z+, we have

· · · −→ Hi(y
rj
j
,ΓI(M) −→ Hi(y

rj
j
,M) −→ Hi(y

rj
j
,M ′) −→ · · · .

It can be seen easily from the definition of Koszul complex that

IrHi(y
rj
j
,ΓI(M)) = 0, for all i ≥ 0.

Hence in order to prove that there exists k ∈ Z+ such that IkHi(y
rj
j ,M) = 0, for i > n− s,

it suffices to prove that IkHi(y
rj
j ,M ′) = 0, for i > n − s. Since x1 is M ′-regular, we have

the short exact sequence for each n1 ∈ Z+,

0 −→ M ′ x
n1
1−→ M ′ −→ M ′/xn1

1 M ′ −→ 0.

As x2, x3, · · · , xs is a weak I sequence with respect to M ′/xn1
1 M ′ for each n1, and the integer

r in the theorem may be chosen independent of the choice of n1, by the induction hypothesis

we have an integer k ∈ Z+ such that

IkHi(y
rj
j
,M ′/xn1

1 M ′) = 0, for all i > n− s+ 1 and n1 ∈ Z+.

Now, consider the following exact sequence

· · · −→ Hi(y
rj
j
,M ′/xn1

1 M ′) −→ Hi−1(y
rj
j
,M ′)

(−1)i−1x
n1
1−→ Hi−1(y

rj
j
,M ′) → .

For any fixed r1, r2, · · · , rn, Hi−1(y
rj
j ,M ′) is annihilated by xn1

1 for n1 large enough, i.e.

Hi(y
rj
j ,M/xn1

1 M ′) → Hi−1(y
rj
j ,M ′) is surjective for large n1. Hence, for i > n− s, we have

IkHi(y
rj
j
,M ′) = 0.

Noting the arbitrary choices of r1. · · · , rn , we have

IkHi(y
rj
j
,M ′) = 0, for all r1, · · · , rn ∈ Z+.

§3. Characterizations

In the section 2, we have proved that, if ΓI(M) ̸= M , then the length of any maximal

weak I sequence must be finite. In this section we obtain a necessary and sufficient condition
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for a sequence to be a weak I sequence and give explicitly the length of a (hence all) maximal

weak I sequence by means of Koszul homology groups and local cohomology groups.

Theorem 3.1. Let I be an ideal of A and M a finite A-module such that M ̸= 0. Let

x1, · · · , xn be a sequence contained in I. Then the following conditions are equivalent:

(i) x1, · · · , xn is a weak I sequence;

(ii) There exists a k > 0 such that IkH1(x
ri
i ,M) = 0, for r1, · · · , rn running through all

positive integers.

Proof. We use induction on n.

(i)⇒(ii) For n = 1, we have H1(x
n1
1 ,M) = (0 :M xn1

1 )(n1 ∈ Z+), so the assertion holds.

For n > 1, we have the exact sequence

· · · −→ H1(x
r1
1 , · · · , xrn−1

n−1 ,M) −→ H1(x
r1
1 , · · · , xrn

n ,M) −→

M/(xr1
1 , · · · , xrn−1

n−1 )M
xrn
n−→ M/(xr1

1 , · · · , xrn−1

n−1 )M −→ · · · .
(3.1)

By the induction hypothesis, there exists an integer k′ such that Ik
′
H1(x

r1
1 , · · · , xrn−1

n−1 ,M) =

0 for all r1, · · · , rn−1 ∈ Z+. On the other hand x1, · · · , xn is a weak I sequence, we have

k′′ > 0 such that (xr1
1 , · · · , xrn−1

n−1 )M : xrn
n ⊆ (xr1

1 , · · · , xrn−1

n−1 )M : Ik
′′
for all r1, · · · , rn ∈ Z+.

So in the above sequence, Ik
′′
ker(xrn

n ) = 0 and it implies

Ik
′+k′′

H1(x
r1
1 , · · · , xrn

n ,M) = 0

for any r1, · · · , rn ∈ Z+.

(ii)⇒(i) For 1 ≤ i ≤ n, set Mi = M/(x1, · · · , xi)M . Then Mi ̸= 0. By the hypothesis

and by Proposition 2.5 we have

· · · → H1(x
r1
1 , · · · , xrn−1

n−1 ,M)
−xrn

n→ H1(x
r1
1 , · · · , xrn−1

n−1 ,M) → H1(x
r1
1 , · · · , xrn

n ,M) → · · · ,

where r1, · · · , rn−1 are arbitrary positive integers, and rn > k. Hence

xrn
n H1(x

r1
1 , · · · , xrn−1

n−1 ,M ⊇ IkH1(x
r1
1 , · · · , xrn−1

n−1 ,M).

This implies

xrn−k
n IknH1(x

r1
1 , · · · , xrn−1

n−1 ,M) ⊇ IkH1(x
r1
z , · · · , xrn−1

n−1 ,M).

But quite generally H1(x,M) is a finite A-module. By Nakayama Lemma we have

IkH1(x
r1
1 , · · · , xrn−1

n−1 ,M) = 0

for all r1, · · · , rn−1 ∈ Z+. Thus by the induction hypothesis, x1, · · · , xn−1 is a weak I

sequence. Now consider the exact sequence in (3.1). We can see that

(xr1
1 , · · · , xrn−1

n−1 )M : xrn
n ⊆ (xr1

1 , · · · , xrn−1

n−1 )M : Ik

for all r1, · · · , rn ∈ Z+. Hence x1, · · · , xn is a weak I sequence.

Corollary 3.1. Let x1, · · · , xn be a weak I sequence. Then xi1 , · · · , xin is a weak I

sequence, where xi1 , · · · , xin is a permutation of x1, · · · , xn.

Now, we prove a lemma which will play an important role in the proof of Theorem 3.2.

Lemma 3.1. Let A be a Notherian local ring and I an ideal of I. Let M be a fi-

nite A-module and x1, · · · , xr be a weak I sequence. If there exists an integer s such

that IsH0
I (M/(xn

1 , · · · , xnr
r )M) = 0, for all n1, · · · , nr ∈ Z+, then there exists an element

xr+1 ∈ I such that x1, · · · , xr+1, is a weak I sequence.
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Proof. It suffices to construct an element xr+1 such that for any n1, · · · , nr, nr+1 ∈ Z+,

(xn1
1 , · · · , xnr

r )M : x
nr+1

r+1 ⊆ (xn1
1 , · · · , xnr

r )M : Is. (3.2)

We first put N =
r∑

i=1

ni and choose an element xr+1 ∈ I such that (3.2) holds for N = r,

this is possible because IsH0
I (M/(x1, · · · , xr)M = 0. Now we use induction on N to prove

that xr+1 satisfies (3.2) for all N ≥ r. Suppose the conclusion holds for those N ′ with

r ≤ N ′ < N . Due to Corollary 3.1, without loss of generality we may assume n1 > 1. For

any a ∈ (xn1
1 , · · · , xnr

r )M : x
nr+1

r+1 , we may express

x
nr+1

r+1 a = xn1
1 a1 + a′1, (3.3)

where a1 ∈ M , a′1 ∈ (xn2
2 , · · · , xnr

r )M . By the induction hypothesis, for any y ∈ Is, we may

write

ya = xn1−1
1 a2 + a′2, (3.4)

where a2 ∈ M , a′2 ∈ (xn2
2 , · · · , xnr

r )M . From (3.3) and (3.4), we assert that

xn1−1
1 (yx1a− x

nr+1

r+1 a2) ∈ (xn2
2 , · · · , xnr

r )M.

By Corollary 3.1, x2, · · · , xr, x1 is also a weak I sequence. Hence we can find an integer

s′ ∈ Z+ such that for any y′ ∈ Is
′
, y′(yx1a − x

nr+1

r+1 a2) ∈ (xn2
2 , · · · , xnr

r )M. This implies

x
nr+1

r+1 y′a2 ∈ (x1, x
n2
2 , · · · , xnr

r )M. By the induction hypothesis, we have for any y′′ ∈ Is,

y′y′′a2 ∈ (x1, x
n2
2 , · · · , xnr

r )M. Hence, from (3.4), we obtain yy′y′′a ∈ (xn1
1 , · · · , xnr

r )M. By

the arbitrary choices of y, y′ and y′′, we see that I2s+s′a ∈ (xn1
1 , · · · , xnr

r )M. But by the

assumption, IsH0
I (M/(xn1

1 , · · · , xnr
r )M) = 0. Therefore a ∈ (xn1

1 , · · · , xnr
r )M : Is and this

proves the lemma.

Theorem 3.2. Let I be an ideal of A and M a finite A-module such that ΓI(M) ̸= M .

Set r = inf
i
{i | for some s > 0, IsHi

I(M) ̸= 0}. Then every maximal weak I sequence in I

has the same length r.

Proof. Let x1, · · · , xs be a maximal weak I sequence in I. We argue by induction on s.

For s = 1, if r ̸= 1, then there exists a positive integer k such that IkH1
I (M) = 0. By

Proposition 2.1 (ii), we have the long exact sequence

0 −→ (0 :M xn1
1 ) −→ H0

I (M)
x
n1
1−→ H0

I (M) −→ H0
i (M/xn1

1 M) −→ H1
i (M) −→ · · · .

Hence I2kH0
I (M/xn1

1 M) = 0 for all n1 > 0. By Theorem 3.1, we have a contradiction. Thus

r = 1.

For s > 1, according to Proposition 2.3, we have s ≤ r. If s ̸= r, then there exists an

integer k > 0 such that IkHi
I(M) = 0, for i ≤ s. Using Proposition 2.1 (ii) s times, we

can choose an integer k′ (cf. k′ = 2sk) such that Ik
′
H0

I (M/(xn1
1 , · · · , xns

s )M) = 0, where

n1, · · · , ns run through all positive integers. By Lemma 3.1, we can construct an element

xs+1 ∈ I such that x1, · · · , xs, xs+1 is a weak I sequence. This contradicts the choices of

x1, · · · , xs. So s = r.

Write wdepth(I,M) = r. We call r the weak I-depth of M . If M = ΓI(M), the weak

I-depth is by convention ∞. We make a remark here. For i < r, Hi
I(M) is a Noetherian

A-module, i.e., Hi
I(M) is fintely generated. In fact, letting x1, · · · , xr be a weak I sequence,

without loss of generality, we may assume depthI(M) ≥ 1. If r > 1, we have an integer k
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as in the proof of Proposition 2.3, such that IkHi
I(M/xn

1M) = 0, for all i < r − 1. Now,

choose k large enough such that IkHi
I(M) = 0, for i < r. Clearly, we have the short exact

sequences

0 → Hi
I(M) → Hi

I(M/xk
1M) → Hi+1

I (M) → 0, for i < r − 1.

So by induction on the dimension of M , Hi
I(M) is finitely generated.

Corollary 3.2. Let I = (y1, · · · , yn) be an ideal of A and M a finite A-module with

ΓI(M) ̸= M . Set

r′ = sup{i | for any s ∈ Z+, there exist r1, · · · , rn ∈ Z+such that IsHi(y
rj
j
,M) ̸= 0}.

Then n− r′ = wdepth(I,M).

Proof. By Proposition 2.5 and Theorem 3.2, n − r′ ≥ wdepth(I,M). If n − r′ ̸=
wdepth(I,M), then from

lim
r→∞

Hn−i(y
r
i
,M) = Hi

I(M),

there is an integer k such that IkHr
I (M) = 0 (r = wdepth(I,M)), a contradiction.

Corollary 3.3. Let I = (y1, · · · , yn) be an ideal of A and M a finite A-module such that

ΓI(M) ̸= M . Then the following conditions are equivalent:

(i) y1, · · · , yn is a weak I sequence;

(ii) wdepth(I,M) = n.

§4. The Case wdepth(I,M)=dimM

In this section we consider the case wdepth(I,M) =dimM . It is known that if wdepth(m,

M) = dimM , then a sequence x1, x2, · · · , xd is a weakm sequence if and only if x1, x2, · · · , xd

is a system of parameters of M . Now we extend this result to our case.

Theorem 4.1. Let I be an ideal of A and M a finite A-module of dimension d with

ΓI(M) ̸= M , and wdepth(I,M) = d. Let x1, x2, · · · , xd be a sequence contained in I. Then

the following conditions are equivalent:

(i) x1, x2, · · · , xd is a weak I sequence;

(ii) there exists a positve integer n such that InM ⊆ (x1, x2, · · · , xd)M .

Proof. (i)=⇒(ii) We use induction on d. For d = 1, put M ′ = M/ΓI(M). Then x1 is M
′-

regular and dimM ′/x1M
′ = 0. So ΓI(M

′/x1M
′) = M ′/x1M

′. This implies InM ′ ⊆ x1M
′

for some n ∈ Z+, namely InM ⊆ x1M +ΓI(M). For n large enough, we have InM ⊆ x1M .

Suppose the conclusion holds for those A-modules with dimension less than d (d > 1). Put

M ′ = M/ΓI(M). Then Γ(M ′) ̸= M ′ and dimM ′ = d (because of wdepth (I,M ′) = d).

Now consider the short exact sequence for each s ∈ Z+

0 −→ M ′ xs
1−→ M ′ −→ M ′/xs

1M
′ −→ 0.

We have the long exact sequence

0 −→ H0
I (M

′/xs
1M

′) −→ H1
I (M

′)
xs
1−→ H1

I (M
′) −→ · · · .

Since d > 1, we can choose k ∈ Z+ such that IkH1
I (M

′) = 0. Hence IkH0
I (M

′/xs
1M

′) = 0

for all s ∈ Z+. Now we claim that ΓI(M
′/xk+1

1 M ′) ̸= M ′/xk+1
1 M ′. Otherwise, IkM ′ ⊆

xk+1M ′. This implies IkM ′ ⊆ Ikx1M
′. By Nakayama lemma, IkM ′ = 0, a contradic-

tion. So from ΓI(M
′/xk+1

1 M ′) ̸= M ′/xk+1
1 M , we assert that ΓI(M

′/x1M
′) ̸= M ′/x1M

′,
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dimM ′/x1M
′ = d−1 and wdepth (M ′/x1M

′) = d−1. By the induction hypothesis, we can

choose a positive integer n such that InM ′ ⊆ (x1, · · · , xd)M
′. For n large enough, we have

InM ⊆ (x1, · · · , xd)M.

(ii)=⇒(i) Clealy, rad((x1, · · · , xd)+annM) = rad(I+annM). So by the characterization

of local cohomology via Koszul cohomology, we have Hi
I′(M) ≃ Hi

I(M) for all i ≥ 0, where

I ′ = (x1, · · · , xd). From this we can assert that x1, x2, · · · , xd is a weak I sequence by

Corollary 3.3.

Now, we prove a result which states that I has a generator consisting of weak I sequences.

Lemma 4.1. If wdepth(I,M) = d, then there exists n ∈ Z+ such that for every weak I

sequence x1, x2, · · · , xd

dimM/(xn1
1 , · · · , xnd−1

d−1 )M : In = 1,

where n1, · · · , nd−1 run through all positive integers.

Proof. We use induction on the dimension d. For d = 1, the result is obvious. Suppose

the result holds for those A-module with dimension d′ < d. For d > 1, put M ′ = M/ΓI(M).

As x2, · · · , xd is a weak I-sequence with respect to M ′/xn1
1 M ′, and dimM ′/xn1

1 M ′ = d− 1

(see the proof of Theorem 4.1), by the induction hypothesis, we assert that

dimM ′/(xn1
2 , · · · , xnd−1

d−1 )M ′ : In) = 1

for n satisfying Proposition 2.4. This implies that dimM/((xn1
1 , · · · , xnd−1

d−1 )M : In
′
) = 1, for

a fixed large n′.

Proposition 4.1. If wdepth(I,M) = d, then there exists B = {y1, · · · , yn} ⊆ I such

that every d-element of B forms a weak I sequence and I = (y1, · · · , yn).
Proof. Since wdepth (I,M) = d, we have a weak I sequence y1, · · · , yd. Let B′ ⊇

{y1, · · · , yd} be a maximal subset of I such that every d-element of B′ forms a d-sequence and

(B′) ⊆ I. As A is Notherian, we can choose a finite subset B ⊆ B′, B = {y1, · · · , yd, yd+1,

· · · , yn} such that (B′) = (B). By Proposition 2.4 and Lemma 4.1, we have k ∈ Z+, such

that for every d-element yi1 , · · · , yid of B,

(yi1 , · · · , yid−1
)M : yid ⊆ (yi1 , · · · , yid−1

)M : Ik,

and dimM/(yi−1, · · · , yid−1
)M : Ik = 1. This implies that yid is M/((yi1 , · · · , yid−1

)M : Ik)-

regular. If (B) ̸= I, let P1, · · · , Ps be the non-embedded associated primes of all submodules

(yi1 , · · · , yid−1
)M : Ik, where yi1 , · · · , yd is an arbitrary (d − 1)-element of B. Choose

y ∈ I \ (B). If y ̸∈ Pi for all i = 1, · · · , s, then we set yn+1 = y. If y ∈ Pi for i = 1, · · · , t
and y ̸∈ Pi for i = t+ 1, · · · , s, 1 ≤ t ≤ s, we first choose an element y′ ∈ ((B) ∩ Pt+1 · · · ∩
Ps) \ P1 ∪ · · · ∪ Pt, which is possible because B ̸⊆ Pi for 1 ≤ i ≤ t. Otherwise B ⊆ Pi,

Pi is a non-embedded associated prime ideal of some submodule (yi1 , · · · , yid−1)M : Ik. It

means there exists b ∈ M/((yi1 , · · · , yid−1
)M : Ik), b ̸= 0 and ann b = Pi, so yidb = 0.

This implies b = 0, a contradiction. Set yn+1 = y′ + y. Clearly, in either case, we have

yn+1 ̸∈ P1, P2, · · · , Ps. From this we can see that yn+1 is (M/(yi1 , · · · , yid−1
)M : Ik)-regular

for any {i1, · · · , id−1} ⊆ {1, · · · , n}. Hence, for any fixed i1, · · · , id−1, we have an integer t

such that ItM ⊆ (yi1 , · · · , yid−1
, yn+1)M . By Theorem 4.1, yi1 , · · · , yid−1

, yn+1 is a weak I

sequence.
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Since (y1, · · · , yn, yn+1) * (y1, · · · , yn), this contradicts the choice of B′. So I = (y1, · · · ,
yn) and the proof is complete.

§5. Standard Ideals

In this section, we extend the notion of standard ideals in [13] to more general cases and

discuss some basic facts about it.

Definition 5.1. We say that I is an M -standard ideal if wdepth(I,M) = d and every

maximal weak I sequence with respect to M x1, · · · , xd forms an I-weak sequence, i.e. the

equality (x1, · · · , xi−1)M : xi = (x1, · · · , xi−1) : I holds for i (1 ≤ i ≤ d).

Recall that a sequence x1, · · · , xr ∈ I is said to be a d-sequence if

(i) xiM ̸⊂ x1M + · · ·+ xi−1M + xi+1M + · · ·+ xrM,

(ii) (x1, · · · , xi−1)M : xixk = (x1, · · · , xi−1)M : xi

for 1 ≤ i ≤ r, i ≤ k ≤ r.

For the properties of d-sequences, one can refer to [13] and so on. The following result is

an extension to the results in [13].

Theorem 5.1. If wdepth(I,M) = d, then the following conditions are equivalent:

(i) I is M -standard;

(ii) every I-weak sequence x1, · · · , xd forms a d-sequence.

Proof. (i)⇒ (ii) Let x1, · · · , xd be an I-weak sequence, since every permutation of

x1, · · · , xd is also an I-weak sequence. In order to prove xiM ̸⊂ x1M + · · · + xi−1M +

xi+1M + · · · + xrM , it suffices to prove xrM ̸⊂ x1M + · · · + xr−1M . As x1, · · · , xr−1, xr

is a weak I sequence, according to Lemma 4.1, dimM/(x1, · · · , xd−1)M : In = 1 for n

large enough. If xrM ⊆ (x1, · · · , xr−1)M , we have (x1, · · · , xd−1)M : In = M ; this is a

contrdiction. For any i,k (1 ≤ i ≤ d, i ≤ k ≤ d), as I is M -standard, we have

(x1, · · · , xi−1)M : xi = (x1, · · · , xi−1)M : x2
i ,

(x1, · · · , xi−1)M : xk = (x1, · · · , xi−1)M : I.

As x1, · · · , xi−1, xk and x1, · · · , xi−1, x
2
i are I-weak sequences, assume c ∈ (x1, · · · , xi−1)M :

xixk, that is, xixkc ∈ (x1, · · · , xi−1)M . This implies xic ∈ (x1, · · · , xi−1)M : I. It shows

that x2
i c ∈ (x1, · · · , xi−1)M. Hence c ∈ (xi, · · · , xi−1)M : xi, that is,

(x1, · · · , xi−1)M : xixk = (x1, · · · , xi−1)M : xi.

(ii)⇒(i) By the proof of Proposition 4.1, every weak I-sequence x1 · · · , xd can be extended

to B = {x1, · · · , xd, · · · , xn} such that every d-element subset of B forms a weak I-sequence

and I = (x1, · · · , xn). For each i (1 ≤ i ≤ d), since x1, x2, · · · , xi−1, xk (i ≤ k ≤ n) is a

weak I-sequence, by the hypothesis it is a d-sequence. We have

(x1, · · · , xi−1)M : xs
k = (x1, · · · , xi−1)M : xk

for any s ∈ Z+, it means that

(x1, · · · , xi−1)M : xk ⊇
∞∪

n=1

(x1, · · · , xi−1)M : In.
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On the other hand, x1, · · · , xi−1, xk is a weak I sequence, and we have

(x1, · · · , xi−1)M : xk ⊆
∞∪

n=1

(x1, · · · , xi−1)M : In.

Hence we have

(x1, · · · , xi−1)M : xk =
∞∪

n=1

(x1, · · · , xi−1)M : In,

so

(x1, · · · , xi−1)M : xi =
∩
x∈B

(x1, · · · , xi−1)M : x = (x1, · · · , xi−1)M : I.

Because of Theorem 5.1, many results concerning m-primary standard ideals in [8, 13]

can be extended to our cases. We quote two important results here, which can be proved

word by word as that in [8, 13]. We will omit the proof of them.

Theorem 5.2.[8,Theorem 1] Let M be a finite A module of dimesion d and I an ideal of

A such that ΓI(M) ̸= M . If the canonical maps ϕi:Ext
i
A(A/I,M) → Hi

I(M) are surjective

for all i ̸= d, then I is M -standard.

Let Gq(M) = ⊕
n≥0

qnM/qn+1M be the associated module of M relative to an ideal q =

(x1, · · · , xd) ⊆ I of A where I is an M -standard ideal and x1, · · · , xd is an I-weak sequence.

It is well known that[7] the dimension of Gq(M) as Gq(A)-module is the same as that of M .

Then we have

Theorem 5.3.[13,Theorem 5.4] Let I be an M -standard ideal and x1, · · · , xd be an I-weak

sequence. Then

(i) Hi
P (Gq(M)) = Hi

I(M)(i) for i = 0, · · · , d− 1,

(ii) [Hd
P (Gq(M))]n = 0 for n > −d,

where Hi
I(M) is considered as a graded module concentrated in degree 0 (the integer in the

round brackets denotes the shifting degree) and P = I/q ⊕ q/q2 ⊕ · · · .
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