FINITE GROUPS WHOSE AUTOMORPHISM GROUP HAS ORDER CUBEFREE**

Li Shirong *

Abstract

Let G denote a finite group. It is shown that if $|{\rm Aut}(G)|$ is cubefree then G possesses the Sylow tower property

Keywords Finite group, Automorphism group, Sylow tower property1991 MR Subject Classification 20F28, 20D20Chinese Library Classification 0152.1

§1. Introduction and Results

In this paper G always denotes a finite group and $\operatorname{Aut}(G)$ the automorphism group of G. H. K. Iyer^[6] showed that for any given positive integer number n, the number of solutions G of $|\operatorname{Aut}(G)| = n$ is at most finite. Some special cases have been studied. Mashale^[8] and $\operatorname{Curran}^{[3]}$ showed that for each odd prime p the equation $|\operatorname{Aut}(G)| = p^s$ $(1 \le s \le 5)$ has no solution. For any $n \ge 6$, A. Caranti and C. M. Scopploa^[1] gave some examples G such that $|\operatorname{Aut}(G)| = p^n$ for some odd prime p. The cases of $n = pqr, p^3q$ and p^2q^2 were investigated in [2], [12] and [13] respectively, where p, q and r are distinct primes. In the present paper we shall prove the following

Theorem. If $|\operatorname{Aut}(G)|$ is cubefree, then G possesses the Sylow tower property. Corollary. If $|\operatorname{Aut}(G)|$ is cubefree and odd, then $|G| \leq 2$.

Our result is a contribution for classifying groups G such that |Aut(G)| is cubefree. We also note that a group whose order is cubefree need not be solvable.

The corollary is a middle result of the theorem, its proof will occur on the second step of the proof of the theorem.

A central automorphism of G is an automorphism which induces the identity automorphism of G/Z(G). We denote the central automorphism group of G by Cent(G). If H and K are groups, [H]K denotes a semi-direct product of H by K. C_n denotes the cyclic group of order n. All further unexplained notation and terminology are standard.

Manuscript received March 11, 1995. Revised November 21, 1996.

^{*}Department of Mathematics, Guangxi University, Nanning 530004, China.

 $[\]ast\ast$ Project supported by the Natural Science Foundation of Guangxi.

§2. Preliminaries

In order to prove our theorem, we need the following lemmas, some of which are well known.

Lemma 2.1.^[8] Cent(G) = $C_{Aut(G)}(Inn(G))$.

We take the primary decomposition of G/G' and Z(G) as

$$G/G' = G_{p_1}/G' \times G_{p_2}/G' \times \cdots \times G_{p_r}/G',$$

$$Z(G) = Z_{p_1} \times Z_{p_2} \times \cdots \times Z_{p_r},$$

where $p_i(i = 1, 2, \dots, r)$ are the prime factors of |G|.

Lemma 2.2.^[10] Let G be a finite group with no non-trivial abelian direct factor. Then

$$|\text{Cent}(G)| = \prod_{i=1}^{r} \prod_{j=1}^{k_i} |Z_{p_i,j}|^{r_{ij}},$$

where $Z_{p_i,j}$ is the subgroup of Z_{p_i} of elements whose order divides p^j , $p_i^{k_i}$ is the exponent of G_{p_i}/G' and in the decomposition of G_{p_i}/G' there occur precisely r_{ij} direct factors of order p_j^i .

Lemma 2.3. Let p be an odd prime and let G be a p-group such that $|G/Z(G)| = p^2$. Then G = [A]B, where A is an abelian group and B is a cyclic group. In particular, G has an automorphism of order 2.

Proof. If G = [A]B, then $ab \mapsto a^{-1}b$, $\forall a \in A, b \in B$ is an automorphism of G of order 2. We now show that G = [A]B. Let P be a minimal nonabelian subgroup of G. Then G = Z(G)P and P' is of order p by Miller-Mereno's Theorem^[9] and hence G' is a group of order p. Write [y, x] = c for $x, y \in G$. We have $c^p = 1$ and

$$(x^{-1}y)^{p} = \overbrace{x^{-1}y \cdot x^{-1}y \cdots x^{-1}y}^{p}$$

$$= y^{x}y^{x^{2}} \cdots y^{x^{p}}x^{-p}$$

$$= ycyc^{2} \cdots yc^{p}x^{-p}$$

$$= y^{p}c^{p(p+1)/2}x^{-p}$$

$$= y^{p}x^{-p}$$

$$= x^{-p}y^{p}.$$
(2.1)

Next, we have

$$G/Z(G) = \langle aZ(G) \rangle \times \langle bZ(G) \rangle.$$

If $b^p = 1$, choose $A = \langle a \rangle Z(G)$. Then A is an abelian group and $G = [A] \langle b \rangle$ as desired. We therefore may assume

$$x^p \neq 1, \quad \forall x \in G - Z(G).$$
 (2.2)

We now claim that we can suitably choose a and b such that Z(G) possesses the following form

$$Z(G) = \langle a^p \rangle \times \langle b^p \rangle \times Z.$$
(2.3)

To see this, let $Z(G) = \langle z_1 \rangle \times \langle z_2 \rangle \times \cdots \times \langle z_r \rangle$ with $|z_1| \leq |z_2| \leq \cdots \leq |z_r|$. Then

 $a^p = \prod_{i=1}^r z_i^{m_i}$ for suitable integers m_i . If each m_i is divided by p, then $\hat{a} = a \prod_{i=1}^r z_i^{-m_i/p}$ is of order p and $\hat{a} \notin Z(G)$. This contradicts (2.2) and hence we may assume that $p \dagger m_l$ for some $l \in \{1, 2, \dots, r\}$ such that $p | m_j \forall j \in \{l + 1, \dots, r\}$. Put $\hat{a} = a \prod_{i=l+1}^r z_i^{-m_i/p}$. Then $|\hat{a}^p| = |z_l|$. By replacing a by \hat{a} , we may assume

$$\langle a^p \rangle = \langle z_l \rangle$$
 for some $l.$ (2.4)

Now we have $b^p = a^{np} \prod_{i \neq l} z_i^{n_i}$ for suitable integers n and n_i . Put $\hat{b} = a^{-n}b$. Then $\hat{b}^p = a^{-np}b^p = \prod_{i \neq l} z_i^{n_i}$ by (2.1). As above, we may replace b by \hat{b} and have

$$\langle b^p \rangle = \langle z_k \rangle$$
 for some $k \neq l.$ (2.5)

Thus (2.3) is proved.

We let $|a| = p^u$ and $|b| = p^v$, $2 \le u \le v$. Since $[a, b]^p = 1$ and $[a, b] \in Z(G)$, by (2.3) we may assume that

$$[a,b] = a^{sp^{u-1}}b^{rp^{v-1}}z \quad \text{for some} \quad z \in Z,$$

where s and r are suitable integers. If p|s, then $[a,b] \in \langle b^p \rangle \times Z$ and so $G = [\langle b, Z \rangle] \langle a \rangle$ and the proof has been completed. Hence we may assume $p \dagger rs$. Choose $\hat{a} = a^s b^{rp^{v-u}}$. We have $\hat{a}^{p^u} = a^{sp^u} b^{rp^v} = 1$. By replacing a by \hat{a} , (2.3) becomes $Z(G) = \langle \hat{a}^p \rangle \times \langle b^p \rangle \times Z$ and $[\hat{a},b] = \hat{a}^{p^{u-1}}z$ and hence $G = [\langle \hat{a}, Z \rangle] \langle b \rangle$ as desired. Thus the lemma is proved.

Lemma 2.4. If the finite group G = Z(G)K and α is an automorphism of subgroup K such that $\alpha_{Z(K)} = 1$, where $\alpha_{Z(K)}$ is the restriction of α to Z(K), then G has an automorphism σ such that the restriction $\sigma_K = \alpha$ and $\sigma_{Z(G)} = 1$.

Proof. See [9, Lemma 1].

Lemma 2.5. Let p > 3 be an odd prime and let K be a subgroup of GL(2, p) of odd order. If $p \nmid |K|$, then K is either cyclic or abelian with $\exp(K)|p-1$.

Proof. Set $K_0 = K \cap SL(2, p)$. By checking the subgroup table of SL(2, p) (see [5, p.213, Dickson's Theorem]), we see that K_0 is cyclic and $|K_0|$ is a divisor of p-1 or p+1. Next, by [5, p.178, Theorem 7.3], GL(2, p) contains a cyclic subgroup B of order $p^2 - 1$, $B \cap SL(2, p) \cong C_{p+1}$ and GL(2, p) = SL(2, p)B. So

$$K/K_0 \cong C_n$$
 for some $n|p-1$.

Suppose that $|K_0||p + 1$. Let r be a prime divisor of $|K_0|$, and $R_0 \in Syl_r(K_0)$. Since every Sylow subgroup of odd order of B is a Sylow subgroup of GL(2, p) too, we may assume that $R_0 \leq B$. Choose $1 \neq u \in R_0$ and write G = GL(2, p). Then by [5, p.187, Theorem 7.3], $C_G(u) \leq B$ and $|N_G(\langle u \rangle) : C_G(u)| = 2$. Also, obviously $K \leq N_G(\langle u \rangle)$ and K is of odd order. We conclude that $K \leq B$ and hence K is cyclic because B is cyclic.

Suppose that $|K_0| \dagger p + 1$. Then $|K_0| |p - 1$. In this case $|K_0|$ is a divisor of $(p - 1)^2$. Let π denote the set of the odd prime divisors of p - 1 and let $p - 1 = 2^a m$, $2 \dagger m$. It is clear that GL(2,p) contains a π -Hall subgroup $H \cong C_m \times C_m$. Hence the π -subgroup K is contained by conjugate in H. So K is abelian and $\exp(K)|p - 1$. The proof is now complete.

Lemma 2.6. $PSL(2, p^n)$ and $SL(2, p^n)$ have an outer automorphism of order 2, where p is an odd prime.

Proof. The automorphism group of $PSL(2, p^n)$ is a semi-direct product of $PGL(2, p^n)$ by C_n and $|PGL(2, p^n) : PSL(2, p^n)| = 2$. Therefore we conclude that the lemma is true for $PSL(2, p^n)$.

Set $q = p^n$, G = GL(2, q) and let F_q denote a field with q elements. Write $q - 1 = 2^m s$, $m \ge 1$ and $2 \ddagger s$. Choose $\lambda \in F_q$ such that $|\lambda| = 2^m$. Then

$$\begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix} \in GL(2,q) \backslash SL(2,q)$$

induces an automorphism φ of SL(2,q) of order 2^m . If φ is an inner automorphism, then there is

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,q)$$

with ad - bc = 1 such that

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & 1 \end{pmatrix} \in C_G(SL(2,q)).$$

From this we have $\lambda = d^2$ and so $\lambda^{2^{m-1}} = 1$, contradicting $|\lambda| = 2^m$. Thus we conclude that $SL(2, p^n)$ has an outer automorphism of order 2.

Lemma 2.7. Let H be a finite nonsolvable group. If |H| is cubefree, then $H \cong PSL(2, p^n) \times N$, where $p^n \equiv 3, 5 \pmod{8}$ and N is solvable.

Proof. Let N be the largest solvable normal subgroup of H and let K/N be a chief factor of H. We have

$$K/N \cong PSL(2, p^n) \quad p^n \equiv 3,5 \pmod{8}$$

and K has the derived series:

$$K = K^{(0)} \ge K^{(1)} \ge \dots \ge K^{(l)}.$$

Put $M = K^{(l)}$. Then K = MN and M' = M. We claim that $D = M \cap N = 1$. Suppose not. Obviously, $D = \Phi(M)$ and so D is nilpotent. Let R > 1 be a Sylow r- subgroup of D with r a prime dividing |D|. By hypothesis we see that $2p \dagger |D|$ and |R| = r or r^2 . If $D \leq Z(M)$, then $M \cong PSL(2, p^n)$ (see [4, p.302]) and hence D = 1 as desired. We thus may assume that $R \not\subseteq Z(M)$. We have $PSL(2, p^n) \cong M/D = M/C_M(R) \cong$ some subgroup of GL(2, r). But as well-known, GL(2, r) cannot contain any nonabelian simple group. Thus the claim holds. Hence

$$K = M \times N$$
 and $M \cong PSL(2, p^n)$.

Finally, we show that H = K. We have $H/N = H/C_H(M) \cong$ some subgroup of $\operatorname{Aut}(M) = PGL(2, p^n)C_n, n \leq 2$. Also, by hypothesis, $2^3 \dagger |H|$, we conclude that $H/N \cong PSL(2, p^n)$ and hence H = K. The proof of Lemma 2.7 is now complete.

Lemma 2.8. Let K be a minimal nonnilpotent group such that $K/\Phi(K) \cong A_4$, the alternating group of degree 4. Then K has an outer automorphism of order 2.

Proof. Let P be a Sylow 2-subgroup of K and Q a Sylow 3-subgroup of K. Then $P = \langle x, y \rangle, |x| = |y| = 2$ if $\Phi(P) = 1$ and |x| = |y| = 4 if $\Phi(P) > 1$, and $Q = \langle w \rangle, |w| = 3^m$ for some m. Also, $\Phi(P) = P' = Z(P)$ is of order 2 if $\Phi(P) > 1$. By suitably choosing x and y, K has the defining relation:

$$x^w = y, \quad y^w = xyz, \quad z \in P',$$

|z| = 1 if P' = 1 and |z| = 2 if P' > 1. Define the map σ by

$$\sigma = \begin{pmatrix} x & y & z & w \\ yz & xz & z & w^{-1} \end{pmatrix}.$$

Then

$$\begin{aligned} \sigma(x), \sigma(y)] &= [yz, xz] = [y, x] = z^{-1} = z, \\ \sigma(x)^{\sigma(w)} &= (yz)^{w^{-1}} = y^{w^{-1}}z = xz = \sigma(y), \\ \sigma(y)^{\sigma(w)} &= (xz)^{w^{-1}} = y(y^{w^{-1}})^{-1} = yx^{-1} \\ &= yzxzx^{-2} = \sigma(x)\sigma(y)z. \end{aligned}$$

So σ is an automorphism of K and has order 2. Obviously σ cannot be an inner automorphism. Thus the lemma holds.

Lemma 2.9. Suppose that $|\operatorname{Aut}(G)|$ is cubefree and G = [A]B, A is a nontrivial abelian subgroup of odd order. Then G is 2-nilpotent.

Proof. If G is not 2-nilpotent, then $|G/Z(G)|_2 = 4$ and so G has no outer automorphism of order 2. On the other hand, $\alpha : ab \to a^{-1}b$, $\forall a \in A$, $b \in B$ is an automorphism of G of order 2. So, there is $g \in G$ such that

$$(ab)^g = a^{-1}b, \quad \forall a \in A, \quad b \in B$$

Put g = uv, where u is 2-element and v is 2'-element, and |v| = m. Then $(ab)^{u^m} = (ab)^{g^m} = a^{-1}b \quad \forall a \in A, b \in B$. So we may assume that g is 2-element and $g \in B$. Clearly $g \in Z(B)$ but $g \notin Z(G)$. Hence we have

$$|B/Z(B)|_2 < |B/Z(G) \cap B|_2 \le 4$$

This implies that B is 2-nilpotent and so is G. This is a contradiction and thus the lemma is proved.

\S **3.** Proof of the Theorem

Suppose that the theorem is false and let G be a counterexample. We prove the theorem in 3 steps.

(a) Solvability of G.

Suppose that G is nonsolvable and put Z = Z(G). By Lemma 2.7 we have

$$G/Z = M/Z \times N/Z,$$

where N is the largest solvable normal subgroup of G, $M/Z = PSL(2, p^n)$, $1 \le n \le 2$ and $p^n \equiv 3,5 \pmod{8}$. Let $M^{(r)}$ be the terminal member of the derived series of M. We have $M = M^{(r)}Z$ and $M^{(r)} \triangleleft G$. Hence $M^{(r)}/M^{(r)} \cap Z \cong PSL(2, p^n)$. By checking the Shur multipliers of $PSL(2, p^n)$ (see [4, p. 302]) we see

$$M^{(r)} \cong PSL(2, p^n)$$
 or $SL(2, p^n)$.

If $M^{(r)} \cong PSL(2, p^n)$, then $G \cong PSL(2, p^n) \times N$. By Lemma 2.6 G has an outer automorphism of order 2. This is a contradiction.

Suppose that $M^{(r)} = SL(2, p^n)$. We let S be a Sylow 2-subgroup of Z and so $N = S \times N_1$ where N_1 is a 2'-group because |N/Z| must be an odd number. We have

$$G = SL(2, p^n)S \times N_1.$$

If |S| > 2, then 2||G:G'| because $Z(SL(2, p^n))$ is of order 2. Thus G has a central automorphism of order 2 by Lemma 2.2. This is impossible. Hence |S| = 2 and so $G = SL(2, p^n) \times N_1$. By Lemma 2.6 G has an outer automorphism of order 2, again a contradiction. Thus (a) is proved.

(b) $|G| = 2^n 3^m$.

Suppose that (b) is not true. Since we are assuming that G has no Sylow tower, we see that G cannot be 2-nilpolent because |G/Z(G)| is cubefree. Thus G contains a subgroup K such that $K/Z(K) \cong A_4$. So

(b₁) G has no outer automorphism of order 2.

Let p denote the largest prime divisor of |G| and let P be a Sylow p-subgroup of G. Then $P \triangleleft G$ and G has a p-complement H. So G = H[P]. We may assume that $K \leq H$. If $H \triangleleft G$, then by Lemma 2.3 G has an automorphism α of order 2 with $\alpha_H = 1$. Obviously α cannot be an inner automorphism. This contradicts (b_1) . Hence H acts nontrivially on P by conjugation and P is nonabelian by Lemma 2.9.

We claim that H acts trivially on each H-invariant abelian subgroup of P. Suppose not. Let A be an H-invariant abelian subgroup of P and [A, H] > 1. We have $A = C_A(H) \times [A, H]$. Also, by hypothesis $|P : Z(P)| = p^2$ and $Z(P) = Z(G) \cap P \leq C_P(H)$, so [A, H] has order pand by Mashke's Theorem (see [7, 12.3]) we see

$$P/Z(P) = A/Z(P) \times B/Z(P),$$

where $Z(P) \leq B$ and B is some H-invariant subgroup. Thus G = (H[A, H])[B]. This contradicts Lemma 2.9 and hence the claim holds.

We now choose a subgroup P_0 of P satisfying conditions: P_0 is nonabelian, H acts nontrivially on P_0 and P_0 has the smallest possible order. Put

$$G_0 = HP_0$$
 and so
 $G = Z(G)G_0.$ (3.1)

(b₂) $|P_0| = p^3$ and $\exp(P_0) = p$.

Indeed, by choice of P_0 we see that H acts trivially on each H-invariant proper subgroup of P_0 . It follows by Hall-Higman's Theorem (see [7, 7.25]) that $P'_0 = \Phi(P_0) = Z(P_0)$ and $\exp(P_0) = p$. On the other hand, P_0 contains a minimal nonabelian subgroup, say N. By Miller-Mereno's Theorem^[9], $N' = \langle c \rangle, c^p = 1$. Thus $P'_0 = \langle c \rangle$ since $P_0 = Z(P_0)N$. Therefore we conclude $|P_0| = p^3$.

(b₃) $H/C_H(P_0)$ is cyclic.

By above $P'_0 = \Phi(P_0) = Z(P_0) = \langle c \rangle$ with $c^p = 1$. It follows by a theorem of Hall that we have $C_H(P_0) = C_H(P_0/\langle c \rangle)$. So $C_H(P_0)$ is isomorphic to some subgroup of $\operatorname{Aut}(P/\langle c \rangle) = GL(2,p)$.

We first consider the case when $H/C_H(P_0)$ has odd order. Suppose that $H/C_H(P_0)$ is noncyclic. By Lemma 2.5 $H/C_H(P_0)$ is an abelian group with exponent a divisor of p-1. It follows that $P_0/\langle c \rangle$ has an *H*-invariant subgroup of order *p*, say $A/\langle c \rangle$. Obviously *A* is an abelian group of order p^2 . Put $\hat{A} = AZ(P)$. Then \hat{A} is also abelian and *H*- invariant. It follows by Mashke's theorem that we have $G = (H[\hat{A}, H])[B]$ where B > Z(P) is abelian. This contradicts Lemma 2.9. Next suppose that $H/C_H(P_0)$ has even order. In this case $\overline{K} = KC_H(P_0)/C_H(P_0) \cong A_4$ or a 2-group. But GL(2, p) cannot contain a subgroup which is isomorphic to A_4 . Thus the only possibility of \overline{K} is a 2-group and hence $C_H(P_0)$ contains a Sylow 3-subgroup of K and $K \cap C_H(P_0) \triangleleft K$. This is impossible because $K/Z(K) \cong A_4$. This proves (b₃).

(b₄) G_0 has an outer automorphism γ of order 2 such that the restriction $\gamma_{Z(G_0)} = 1$.

Put $C = C_H(P_0)$ and let uC be a generator of H/C. Then u defines an automorphism σ_u of P_0 by

$$\sigma_u: x \mapsto u^{-1} x u, \quad \forall x \in P_0.$$

We may assume

$$\sigma_u = \begin{pmatrix} a & b & c \\ b & a^r b^s c^t & c \end{pmatrix}, \quad r \not\equiv 0 \pmod{p},$$

where a, b are generators of P_0 and [a, b] = c. Choose k such that $kr \equiv t \pmod{p}$. Then

$$\sigma_{ub^{-k}} = \begin{pmatrix} a & b & c \\ b & a^{-1}b^s & c \end{pmatrix}$$

We may replace u by ub^{-k} . Further choose m such that $2m \equiv s \pmod{p}$ and replace u by ub^{-m} again. Then we get

$$\sigma_u = \begin{pmatrix} a & b & c \\ b & a^{-1}b^{2m}c^m & c \end{pmatrix}.$$
 (3.2)

On the other hand, it is clear that P_0 has an automorphism α of order 2:

$$\alpha = \begin{pmatrix} a & b & c \\ a^{-1} & b^{-1} & c \end{pmatrix}$$

and it is easy to check that $\alpha \sigma_u = \sigma_u \alpha$, that is, $(u^{-1}xu)^{\alpha} = u^{-1}x^{\alpha}u \quad \forall x \in P_0$. Thus we obtain

$$(h^{-1}xh)^{\alpha} = h^{-1}x^{\alpha}h, \ \forall h \in H, \quad x \in P_0.$$

$$(3.3)$$

Using (3.3) we can define an automorphism γ of G_0 with order 2 as follows:

$$(hx)^{\gamma} = hx^{\alpha}, \quad \forall h \in H, \quad x \in P_0.$$

Obviously $\gamma_{Z(G_0)} = 1$ and γ must be an outer automorphism (see the proof of Lemma 2.9). This proves (b₄).

Now by Lemma 2.4 and $G = Z(G)G_0$ (see (3.1)) γ is extendible to G. Thus G has an outer automorphism of order 2. This contradicts (b₁) and hence (b) is proved.

(c) G cannot exist.

As in (b), G contains a minimal nonnilpotent subgroup K such that $K/Z(K) \cong A_4$. By Lemma 2.8 we see that $G \neq K$, namely K < G.

(c₁) First let $|G/Z(G)| = 2^2 \cdot 3$. In this case

$$G = Z(G)K$$
 with $K < G$.

If 2||G : K|, then by Lemma 2.2 $|Cent(G)|_2 > 1$. But Z(G/Z(G)) = 1. Lemma 2.1 implies that G has an outer automorphism of order 2. This is a contradiction.

If 3||G : K|, as in above, $|\text{Cent}(G)|_3 > 1$. But $|\text{Cent}(G)|_3 \leq 3$. So $|\text{Cent}(G)|_3 = 3$. Applying Lemma 2.2 we see that G has a cyclic Sylow 3-subgroup. This yields G = K, again a contradiction. In this case |G : Z(G)K| = 3. Let P be a Sylow 2-subgroup of G and Q a Sylow 3-subgroup of G and put M = Z(G)K. We have $G/\operatorname{Core}(M) \cong$ a subgroup of S_3 . It follows that $M \triangleleft G$ because M cannot contain a subgroup of index 2. Thus $P \triangleleft G$ and 3||G : G'|. If 3||Z(G)|, we have $|\operatorname{Cent}(G)|_3 = 3$. It follows that Lemma 2.2 implies that G/G' has a cyclic Sylow 3-subgroup, and hence G has a cyclic Sylow 3-subgroup. Thus G = Z(G)K, a contradiction.

If $3 \ddagger |Z(G)|$, then $|Q| = 3^2$ and G has no central automorphism of order 3. On the other hand, since A_4 has no outer automorphism of order 3, we have $G/Z(G) \cong A_4 \times C_3$. Thus Lemma 2.1 implies that G has a central automorphism of order 3. This is a contradiction and hence the proof of the theorem is completed.

References

- Caranti, A. & Scopola, C. M., A remark on the order of p-groups that are automorphism groups, Boll. Un. Mat. Ital., A7: 4(1990), 201–207.
- [2] Chen Guiyun, Finite groups with automorphism group having order a product of three distinct primes, Proc. R. Ir. Acad., A(1990), 57–62.
- [3] Gurran, M. J., Automorphisms of certain p-groups (p odd), Bull, Austral. Math. Soc., 38(1988), 299-305.
- [4] Gorenstein, D., Finite simple groups, Plenum Press, New York and London, 1982.
- [5] Huppert, B., Endliche Gruppen I, Spring-Verlag, Berlin-Heidelberg, New York, 1967.
- [6] Iyer, H. K., On solving the equation $\operatorname{Aut} X = G$, Rocky Mountain, J. Math., 9:4(1979), 653–670.
- [7] Kurzweil, H., Endliche Gruppen, Spring-Verlag, Beilin-Heidelberg, New York, 1977.
- [8] Machale, D., Some finite groups which are rarely automorphism group, Proc. R. Ir. Acad., A(1983), 189–196.
- [9] Miller, G. A. & Mereno, H. C., Non-abelian groups in which every subgroup is abelian, Trans. Math. Soc., 4(1903), 394–404.
- [10] Sanders, P. R., The central automorphisms of a finite group, J. London Math. Soc., 44(1969), 225–228.
- [11] Schenkman, E., Outer automorphisms of some nilpotent groups, Proc. Amer. Math. Soc., 6(1955), 6–11.
- [12] Li Shirong, Finite groups with automorphism group of order p^3q , Proc. R. Ir. Acad., A(1994), 193–218.
- [13] Li Shirong, On the solution of the equation $|Aut(G)| = p^2 q^2$, Chinese Science Bulletin, **23**(1995), 2124–2127.