TOWARD A THEORY OF WEAK I SEQUENCES

Zhou Caijun*

Abstract

The author introduces a notion of weak I sequences and characterizes such sequences by means of homological methods. This notion extends the notion of weak M-sequences and thus extends the notions of generalized Cohen-Macaulay modules and Buchsbaum modules to more general cases

Keywords Noetherian local ring, Local cohomology group, Koszul homology group1991 MR Subject Classification 13C14, 13H10Chinese Library Classification 0153.3, 0154

§1. Introduction

The goal of this paper is to characterize weak I sequences and M-standard ideal by means of homological methods. The notion of weak I sequence is closely related to the finiteness property of local cohomology groups with support in V(I). Our characterization is similar to that of regular sequences given in [7].

Let A be a commutative Noetherian local ring with the maximal ideal m and I be an ideal of A. Let M be a finite A-module of dimension d. We say that a sequence x_1, \dots, x_r contained in I is a weak I sequence with respect to M, if the inclusion

$$(x_1^{n_1}, \cdots, x_{i-1}^{n_{i-1}})M : x_i^{n_i} \subseteq (x_1^{n_1}, \cdots, x_{i-1}^{n_{i-1}})M : I^n$$

holds, where $1 \leq i \leq r$, $x_0^{n_0} = 0$, n being a fixed positive integer and n_1, \dots, n_r running through all positive integers. Recall that if I = m and r = d, then that a weak m sequence x_1, \dots, x_d with respect to M exists implies that M is a generalized Cohen-Macaulay Amodule and that x_1, \dots, x_d must be a system of parameters for M. In this case, every system of parameters for M forms a weak m sequence^[3]. Then it raises a natural question whether all the maximal weak I sequences have the same length. After we get a necessary and sufficient characterization of weak I sequences by means of the homology of Koszul complex ([Theorem 3.1]), we obtain a positive answer to the question ([Theorem 3.4]). At the end of the paper we consider the case that the length of the maximal weak I sequence is d and extend the notion of standard ideals in [13] to general cases.

Throughout this paper, let A be a commutative Notherian local ring with unit and m the maximal ideal of A. We always denote by I a proper ideal of A and by M a finite A-module. Let $H_I^i(\cdot)$ stand for the *i*th local cohomology group relative to I and $\Gamma_I(M)$ stand for $H_I^0(M)$. Finally we use Z^+ to denote the set of positive integers.

Manuscript received April 21, 1995. Revised November 15, 1996.

^{*}Department of Mathematics, Shanghai Normal University, Shanghai 200234, China.

§2. Weak *I* Sequences

In this section we will give the definition of weak I sequences with respect to M and discuss some basic properties.

Definition 2.1. Let I be an ideal of A and M a finite A-module. A sequence x_1, \dots, x_r contained in I is said to be a weak I sequence with respect to M, if for $1 \le i \le r$, n a fixed positive integer

$$(x_1^{n_1}, \cdots, x_{i-1}^{n_{i-1}})M : x_i^{n_i} \subseteq (x_1^{n_1}, \cdots, x_{i-1}^{n_{i-1}})M : I^n$$
(2.1)

holds for n_1, n_2, \cdots, n_r running through all positive integers.

In the rest of the paper we will simply call x_1, \dots, x_r a weak I sequence if it causes no confusion. Clearly, any M-sequence contained in I is a weak I sequence. If x_1, \dots, x_r is a weak I sequence and $n_1, \dots, n_r \in Z^+, x_1^{n_1}, \dots, x_r^{n_r}$ is also a weak I sequence. If $\Gamma_I(M) \neq M$ and $M' = M/\Gamma_I(M)$, a weak I sequence x_1, x_2, \dots, x_r with respect to M is also a weak I sequence with respect to M'. In fact, if x_1, x_2, \dots, x_r satisfies (2.1), then

 $(x_1^{n_1}, \cdots, x_{n_{i-1}}^{n_{i-1}})M': x_i^{n_i} \subseteq (x_1^{n_1}, \cdots, x_{i-1}^{n_{i-1}})M': I^{2n}.$

Furthermore, if x_1, \dots, x_r is a weak I sequence, by definition x_i, \dots, x_r is a weak I sequence with respect to $M/(x_1^{n_1}, \dots, x_{i-1}^{n_{i-1}})M$.

The following proposition is a simple generalization of a result in [4].

Proposition 2.1 (i) If $\Gamma_I(M) = M$, then $H^i_I(M) = 0$ for all i > 0.

(ii) If $x \in I$ and $(0:_M x) \subseteq \Gamma_I(M)$, then we have the local cohomology long exact sequence

$$0 \longrightarrow (0:_M x) \longrightarrow H^0_I(M) \xrightarrow{x} H^0_I(M) \longrightarrow H^0_I(M/xM)$$
$$\longrightarrow H^1_I(M) \xrightarrow{x} H^1_I(M) \longrightarrow \cdots$$

Lemma 2.1. Let I be an ideal of A and M a finite A-module. Then every maximal weak I sequence has the length $r \ge 1$.

Proof. Since A is Noetherian and M a finite A-module, the accending chain of submodules

$$(0:_M I) \subseteq (0:_M I^2) \subseteq (0:_M I^3) \subseteq \cdots$$

must stop at some $s \ (s \in Z^+)$. Hence $\Gamma_I(M) = (0 :_M I^s)$. If $\Gamma_I(M) = M$, then any element $x \in I$ is a weak I sequence. If $\Gamma_I(M) \neq M$, put $M' = M/\Gamma_I(M)$. Consider the short exact sequence

$$0 \longrightarrow \Gamma_I(M) \longrightarrow M \longrightarrow M' \longrightarrow 0,$$

from it we can deduce that $H^0_I(M') = 0$. Thus there exists an M'-regular element $x \in I$ such that $0:_M x^n \subseteq (0:_M I^s)$ for all n > 0.

Now, we consider the converse to the part (i) of Proposition 2.1.

Proposition 2.2. Let I be an ideal of the local ring A and M a finite A-module. If there exists a positive integer n such that $I^n H^i_I(M) = 0$ for all $i \ge 0$, then $M = \Gamma_I(M)$.

Proof. We use induction on the dimension of M. For dimM = 0, the result is trivial. Now suppose the statement holds for those A-modules with dimension less than dimM. If $M \neq \Gamma_I(M)$, then we put $M' = M/\Gamma_I(M)$. Clearly $\Gamma_I(M') \neq M'$. Consider the short exact sequence

$$0 \longrightarrow H^0_I(M) \longrightarrow M \longrightarrow M' \longrightarrow 0,$$

this implies $H_I^i(M') \simeq H_I^i(M)$ for all $i \ge 1$. Since $H_I^0(M') = 0$, there exists an M'-regular element $x \in I$. For a positive integer s such that s > 2n, consider the following short exact sequence

$$0 \longrightarrow M' \xrightarrow{x^s} M' \longrightarrow M'/x^s M' \longrightarrow 0.$$

We have the long exact sequence

$$0 \longrightarrow H^0_I(M'/x^sM') \longrightarrow H^1_I(M') \xrightarrow{x^s} H^1_I(M') \longrightarrow \cdots$$

From this we have $I^{2n}H^i_I(M'/x^sM')=0$ for all $i\geq 0$. Since

$$\dim M \ge \dim M' > \dim (M'/x^s M'),$$

by the induction hypothesis, we have

$$\Gamma_I(M'/x^sM') = M'/x^sM', \text{ i.e. } I^{2n}M' \subseteq x^sM'.$$

So $I^{2n}M' \subseteq x^{s-2n}I^{2n}M'$. By Nakayama lemma, we have $I^{2n}M' = 0$. Hence $\Gamma_I(M) = M$, this is a contradiction.

Proposition 2.3. Let I be an ideal of A and M a finite A-module. If there exists a weak I sequence x_1, \dots, x_s such that

$$(x_1^{n_1}, \cdots, x_{i-1}^{n_{i-1}})M : x_i^{n_i} \subseteq (x_1^{n_1}, \cdots, x_{i-1}^{n_{i-1}})M : I^r,$$

where $1 \leq i \leq s$, r is a fixed positive integer and n_1, \dots, n_s run through all positive integers. Then there exists an integer $k \in Z^+$ which depends only on r such that $I^k H_I^i(M) = 0$ for i < s.

Proof. We use induction on the dimension d of M. For d = 0, the result is trivial. Suppose the conclusion holds for those A-modules M_1 with $\dim M_1 < d$. If $\Gamma_I(M) = M$, the result follows from Proposition 2.1. Now, If $\Gamma_I(M) \neq M$, put $M' = M/\Gamma_I(M)$, then x_1 is M'-regular. For $n \in Z^+$, consider the following long exact sequence

$$\cdots \to H^0_I(M'/x_1^nM') \longrightarrow H^1_I(M') \xrightarrow{x_1^n} H^1_I(M') \longrightarrow H^1_I(M'/x_1^nM') \longrightarrow \cdots$$

Since x_2, \dots, x_s is a weak I sequence with respect to $M'/x_1^n M'$, the integer r in the theorem may be selected such that r does not change for each A-module $M'/x_1^n M'(n \in Z^+)$. On the other hand, dim $M \ge \dim M' > \dim (M'/x_1^n M')$. Hence we can use our induction hypothesis to assert that there exists an integer k > 0 such that

$$I^k H^i_I(M'/x_1^n M') = 0$$
 for all $i < s - 1$, and all $n \in Z^+$.

Now, for any $a \in H_I^i(M')$ (i < s), we can choose $n \in Z^+$ such that $x_1^n a = 0$. Hence it can be seen easily from the long exact sequence that $I^k a = 0$. This implies $I^k H_I^i(M) = 0$ for i < s.

One can prove immediately the following by Proposition 2.2 and Proposition 2.3.

Corollary 2.1. Let I be an ideal of A and M a finite A-module. If $\Gamma_I(M) \neq M$, then any maximal weak I sequence has length $r \leq \dim M$.

By means of Proposition 2.1 and by induction on r, we have

Propostion 2.4. Suppose $I^k H^i_I(M) = 0$, for i < r. Let x_1, \dots, x_r be a weak I sequence. Then

$$(x_1^{n_1}, \cdots, x_{i-1}^{n_{i-1}})M : x_i^{n_i} \subseteq (x_1^{n_1}, \cdots, x_{i-1}^{n_{i-1}})M : I^{2^r k}$$

$$(2.2)$$

where $1 \leq i \leq r$, and n_1, \dots, n_r run through all positive integers.

In the following, we use $H_p(\underline{x}_j, M)$ to denote the *p*-th Koszul homology group of a module M with respect to a sequence x_1, \dots, x_n . For properties of Koszul homology one can refer to [1].

Proposition 2.5. Let A, I, M be as in Proposition 2.3 and $I = (y_1, y_2, \dots, y_n)$. If x_1, \dots, x_s is a weak I sequence such that

$$(x_1^{r_1}, \cdots, x_{i-1}^{r_{i-1}})M : x_i^{r_i} \subseteq (x_1^{r_1}, \cdots, x_{i-1}^{r_{i-1}})M : I^r$$

where r is a fixed positive integer and r_1, \dots, r_s run through all positive integers, then there exists an integer $k \in Z^+$ which depends only on r such that $I^k H_i(\underline{y}_j^{r_j}, M) = 0$, for all i > n - s and r_1, \dots, r_s running through all positive integers.

Proof. If $M = \Gamma_I(M)$, the result is trivial. Suppose $M \neq \Gamma_I(M)$. Put $M' = M/\Gamma_I(M)$. We apply induction on the dimension d. Suppose the conclusion holds for those A-modules with dimension less than d. Consider the following short exact sequence

$$0 \longrightarrow \Gamma_I(M) \longrightarrow M \longrightarrow M' \longrightarrow 0$$

For any $r_1, \cdots, r_n \in Z^+$, we have

$$H \longrightarrow H_i(\underline{y}_j^{r_j}, \Gamma_I(M) \longrightarrow H_i(\underline{y}_j^{r_j}, M) \longrightarrow H_i(\underline{y}_j^{r_j}, M') \longrightarrow \cdots$$

It can be seen easily from the definition of Koszul complex that

$$I^r H_i(y_i^{r_j}, \Gamma_I(M)) = 0$$
, for all $i \ge 0$

Hence in order to prove that there exists $k \in Z^+$ such that $I^k H_i(\underline{y}_j^{r_j}, M) = 0$, for i > n - s, it suffices to prove that $I^k H_i(\underline{y}_j^{r_j}, M') = 0$, for i > n - s. Since x_1 is M'-regular, we have the short exact sequence for each $n_1 \in Z^+$,

$$0 \longrightarrow M' \xrightarrow{x_1^{n_1}} M' \longrightarrow M'/x_1^{n_1}M' \longrightarrow 0.$$

As x_2, x_3, \dots, x_s is a weak I sequence with respect to $M'/x_1^{n_1}M'$ for each n_1 , and the integer r in the theorem may be chosen independent of the choice of n_1 , by the induction hypothesis we have an integer $k \in Z^+$ such that

$$I^k H_i(y_i^{r_j}, M'/x_1^{n_1}M') = 0$$
, for all $i > n - s + 1$ and $n_1 \in Z^+$.

Now, consider the following exact sequence

$$\cdots \longrightarrow H_i(\underline{y}_j^{r_j}, M'/x_1^{n_1}M') \longrightarrow H_{i-1}(\underline{y}_j^{r_j}, M') \xrightarrow{(-1)^{i-1}x_1^{n_1}} H_{i-1}(\underline{y}_j^{r_j}, M') \to .$$

For any fixed r_1, r_2, \dots, r_n , $H_{i-1}(\underline{y}_j^{r_j}, M')$ is annihilated by $x_1^{n_1}$ for n_1 large enough, i.e. $H_i(\underline{y}_j^{r_j}, M/x_1^{n_1}M') \to H_{i-1}(\underline{y}_j^{r_j}, M')$ is surjective for large n_1 . Hence, for i > n-s, we have

$$I^k H_i(y_i^{r_j}, M') = 0.$$

Noting the arbitrary choices of r_1, \cdots, r_n , we have

$$H^{k}H_{i}(y_{i}^{r_{j}}, M') = 0, \text{ for all } r_{1}, \cdots, r_{n} \in Z^{+}.$$

§3. Characterizations

In the section 2, we have proved that, if $\Gamma_I(M) \neq M$, then the length of any maximal weak I sequence must be finite. In this section we obtain a necessary and sufficient condition

for a sequence to be a weak I sequence and give explicitly the length of a (hence all) maximal weak I sequence by means of Koszul homology groups and local cohomology groups.

Theorem 3.1. Let I be an ideal of A and M a finite A-module such that $M \neq 0$. Let x_1, \dots, x_n be a sequence contained in I. Then the following conditions are equivalent:

(i) x_1, \dots, x_n is a weak I sequence;

(ii) There exists a k > 0 such that $I^k H_1(\underline{x}_i^{r_i}, M) = 0$, for r_1, \dots, r_n running through all positive integers.

Proof. We use induction on n.

(i) \Rightarrow (ii) For n = 1, we have $H_1(x_1^{n_1}, M) = (0 :_M x_1^{n_1})(n_1 \in Z^+)$, so the assertion holds. For n > 1, we have the exact sequence

$$\cdots \longrightarrow H_1(x_1^{r_1}, \cdots, x_{n-1}^{r_{n-1}}, M) \longrightarrow H_1(x_1^{r_1}, \cdots, x_n^{r_n}, M) \longrightarrow$$

$$M/(x_1^{r_1}, \cdots, x_{n-1}^{r_{n-1}})M \xrightarrow{x_n^{r_n}} M/(x_1^{r_1}, \cdots, x_{n-1}^{r_{n-1}})M \longrightarrow \cdots .$$

$$(3.1)$$

By the induction hypothesis, there exists an integer k' such that $I^{k'}H_1(x_1^{r_1}, \cdots, x_{n-1}^{r_{n-1}}, M) = 0$ for all $r_1, \cdots, r_{n-1} \in Z^+$. On the other hand x_1, \cdots, x_n is a weak I sequence, we have k'' > 0 such that $(x_1^{r_1}, \cdots, x_{n-1}^{r_{n-1}})M : x_n^{r_n} \subseteq (x_1^{r_1}, \cdots, x_{n-1}^{r_{n-1}})M : I^{k''}$ for all $r_1, \cdots, r_n \in Z^+$. So in the above sequence, $I^{k''} \ker(x_n^{r_n}) = 0$ and it implies

$$I^{k'+k''}H_1(x_1^{r_1},\cdots,x_n^{r_n},M) = 0$$

for any $r_1, \cdots, r_n \in Z^+$.

(ii) \Rightarrow (i) For $1 \leq i \leq n$, set $M_i = M/(x_1, \dots, x_i)M$. Then $M_i \neq 0$. By the hypothesis and by Proposition 2.5 we have

$$\dots \to H_1(x_1^{r_1}, \dots, x_{n-1}^{r_{n-1}}, M) \xrightarrow{-x_n^{r_n}} H_1(x_1^{r_1}, \dots, x_{n-1}^{r_{n-1}}, M) \to H_1(x_1^{r_1}, \dots, x_n^{r_n}, M) \to \dots,$$

where r_1, \dots, r_{n-1} are arbitrary positive integers, and $r_n > k$. Hence

$$x_n^{r_n} H_1(x_1^{r_1}, \cdots, x_{n-1}^{r_{n-1}}, M \supseteq I^k H_1(x_1^{r_1}, \cdots, x_{n-1}^{r_{n-1}}, M)$$

This implies

$$x_n^{r_n-k}I_n^kH_1(x_1^{r_1},\cdots,x_{n-1}^{r_{n-1}},M) \supseteq I^kH_1(x_z^{r_1},\cdots,x_{n-1}^{r_{n-1}},M).$$

But quite generally $H_1(\underline{x}, M)$ is a finite A-module. By Nakayama Lemma we have

$$I^{k}H_{1}(x_{1}^{r_{1}},\cdots,x_{n-1}^{r_{n-1}},M)=0$$

for all $r_1, \dots, r_{n-1} \in Z^+$. Thus by the induction hypothesis, x_1, \dots, x_{n-1} is a weak I sequence. Now consider the exact sequence in (3.1). We can see that

$$(x_1^{r_1}, \cdots, x_{n-1}^{r_{n-1}})M : x_n^{r_n} \subseteq (x_1^{r_1}, \cdots, x_{n-1}^{r_{n-1}})M : I^{b}$$

for all $r_1, \dots, r_n \in Z^+$. Hence x_1, \dots, x_n is a weak I sequence.

Corollary 3.1. Let x_1, \dots, x_n be a weak I sequence. Then x_{i_1}, \dots, x_{i_n} is a weak I sequence, where x_{i_1}, \dots, x_{i_n} is a permutation of x_1, \dots, x_n .

Now, we prove a lemma which will play an important role in the proof of Theorem 3.2.

Lemma 3.1. Let A be a Notherian local ring and I an ideal of I. Let M be a finite A-module and x_1, \dots, x_r be a weak I sequence. If there exists an integer s such that $I^s H^0_I(M/(x_1^n, \dots, x_r^{n_r})M) = 0$, for all $n_1, \dots, n_r \in Z^+$, then there exists an element $x_{r+1} \in I$ such that x_1, \dots, x_{r+1} , is a weak I sequence. **Proof.** It suffices to construct an element x_{r+1} such that for any $n_1, \dots, n_r, n_{r+1} \in \mathbb{Z}^+$,

$$(x_1^{n_1}, \cdots, x_r^{n_r})M : x_{r+1}^{n_{r+1}} \subseteq (x_1^{n_1}, \cdots, x_r^{n_r})M : I^s.$$
(3.2)

We first put $N = \sum_{i=1}^{r} n_i$ and choose an element $x_{r+1} \in I$ such that (3.2) holds for N = r, this is possible because $I^s H_I^0(M/(x_1, \dots, x_r)M = 0$. Now we use induction on N to prove that x_{r+1} satisfies (3.2) for all $N \ge r$. Suppose the conclusion holds for those N' with $r \le N' < N$. Due to Corollary 3.1, without loss of generality we may assume $n_1 > 1$. For any $a \in (x_1^{n_1}, \dots, x_r^{n_r})M : x_{r+1}^{n_{r+1}}$, we may express

$$x_{r+1}^{n_{r+1}}a = x_1^{n_1}a_1 + a_1', (3.3)$$

where $a_1 \in M$, $a'_1 \in (x_2^{n_2}, \dots, x_r^{n_r})M$. By the induction hypothesis, for any $y \in I^s$, we may write

$$ya = x_1^{n_1 - 1} a_2 + a_2', (3.4)$$

where $a_2 \in M, a'_2 \in (x_2^{n_2}, \cdots, x_r^{n_r})M$. From (3.3) and (3.4), we assert that

$$x_1^{n_1-1}(yx_1a - x_{r+1}^{n_{r+1}}a_2) \in (x_2^{n_2}, \cdots, x_r^{n_r})M.$$

By Corollary 3.1, x_2, \dots, x_r, x_1 is also a weak I sequence. Hence we can find an integer $s' \in Z^+$ such that for any $y' \in I^{s'}$, $y'(yx_1a - x_{r+1}^{n_{r+1}}a_2) \in (x_2^{n_2}, \dots, x_r^{n_r})M$. This implies $x_{r+1}^{n_{r+1}}y'a_2 \in (x_1, x_2^{n_2}, \dots, x_r^{n_r})M$. By the induction hypothesis, we have for any $y'' \in I^s$, $y'y''a_2 \in (x_1, x_2^{n_2}, \dots, x_r^{n_r})M$. Hence, from (3.4), we obtain $yy'y''a \in (x_1^{n_1}, \dots, x_r^{n_r})M$. By the arbitrary choices of y, y' and y'', we see that $I^{2s+s'}a \in (x_1^{n_1}, \dots, x_r^{n_r})M$. But by the assumption, $I^sH_I^0(M/(x_1^{n_1}, \dots, x_r^{n_r})M) = 0$. Therefore $a \in (x_1^{n_1}, \dots, x_r^{n_r})M : I^s$ and this proves the lemma.

Theorem 3.2. Let I be an ideal of A and M a finite A-module such that $\Gamma_I(M) \neq M$. Set $r = \inf_i \{i \mid \text{for some } s > 0, \ I^s H^i_I(M) \neq 0\}$. Then every maximal weak I sequence in I has the same length r.

Proof. Let x_1, \dots, x_s be a maximal weak I sequence in I. We argue by induction on s. For s = 1, if $r \neq 1$, then there exists a positive integer k such that $I^k H^1_I(M) = 0$. By Proposition 2.1 (ii), we have the long exact sequence

$$0 \longrightarrow (0:_M x_1^{n_1}) \longrightarrow H^0_I(M) \xrightarrow{x_1^{n_1}} H^0_I(M) \longrightarrow H^0_i(M/x_1^{n_1}M) \longrightarrow H^1_i(M) \longrightarrow \cdots$$

Hence $I^{2k}H^0_I(M/x_1^{n_1}M) = 0$ for all $n_1 > 0$. By Theorem 3.1, we have a contradiction. Thus r = 1.

For s > 1, according to Proposition 2.3, we have $s \leq r$. If $s \neq r$, then there exists an integer k > 0 such that $I^k H_I^i(M) = 0$, for $i \leq s$. Using Proposition 2.1 (ii) s times, we can choose an integer k' (cf. $k' = 2^{s}k$) such that $I^{k'}H_I^0(M/(x_1^{n_1}, \dots, x_s^{n_s})M) = 0$, where n_1, \dots, n_s run through all positive integers. By Lemma 3.1, we can construct an element $x_{s+1} \in I$ such that x_1, \dots, x_s, x_{s+1} is a weak I sequence. This contradicts the choices of x_1, \dots, x_s . So s = r.

Write wdepth(I, M) = r. We call r the weak I-depth of M. If $M = \Gamma_I(M)$, the weak I-depth is by convention ∞ . We make a remark here. For i < r, $H_I^i(M)$ is a Noetherian A-module, i.e., $H_I^i(M)$ is finitely generated. In fact, letting x_1, \dots, x_r be a weak I sequence, without loss of generality, we may assume depth $_I(M) \ge 1$. If r > 1, we have an integer k

as in the proof of Proposition 2.3, such that $I^k H^i_I(M/x_1^n M) = 0$, for all i < r - 1. Now, choose k large enough such that $I^k H^i_I(M) = 0$, for i < r. Clearly, we have the short exact sequences

$$0 \to H^i_I(M) \to H^i_I(M/x_1^k M) \to H^{i+1}_I(M) \to 0$$
, for $i < r-1$.

So by induction on the dimension of M, $H^i_I(M)$ is finitely generated.

Corollary 3.2. Let $I = (y_1, \dots, y_n)$ be an ideal of A and M a finite A-module with $\Gamma_I(M) \neq M$. Set

 $r' = \sup\{i \mid \text{for any } s \in Z^+, \text{ there exist } r_1, \cdots, r_n \in Z^+ \text{such that } I^s H_i(\underline{y}_i^{r_j}, M) \neq 0\}.$

Then n - r' = wdepth(I, M).

Proof. By Proposition 2.5 and Theorem 3.2, $n - r' \ge \text{wdepth}(I, M)$. If $n - r' \ne \text{wdepth}(I, M)$, then from

$$\lim_{r \to \infty} H_{n-i}(\underline{y}_i^r, M) = H_I^i(M),$$

there is an integer k such that $I^k H^r_I(M) = 0$ (r = wdepth(I, M)), a contradiction.

Corollary 3.3. Let $I = (y_1, \dots, y_n)$ be an ideal of A and M a finite A-module such that $\Gamma_I(M) \neq M$. Then the following conditions are equivalent:

(i) y_1, \dots, y_n is a weak I sequence;

(ii) wdepth(I, M) = n.

§4. The Case wdepth(I,M)=dimM

In this section we consider the case wdepth $(I, M) = \dim M$. It is known that if wdepth $(m, M) = \dim M$, then a sequence x_1, x_2, \dots, x_d is a weak *m* sequence if and only if x_1, x_2, \dots, x_d is a system of parameters of *M*. Now we extend this result to our case.

Theorem 4.1. Let I be an ideal of A and M a finite A-module of dimension d with $\Gamma_I(M) \neq M$, and wdepth(I, M) = d. Let x_1, x_2, \dots, x_d be a sequence contained in I. Then the following conditions are equivalent:

- (i) x_1, x_2, \cdots, x_d is a weak I sequence;
- (ii) there exists a positive integer n such that $I^n M \subseteq (x_1, x_2, \cdots, x_d) M$.

Proof. (i) \Longrightarrow (ii) We use induction on d. For d = 1, put $M' = M/\Gamma_I(M)$. Then x_1 is M'regular and dim $M'/x_1M' = 0$. So $\Gamma_I(M'/x_1M') = M'/x_1M'$. This implies $I^nM' \subseteq x_1M'$ for some $n \in Z^+$, namely $I^nM \subseteq x_1M + \Gamma_I(M)$. For n large enough, we have $I^nM \subseteq x_1M$.
Suppose the conclusion holds for those A-modules with dimension less than d (d > 1). Put $M' = M/\Gamma_I(M)$. Then $\Gamma(M') \neq M'$ and dim M' = d (because of wdepth (I, M') = d).
Now consider the short exact sequence for each $s \in Z^+$

$$0 \longrightarrow M' \xrightarrow{x_1} M' \longrightarrow M'/x_1^s M' \longrightarrow 0.$$

We have the long exact sequence

$$0 \longrightarrow H^0_I(M'/x_1^sM') \longrightarrow H^1_I(M') \xrightarrow{x_1^s} H^1_I(M') \longrightarrow \cdots$$

Since d > 1, we can choose $k \in Z^+$ such that $I^k H^1_I(M') = 0$. Hence $I^k H^0_I(M'/x_1^s M') = 0$ for all $s \in Z^+$. Now we claim that $\Gamma_I(M'/x_1^{k+1}M') \neq M'/x_1^{k+1}M'$. Otherwise, $I^k M' \subseteq x^{k+1}M'$. This implies $I^k M' \subseteq I^k x_1 M'$. By Nakayama lemma, $I^k M' = 0$, a contradiction. So from $\Gamma_I(M'/x_1^{k+1}M') \neq M'/x_1^{k+1}M$, we assert that $\Gamma_I(M'/x_1M') \neq M'/x_1M'$. $\dim M'/x_1M' = d-1$ and wdepth $(M'/x_1M') = d-1$. By the induction hypothesis, we can choose a positive integer n such that $I^nM' \subseteq (x_1, \cdots, x_d)M'$. For n large enough, we have $I^nM \subseteq (x_1, \cdots, x_d)M$.

(ii) \Longrightarrow (i) Clealy, rad $((x_1, \dots, x_d) + \operatorname{ann} M) = \operatorname{rad}(I + \operatorname{ann} M)$. So by the characterization of local cohomology via Koszul cohomology, we have $H^i_{I'}(M) \simeq H^i_I(M)$ for all $i \ge 0$, where $I' = (x_1, \dots, x_d)$. From this we can assert that x_1, x_2, \dots, x_d is a weak I sequence by Corollary 3.3.

Now, we prove a result which states that I has a generator consisting of weak I sequences.

Lemma 4.1. If wdepth(I, M) = d, then there exists $n \in Z^+$ such that for every weak I sequence x_1, x_2, \dots, x_d

$$\dim M/(x_1^{n_1}, \cdots, x_{d-1}^{n_{d-1}})M : I^n = 1,$$

where n_1, \dots, n_{d-1} run through all positive integers.

Proof. We use induction on the dimension d. For d = 1, the result is obvious. Suppose the result holds for those A-module with dimension d' < d. For d > 1, put $M' = M/\Gamma_I(M)$. As x_2, \dots, x_d is a weak I-sequence with respect to $M'/x_1^{n_1}M'$, and $\dim M'/x_1^{n_1}M' = d - 1$ (see the proof of Theorem 4.1), by the induction hypothesis, we assert that

$$\dim M'/(x_2^{n_1}, \cdots, x_{d-1}^{n_{d-1}})M': I^n) = 1$$

for *n* satisfying Proposition 2.4. This implies that $\dim M/((x_1^{n_1}, \cdots, x_{d-1}^{n_{d-1}})M : I^{n'}) = 1$, for a fixed large n'.

Proposition 4.1. If wdepth(I, M) = d, then there exists $B = \{y_1, \dots, y_n\} \subseteq I$ such that every d-element of B forms a weak I sequence and $I = (y_1, \dots, y_n)$.

Proof. Since wdepth (I, M) = d, we have a weak I sequence y_1, \dots, y_d . Let $B' \supseteq \{y_1, \dots, y_d\}$ be a maximal subset of I such that every d-element of B' forms a d-sequence and $(B') \subseteq I$. As A is Notherian, we can choose a finite subset $B \subseteq B'$, $B = \{y_1, \dots, y_d, y_{d+1}, \dots, y_n\}$ such that (B') = (B). By Proposition 2.4 and Lemma 4.1, we have $k \in Z^+$, such that for every d-element y_{i_1}, \dots, y_{i_d} of B,

$$(y_{i_1}, \cdots, y_{i_{d-1}})M : y_{i_d} \subseteq (y_{i_1}, \cdots, y_{i_{d-1}})M : I^k,$$

and dim $M/(y_{i-1}, \dots, y_{i_{d-1}})M : I^k = 1$. This implies that y_{i_d} is $M/((y_{i_1}, \dots, y_{i_{d-1}})M : I^k)$ -regular. If $(B) \neq I$, let P_1, \dots, P_s be the non-embedded associated primes of all submodules $(y_{i_1}, \dots, y_{i_{d-1}})M : I^k$, where y_{i_1}, \dots, y_d is an arbitrary (d-1)-element of B. Choose $y \in I \setminus (B)$. If $y \notin P_i$ for all $i = 1, \dots, s$, then we set $y_{n+1} = y$. If $y \in P_i$ for $i = 1, \dots, t$ and $y \notin P_i$ for $i = t+1, \dots, s, 1 \leq t \leq s$, we first choose an element $y' \in ((B) \cap P_{t+1} \dots \cap P_s) \setminus P_1 \cup \dots \cup P_t$, which is possible because $B \not\subseteq P_i$ for $1 \leq i \leq t$. Otherwise $B \subseteq P_i$, P_i is a non-embedded associated prime ideal of some submodule $(y_{i_1}, \dots, y_{i_{d-1}})M : I^k$. It means there exists $b \in M/((y_{i_1}, \dots, y_{i_{d-1}})M : I^k), b \neq 0$ and and $b = P_i$, so $y_{i_d}b = 0$. This implies b = 0, a contradiction. Set $y_{n+1} = y' + y$. Clearly, in either case, we have $y_{n+1} \notin P_1, P_2, \dots, P_s$. From this we can see that y_{n+1} is $(M/(y_{i_1}, \dots, y_{i_{d-1}})M : I^k)$ -regular for any $\{i_1, \dots, i_{d-1}\} \subseteq \{1, \dots, n\}$. Hence, for any fixed $i_1, \dots, y_{i_{d-1}}, y_{n+1}$ is a weak I sequence.

Since $(y_1, \dots, y_n, y_{n+1}) \nsubseteq (y_1, \dots, y_n)$, this contradicts the choice of B'. So $I = (y_1, \dots, y_n)$ and the proof is complete.

§5. Standard Ideals

In this section, we extend the notion of standard ideals in [13] to more general cases and discuss some basic facts about it.

Definition 5.1. We say that I is an M-standard ideal if wdepth(I, M) = d and every maximal weak I sequence with respect to $M x_1, \dots, x_d$ forms an I-weak sequence, i.e. the equality $(x_1, \dots, x_{i-1})M : x_i = (x_1, \dots, x_{i-1}) : I$ holds for $i \ (1 \le i \le d)$.

Recall that a sequence $x_1, \dots, x_r \in I$ is said to be a *d*-sequence if

(i) $x_i M \not\subset x_1 M + \dots + x_{i-1} M + x_{i+1} M + \dots + x_r M$,

(ii) $(x_1, \dots, x_{i-1})M : x_i x_k = (x_1, \dots, x_{i-1})M : x_i$

for $1 \leq i \leq r$, $i \leq k \leq r$.

For the properties of d-sequences, one can refer to [13] and so on. The following result is an extension to the results in [13].

Theorem 5.1. If wdepth(I, M) = d, then the following conditions are equivalent:

(i) I is M-standard;

(ii) every *I*-weak sequence x_1, \dots, x_d forms a *d*-sequence.

Proof. (i) \Rightarrow (ii) Let x_1, \dots, x_d be an *I*-weak sequence, since every permutation of x_1, \dots, x_d is also an *I*-weak sequence. In order to prove $x_iM \not\subset x_1M + \dots + x_{i-1}M + x_{i+1}M + \dots + x_rM$, it suffices to prove $x_rM \not\subset x_1M + \dots + x_{r-1}M$. As x_1, \dots, x_{r-1}, x_r is a weak *I* sequence, according to Lemma 4.1, dim $M/(x_1, \dots, x_{d-1})M : I^n = 1$ for *n* large enough. If $x_rM \subseteq (x_1, \dots, x_{r-1})M$, we have $(x_1, \dots, x_{d-1})M : I^n = M$; this is a contrdiction. For any i, k $(1 \leq i \leq d, i \leq k \leq d)$, as *I* is *M*-standard, we have

$$(x_1, \cdots, x_{i-1})M : x_i = (x_1, \cdots, x_{i-1})M : x_i^2,$$

 $(x_1, \cdots, x_{i-1})M : x_k = (x_1, \cdots, x_{i-1})M : I.$

As x_1, \dots, x_{i-1}, x_k and $x_1, \dots, x_{i-1}, x_i^2$ are *I*-weak sequences, assume $c \in (x_1, \dots, x_{i-1})M$: $x_i x_k$, that is, $x_i x_k c \in (x_1, \dots, x_{i-1})M$. This implies $x_i c \in (x_1, \dots, x_{i-1})M$: *I*. It shows that $x_i^2 c \in (x_1, \dots, x_{i-1})M$. Hence $c \in (x_i, \dots, x_{i-1})M$: x_i , that is,

$$(x_1, \cdots, x_{i-1})M : x_i x_k = (x_1, \cdots, x_{i-1})M : x_i.$$

(ii) \Rightarrow (i) By the proof of Proposition 4.1, every weak *I*-sequence $x_1 \cdots, x_d$ can be extended to $B = \{x_1, \cdots, x_d, \cdots, x_n\}$ such that every *d*-element subset of *B* forms a weak *I*-sequence and $I = (x_1, \cdots, x_n)$. For each $i \ (1 \le i \le d)$, since $x_1, x_2, \cdots, x_{i-1}, x_k \ (i \le k \le n)$ is a weak *I*-sequence, by the hypothesis it is a *d*-sequence. We have

$$(x_1, \cdots, x_{i-1})M : x_k^s = (x_1, \cdots, x_{i-1})M : x_k$$

for any $s \in Z^+$, it means that

$$(x_1,\cdots,x_{i-1})M: x_k \supseteq \bigcup_{n=1}^{\infty} (x_1,\cdots,x_{i-1})M: I^n.$$

On the other hand, x_1, \dots, x_{i-1}, x_k is a weak I sequence, and we have

$$(x_1,\cdots,x_{i-1})M: x_k \subseteq \bigcup_{n=1}^{\infty} (x_1,\cdots,x_{i-1})M: I^n.$$

Hence we have

$$(x_1, \cdots, x_{i-1})M : x_k = \bigcup_{n=1}^{\infty} (x_1, \cdots, x_{i-1})M : I^n,$$

 \mathbf{so}

$$(x_1, \cdots, x_{i-1})M : x_i = \bigcap_{x \in B} (x_1, \cdots, x_{i-1})M : x = (x_1, \cdots, x_{i-1})M : I.$$

Because of Theorem 5.1, many results concerning m-primary standard ideals in [8, 13] can be extended to our cases. We quote two important results here, which can be proved word by word as that in [8, 13]. We will omit the proof of them.

Theorem 5.2.^[8,Theorem 1] Let M be a finite A module of dimesion d and I an ideal of A such that $\Gamma_I(M) \neq M$. If the canonical maps $\phi_i : Ext {}^i_A(A/I, M) \to H^i_I(M)$ are surjective for all $i \neq d$, then I is M-standard.

Let $G_q(M) = \bigoplus_{n \ge 0} q^n M/q^{n+1}M$ be the associated module of M relative to an ideal $q = (x_1, \dots, x_d) \subseteq I$ of A where I is an M-standard ideal and x_1, \dots, x_d is an I-weak sequence. It is well known that^[7] the dimension of $G_q(M)$ as $G_q(A)$ -module is the same as that of M. Then we have

Theorem 5.3.^[13,Theorem 5.4] Let I be an M-standard ideal and x_1, \dots, x_d be an I-weak sequence. Then

(i) $H^i_P(G_q(M)) = H^i_I(M)(i)$ for $i = 0, \dots, d-1$,

(ii) $[H_P^d(G_q(M))]_n = 0$ for n > -d,

where $H_I^i(M)$ is considered as a graded module concentrated in degree 0 (the integer in the round brackets denotes the shifting degree) and $P = I/q \oplus q/q^2 \oplus \cdots$.

References

- [1] Auslander, M. & Buchsbaum, D. A., Codimension and multiplicity, Ann. of Math., 68(1958), 625–657.
- [2] Buchsbaum, D. A., Complexes in local ring theory, In: Some aspects of ring theory, C. I. M. E., Rom, 1965.
- [3] Cuong, N. T., Schenzel, P. & Trung, N. V., Verallgemeinerteohen-Macaulay-Moduln, Math. Nachr., 85 (1978), 57–73.
- [4] Goto, S., Noetherian local rings with Buchsbaum associated graded rings, J. Algebra, 86 (1984), 336–384.
- [5] Hartshorne, R., Local cohomology, Lect. Notes in Math. 41, Berlim-New York-Heidelberg, 1967.
- [6] Matlis, E., Injective modules over Noetherian rings, Pacific J. Math., 8 (1958), 511–28.
- [7] Matsumura, H., Commutative algebra, Benjamin, New York, 1985.
- [8] Stückred, J. & Vogel, W., Eine Verallgemeinerung der Cohen-Macaulay-Ringe und Anwendungen auf ein Problem der Multiplizitätstheorie, J. Math. Kyoto Univ., 13 (1973), 513–528.
- [9] Sharp, R. Y., Local cohomology theory in commutative algebra, Quart. J. Math. Oxford, 21 (1970), 425–34.
- [10] Stükrad, J. & Vogel, W., Toward a theory of Buchsbaum singularities, Amer. J. Math., 100 (1978), 727–746.
- [11] Trung, N. V., On the associated graded ring of a Buchsbaum ring, Math. Nachr., 107 (1982), 209–220.
- [12] Trung, N. V., Absolutely superficial sequence, Math. Proc. Cambridge Phil. Soc., 93 (1983), 35–47.
- [13] Trung, N. V., Toward a theory of generalized Cohen-Macaulay modules, Nagoya Math. J., 102 (1986), 1–49.
- [14] Vogel, W., Über eine Vermutung von D. A. Buchsbaum, J. Algebra, 25 (1973), 106–112.
- [15] Zhou, C., On weak resolutions, Comm. in Algbra, 24 (1996), 659–676.