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Abstract

Let X be an m-symmetric Markov process and M a multiplicative functional of X such
that the M -subprocess of X is also m-symmetric. The author characterizes the Dirichlet form
associated with the subprocess in terms of that associated with X and the bivariate Revuz

measure of M .
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§1. Introduction

Let X be a Borel right Markov process on (E, E) with semigroup (Pt) which is symmetric

relative to a σ-finite measure m on E. Then Pt is self-adjoint as an operator on L2(m). Let

(a,D) denote the Dirichlet form associated with X and m. Assume that M is a decreasing

multiplicative functional of X such that the M -subprocess of X is also m-symmetric. Our

goal in this paper is to give a formula of Feynman-Kac type to characterize the Dirichlet

form (b,D(M)) associated with (X,M).

Our approach is that used in [2], and our tool is bivariate Revuz measures and respective

Revuz formula. Some standard results on Dirichlet form are contained in §2. Our main

results will be proved in §3.

§2. Preliminaries

Let X = (Xt, P
x) be a Borel right process with state space (E, E) which is assumed to

be Lusinian, semigroup (Pt) and resolvent (Uq). We fix a σ-finite measure m with respect

to which X is symmetric

(f, Ptg) = (Ptf, g)

for each t > 0 where (·, ·) is the inner product in L2(m). Note that Walsh[8] has showed

that Pm a.s.

Xt− exists in E for all t ∈]0, ζ[. (2.1)
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The family (Pt) determines a strongly continuous semigroup of subMarkovian contractions

on L2(m), which we denote by (Pt) as well. It is proved in [2] that X is also an m-special

standard Markov process. Thus by [6, IV.5.1] there exists a unique Dirichlet form (a,D(X))

associated with X such that

D(X) = {u ∈ L2(m) : ↑ lim
p→∞

a(p)(u, u) < ∞},

a(u, v) = lim
p→∞

a(p)(u, v) for u, v ∈ D(X),
(2.2)

where a(p)(u, v) = p(u, v − pUpv), called the approximating form of a.

A set B is m-polar if and only if Pm(TB < ∞) = 0, and a statement is true m-quasi

everywhere (m-q.e.) provided it holds off an m-polar set. It is known from [6] that any

function u ∈ D(X) admits a quasi-continuous m-version. Note that by the transfer method

developped in [6, VI.2], we can make free use of almost all results in [4], though we are

actually in the frame of [6]. Now we are going to settle down the notations for multiplicative

functionals involved in this paper.

Definition 2.1. A real-valued, decreasing, right continuous process M = (Mt : t ≥ 0) is

called a multiplicative functional (MF ) of X if M is adapted, i.e., Mt ∈ Ft for any t ≥ 0,

and Mt+s(ω) = Mt(ω) ·Ms(θtω) for any s, t ≥ 0 and ω ∈ Ω. In addition, an MF M is exact

provided for any t > 0 and every sequence tn ↓↓ 0,

Mt−tn ◦ θtn → Mt a.s. as n → ∞.

Let MF be the set of all exact multiplicative functionals of X. For any M ∈ MF, denote

EM := {x ∈ E : P x(M0 = 1) = 1}, SM := inf{t : Mt = 0}.

Then by [7, §57] the M -subprocess, (X,M), is a right Markov process with state space EM ,

semigroup (Qt) and resolvent (V q) given by

Qtf(x) := P x(f(Xt)Mt),

V qf(x) := P x

∫ ∞

0

e−qtf(Xt)Mtdt.

Let M ∈ MF. Write m∗ := m|EM . The bivariate Revuz measure of M with respect to m is

defined by

νM (F ) := lim
t→0

1

t
Pm∗

∫ t

0

F (Xs−, Xs)d(−Ms), F ∈ E × E , F ≥ 0.

Denote ρM := νM (1⊗·). Note that we actually use the definition for additive functionals of

M (Refer to [3] for definition of additive functionals of M , or M -additive functionals, and

existence of Revuz measures) since (1−Mt : t > 0) is an additive functional of M . For the

later use of definition of Revuz measures we will not repeat this technique. It is clear that

νM does not charge any m-bi-polar set, which is a set of form E1 ×E2 with either E1 or E2

being m-polar.

Let sMF be the set of all M ∈ MF such that the M -subprocess (X,M) is also symmetric

with respect to m, and

sMF+ := {M ∈ sMF : EM = E};
sMF++ := {M ∈ sMF : SM ≥ ζ, where ζ is the life time of X}.
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From §5 of [9] we know that M ∈ sMF if and only if the measure νM is symmetric; that

is, νM (dx, dy) = νM (dy, dx). There certainly exists a Dirichlet form, donoted by (b,D(M)),

associated with (X,M).

Some results, which will be used throughout this paper, are listed below for handy refer-

ence.

Generalized Revuz formula: for any f , g ∈ pE

(g, Uq
Mf) = νM (V qg ⊗ f), (2.4)

where

Uq
Mf(x) := P x

∫ ∞

0

e−qtf(Xt)d(−Mt).

This can be proved by the approach employed by Getoor and Sharpe[5] for proving the

Revuz formula in the frame of weak duality.

Representation of bivariate Revuz measures: Let S := SM and νS the bivariate Revuz

measure of 1[0,S[. The Stieltjes logarithm of M is defined by

( slogM)t :=

∫ t

0

1[0,S[(s)
d(−Ms)

Ms−
. (2.5)

Then slogM is an S-additive functional. Indeed it is easy to see that

( slogM)t+s = ( slogM)t + ( slogM)s ◦ θt · 1{t<S}.

Hence ν slogM makes sense. Let SνM be the bivariate Revuz measure of M relative to m in

the frame of the subprocess, (X,S), of X killed at S. Then it is not hard to check that

νM = νS + ν slogM and ν slogM = SνM . (2.6)

The readers interested in (2.4) and (2.5) may refer to [9] for details.

§3. Feynman-Kac Formula

In this section any element in D(X) takes its quasi-continuous m-version. Let D+(X)

and D+(M) be the sets of those non-negative elements in D(X) and D(M), respectively,

and

L(M) = {u ∈ D(X) : νM (u⊗ u) < ∞}.

Proposition 3.1. If M ∈ sMF+ and νM is finite, then D+(M) = D+(X) ∩ L(M) and

b(u, u) = a(u, u) + νM (u⊗ u), for u ∈ D(M). (3.1)

Proof. Let u ∈ L2(m) and u ≥ 0. By Dynkin’s formula[7, §56]:

Up = V p + Up
MUp, p ≥ 0

and using the approximating form, we have

b(p)(u, u) = p(u, u− pV pu) = a(p)(u, u) + p2(u,Up
MUpu).

Then using the Revuz formula (2.4), we have

(u,Up
MUpu)m = νM (V pu⊗ Upu).

Bring them together, we have

b(p)(u, u) = a(p)(u, u) + νM (pV pu⊗ pUpu). (3.2)
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Immediately from (3.2), it follows that D+(M) ⊂ D+(X).

(1) If u ∈ D(M), by [4, Theorem 3.1.4], there is a sequence pk ↑ ∞ such that pkU
pku

converges to u m-q.e. Since E = EM , we can pick (the same) pk such that pkV
pku → u q.e.

m. Since νM does not charge m-bi-polar sets, pkV
pku⊗ pkU

pku converges to u⊗u a.e. νM .

Again invoking Fatou’s Lemma, we have

∞ > lim
k

νM (pkV
pku⊗ pkU

pku) ≥ νM (u⊗ u).

Therefore D+(M) ⊂ D+(X) ∩ L(M).

(2) If u ∈ D(X) ∩ L(M) and u is bounded, there is a pk such that pkU
pku → u m-q.e.

Since u is bounded and νM is finite, the dominated convergence theorem gives

sup
p

b(p)(u, u) = lim
k

b(pk)(u, u)

≤ lim
k
[a(pk)(u, u) + νM (pkU

pku⊗ pkU
pku)]

= a(u, u) + νM (u⊗ u) < ∞,

i.e., u ∈ D+(M). Then pick a subsequence pk such that pkV
pku → u m-q.e., and (3.2)

becomes (3.1) as k ↑ ∞ by the dominated convergence theorem again.

(3) If u ∈ D+(X) ∩ L(M), define un = u ∧ n. Then un ∈ D+(M) and

b(un, un) = a(un, un) + νM (un ⊗ un). (3.3)

Clearly

sup
n

b(un, un) ≤ a(u, u) + νM (u⊗ u) < ∞

and by [6, (I.2.12)] u ∈ D+(M). Then by the monotone convergence theorem and [4,

Theorem 1.4.2], we have (3.1).

In the rest of this section, we aim to remove two auxilliary conditions in Proposition 3.1:

the positivity of u and the finiteness of νM .

Now we introduce the well-known Beurling-Deny’s formula of Dirichlet forms. Since

(a,D(X)) is quasi-regular, by [6, VI.2.5] the Fukushima’s decomposition still holds: for any

u ∈ D(X), u(Xt)− u(X0) = M
[u]
t +N

[u]
t where M [u] is a martingale additive functional of

finite energy and N [u] is a continuous additive functional of zero-energy. Hence Beurling-

Deny’s formula (see [6] or [4]) follows:

a(u, u) = ac(u, u) +
1

2

∫ ∫
(u(x)− u(y))2νa(dx, dy) + ka(u2), (3.4)

where asc is the strongly continuous part, νa the jumping measure of a, ka the killing

measures of a.

Denote ac(u, u) := asc(u, u) + ka(u2) and ud(x, y) := u(x)− u(y) for any u ∈ E .
Proposition 3.2. If M ∈ sMF+ and νM is finite, then

D(M) = D(X) ∩ L2(ρM ),

b(u, u) = a(u, u) + νM (u⊗ u)

= a(u, u)− 1

2
νM (u2

d) + ρM (u2),

(3.5)

for any u ∈ D(M).
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Proof. Let D be the diagonal of E×E. Since each jump of M is less than or equal to 1,

1Dc · νM ≤ νa. If u ∈ D(M) and u ≥ 0, then by Proposition 3.1 u ∈ D(X), νM (u⊗ u) < ∞.

But it is easy to check that

νM (u⊗ u) = −1

2
νM (u2

d) + ρM (u2) (3.6)

and

νM (u2
d) ≤ νa(u2

d) ≤ a(u, u) < ∞.

Thus we have ρM (u2) < ∞, i.e.,

D+(M) ⊂ D+(X) ∩ L2(ρM ).

Conversely, if u ≥ 0 and u ∈ D(X) ∩ L2(ρM ), it follows from (3.6) that νM (u ⊗ u) < ∞.

Then by Proposition 3.1

D+(X) ∩ L2
M (ρM ) ⊂ D+(M).

In general u = u+ − u−. Since u −→ u+ and u −→ u− are contractions which operate

both sides of (3.5), the result follows immediately.

We will now consider two basic types of multiplicative functionals for which we can remove

the finiteness condition on νM in Proposition 3.2.

Proposition 3.3. If M ∈ sMF++, then we have

D(M) = D(X) ∩ L2(ρM ),

b(u, u) = a(u, u) + νM (u⊗ u)

= a(u, u)− 1

2
νM (u2

d) + ρM (u2)

(3.7)

for any u ∈ D(M),

Proof. Since νM is symmetric, we can find a sequence of symmetric functions {gn} ⊂
E×E satisfying that 0 < gn < 1, gn ↑ 1 and gn·νM is finite. Due to the work of Fitzsimmons[2]

it suffices to show Proposition 3.3 when M is purely discontinuous. Then

Mt =
∏
s≤t

[1− Φ(Xs−, Xs)],

where Φ ∈ pE × E , Φ < 1 and Φ vanishes on D. It is clear that

( slogM)t =
∑
s≤t

Φ(Xs−, Xs) and νM = Φ · νa.

Define

Mn
t =

∏
s≤t

[1− gn · Φ(Xs−, Xs)].

It is easy to see that Mn
t ↓ Mt a.s. for each t, Mn ∈ MF++, νMn = gn · νM which is finite

and symmetric, and thus Mn ∈ sMF++. We can apply Proposition 3.2 to (bn,D(Mn)).

Now let (V p
n ) be the resolvent of (X,Mn) and (bn,D(Mn)) the Dirichlet form associated

with (X,Mn). Clearly V p
n f(x) ↓ V pf(x) if f ≥ 0 and V p

1 f(x) < ∞. We need only to show

that D(X) ∩ L(M) ⊂ D(M).

Given u ∈ pD(X) ∩ L(M) ⊂ L2(m), we have V p
1 u ≤ Upu < ∞ a.e. m. Since

D(Mn) = D(X) ∩ L(Mn) for any n,
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it follows that

b(u, u) = sup
p

b(p)(u, u)

= sup
n

sup
p
(u, p(u− pV p

n u))

= sup
n

bn(u, u)

= sup
n

(a(u, u) + νMn(u⊗ u))

= sup
n

(a(u, u) + gn · νM (u⊗ u))

= a(u, u) + νM (u⊗ u) < ∞.

That completes the proof.

Remark. Actually Proposition 3.3 was proved in [10] without revoking the generalized

Revuz formula (2.4), but a bit more indirectly.

Proposition 3.4. Let T ∈ sMF+ and (b,D(T )) be the Dirichlet form associated with the

subprocess (X,T ). Then

D(T ) = D(X) ∩ L2(ρT );

b(u, u) = a(u, u) + νT (u⊗ u)

= a(u, u)− 1

2
νT (u

2
d) + ρT (u

2), u ∈ D(T ).

(3.8)

Proof. By representation of terminal times, there exists L ∈ E × E , which is disjoint

from D, such that

T = JL := inf{t > 0 : (Xt−, Xt) ∈ L}.

Then by [9] νT = 1L · νa. For n ≥ 1 let

Gn :=
{
(x, y) ∈ E × E : d(x, y) >

1

n

}
,

where d is a metric on E compatible with the topology. Since νa is symmetric, σ-finite and

carried by E × E −D, we can choose a sequence of sets {En} ⊂ E × E such that

(1) En ⊂ E × E −D and En ↑ E × E −D;

(2) En is symmetric;

(3) νa(En) < ∞.

Define

Tn := inf{t > 0 : (Xt−, Xt) ∈ L ∩Gn ∩ En}.

It is easy to check Tn ↓ T . But we need a stronger convergence in the sense of the following

lemma.

Lemma 3.1. For Pm-a.s. ω, there exists an integer n = n(ω) such that Tk = T for

k ≥ n.

Proof. [9, I.3.2] tells us that Pm-a.s. (XT−, XT ) ∈ L. For such an ω, XT− ̸= XT , and

sinceGn∩En ↑ E×E−D, we can find n = n(ω) large enough such that (XT−, XT ) ∈ Gn∩En.

Hence (XT−, XT ) ∈ L ∩Gn ∩ En, or Tn = T .

Back to the proof of Proposition 3.4, let V p
n be the resolvent of (X,Tn). By this strong
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convergence of {Tn}, we have

V p
n f(x) = P x

∞∫
0

e−ptf(Xt)1{t<Tn}dt

↓ P x

∞∫
0

e−ptf(Xt)1{t<T}dt = V pf(x)

for m-a.e. x. Since Gn and En are symmetric and

νTn(1) = νa(L ∩Gn ∩ En) < ∞,

Tn ∈ sMF+ and (3.8) holds for Tn. On the other hand,

νTn = 1L∩Gn∩En · νa ↑ 1L · νa = νT .

Therefore for u ∈ pD(X) ∩ L(T ),

b(u, u) = sup
p

b(p)(u, u)

= sup
n

sup
p
(u, p(u− pV p

n u))

= sup
n
(a(u, u) + νTn(u⊗ u))

= sup
n
(a(u, u) + νT (u⊗ u)) < ∞;

i.e., u ∈ D(T ).

Here is our final version of the Feynman-Kac formula for Dirichlet forms.

Theorem 3.1. Let M ∈ sMF and (b,D(M)) be the Dirichlet form associated with the

subprocess (X,M). Then

D(M) = DEM
(X) ∩ L2(ρM );

b(u, u) = a(u, u) + νM (u⊗ u)

= asc(u, u) +
1

2
(νa − νM )(u2

d) + (ka + ρM )(u2), u ∈ D(M),

(3.9)

where DEM
(X) := {u ∈ D(X) : u = 0 q.e. on Ec

M}.
Remark. (3.9) actually gives the Beurling-Deny’s decomposition of b. It says that

bsc = asc, νb = νa − νM |Dc and kb = ka + ρM .

Proof. The whole proof will be accomplished in three steps.

(1) Killing X by R := TEc
M
.

Let (b′,D(R)) be the Dirichlet form associated with (X,R). It follows from the discussion

in [6, IV. Lemma 5.6] that

D(R) = DEM
(X) and b′ = a on DEM

(X).

(2) Killing (X,R) by S := SM .

It follows from [1] that (X,S) is m-symmetric. Let (b′′,D(S)) be the Dirichlet form

associated with (X,S). Start from the subprocess (X,R), S > 0 a.s.; i.e., Pm∗
-a.e. S > 0.

Thus using Proposition 3.4 we have

D(S) = D(R) ∩ L2(RρS) = DEM (X) ∩ L2(ρS)
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and for any u ∈ D(S),

b′′(u, u) = b′(u, u) + RνS(u⊗ u) = a(u, u) + νS(u⊗ u),

since u⊗ u is supported by EM × EM .

(3) Killing (X,S) by M .

Clearly the resulting Dirichlet form is (b,D(M)) and M does not vanish under the sub-

process (X,S). Hence we can apply Proposition 3.3 and obtain

D(M) = D(S) ∩ L2(SρM ) = DEM
(X) ∩ L2(ρS) ∩ L2(ρ slogM ).

Since ρM = ρS + ρ slogM and νM = νS + ν slogM ,

D(M) = DEM
(X) ∩ L2(ρM )

and for any u ∈ D(M),

b(u, u) = b′′(u, u) + SνM (u⊗ u)

= a(u, u) + νS(u⊗ u) + ν slogM (u⊗ u)

= a(u, u) + νM (u⊗ u).

That completes the proof.
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