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Abstract

Let G denote a finite group. It is shown that if |Aut(G)| is cubefree then G possesses the
Sylow tower property
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§1. Introduction and Results

In this paper G always denotes a finite group and Aut(G) the automorphism group of G.

H. K. Iyer[6] showed that for any given positive integer number n, the number of solutions

G of |Aut(G)| = n is at most finite. Some special cases have been studied. Mashale[8] and

Curran[3] showed that for each odd prime p the equation |Aut(G)| = ps (1 ≤ s ≤ 5) has no

solution. For any n ≥ 6, A. Caranti and C. M. Scopploa[1] gave some examples G such that

|Aut(G)| = pn for some odd prime p. The cases of n = pqr, p3q and p2q2 were investigated

in [2], [12] and [13] respectively, where p, q and r are distinct primes. In the present paper

we shall prove the following

Theorem. If |Aut(G)| is cubefree, then G possesses the Sylow tower property.

Corollary. If |Aut(G)| is cubefree and odd, then |G| ≤ 2.

Our result is a contribution for classifying groups G such that |Aut(G)| is cubefree. We

also note that a group whose order is cubefree need not be solvable.

The corollary is a middle result of the theorem, its proof will occur on the second step of

the proof of the theorem.

A central automorphism of G is an automorphism which induces the identity automor-

phism of G/Z(G). We denote the central automorphism group of G by Cent(G). If H and

K are groups, [H]K denotes a semi-direct product of H by K. Cn denotes the cyclic group

of order n. All further unexplained notation and terminology are standard.
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§2. Preliminaries

In order to prove our theorem, we need the following lemmas, some of which are well

known.

Lemma 2.1.[8] Cent(G) = CAut(G)(Inn(G)).

We take the primary decomposition of G/G′ and Z(G) as

G/G′ = Gp1/G
′ ×Gp2/G

′ × · · · ×Gpr/G
′,

Z(G) = Zp1 × Zp2 × · · · × Zpr ,

where pi(i = 1, 2, · · · , r) are the prime factors of |G|.
Lemma 2.2.[10] Let G be a finite group with no non-trivial abelian direct factor. Then

|Cent(G)| =
r∏

i=1

ki∏
j=1

|Zpi,j |rij ,

where Zpi,j is the subgroup of Zpi of elements whose order divides pj, pki
i is the exponent of

Gpi/G
′ and in the decomposition of Gpi/G

′ there occur precisely rij direct factors of order

pji .

Lemma 2.3. Let p be an odd prime and let G be a p-group such that |G/Z(G)| = p2.

Then G = [A]B, where A is an abelian group and B is a cyclic group. In particular, G has

an automorphism of order 2.

Proof. If G = [A]B, then ab 7→ a−1b, ∀a ∈ A, b ∈ B is an automorphism of G of order

2. We now show that G = [A]B. Let P be a minimal nonabelian subgroup of G. Then

G = Z(G)P and P ′ is of order p by Miller-Mereno’s Theorem[9] and hence G′ is a group of

order p. Write [y, x] = c for x, y ∈ G. We have cp = 1 and

(x−1y)p =

p︷ ︸︸ ︷
x−1y · x−1y · · ·x−1y

= yxyx
2

· · · yx
p

x−p

= ycyc2 · · · ycpx−p

= ypcp(p+1)/2x−p

= ypx−p

= x−pyp. (2.1)

Next, we have

G/Z(G) = ⟨aZ(G)⟩ × ⟨bZ(G)⟩.

If bp = 1, choose A = ⟨a⟩Z(G). Then A is an abelian group and G = [A]⟨b⟩ as desired. We

therefore may assume

xp ̸= 1, ∀x ∈ G− Z(G). (2.2)

We now claim that we can suitably choose a and b such that Z(G) possesses the following

form

Z(G) = ⟨ap⟩ × ⟨bp⟩ × Z. (2.3)

To see this, let Z(G) = ⟨z1⟩ × ⟨z2⟩ × · · · × ⟨zr⟩ with |z1| ≤ |z2| ≤ · · · ≤ |zr|. Then
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ap =
r∏

i=1

zmi
i for suitable integers mi. If each mi is divided by p, then â = a

r∏
i=1

z
−mi/p
i is

of order p and â /∈ Z(G). This contradicts (2.2) and hence we may assume that p †ml for

some l ∈ {1, 2, · · · , r} such that p|mj ∀j ∈ {l + 1, · · · , r}. Put â = a
r∏

i=l+1

z
−mi/p
i . Then

|âp| = |zl|. By replacing a by â, we may assume

⟨ap⟩ = ⟨zl⟩ for some l. (2.4)

Now we have bp = anp
∏
i ̸=l

zni
i for suitable integers n and ni. Put b̂ = a−nb. Then b̂p =

a−npbp =
∏
i ̸=l

zni
i by (2.1). As above, we may replace b by b̂ and have

⟨bp⟩ = ⟨zk⟩ for some k ̸= l. (2.5)

Thus (2.3) is proved.

We let |a| = pu and |b| = pv, 2 ≤ u ≤ v. Since [a, b]p = 1 and [a, b] ∈ Z(G), by (2.3) we

may assume that

[a, b] = asp
u−1

brp
v−1

z for some z ∈ Z,

where s and r are suitable integers. If p|s, then [a, b] ∈ ⟨bp⟩ × Z and so G = [⟨b, Z⟩]⟨a⟩
and the proof has been completed. Hence we may assume p † rs. Choose â = asbrp

v−u

. We

have âp
u

= asp
u

brp
v

= 1. By replacing a by â, (2.3) becomes Z(G) = ⟨âp⟩ × ⟨bp⟩ × Z and

[â, b] = âp
u−1

z and hence G = [⟨â, Z⟩]⟨b⟩ as desired. Thus the lemma is proved.

Lemma 2.4. If the finite group G = Z(G)K and α is an automorphism of subgroup K

such that α
Z(K)

= 1, where α
Z(K)

is the restriction of α to Z(K), then G has an automor-

phism σ such that the restriction σ
K
= α and σ

Z(G)
= 1.

Proof. See [9, Lemma 1].

Lemma 2.5. Let p > 3 be an odd prime and let K be a subgroup of GL(2, p) of odd

order. If p † |K|, then K is either cyclic or abelian with exp(K)|p− 1.

Proof. Set K0 = K ∩ SL(2, p). By checking the subgroup table of SL(2, p) (see [5,

p.213, Dickson’s Theorem]), we see that K0 is cyclic and |K0| is a divisor of p− 1 or p+ 1.

Next, by [5, p.178, Theorem 7.3], GL(2, p) contains a cyclic subgroup B of order p2 − 1,

B ∩ SL(2, p) ∼= Cp+1 and GL(2, p) = SL(2, p)B. So

K/K0
∼= Cn for some n|p− 1.

Suppose that |K0|
∣∣p + 1. Let r be a prime divisor of |K0|, and R0 ∈ Sylr(K0). Since

every Sylow subgroup of odd order of B is a Sylow subgroup of GL(2, p) too, we may assume

that R0 ≤ B. Choose 1 ̸= u ∈ R0 and write G = GL(2, p). Then by [5, p.187, Theorem

7.3], CG(u) ≤ B and |NG(⟨u⟩) : CG(u)| = 2. Also, obviously K ≤ NG(⟨u⟩) and K is of odd

order. We conclude that K ≤ B and hence K is cyclic because B is cyclic.

Suppose that |K0| †p+1. Then |K0|
∣∣p−1. In this case |K0| is a divisor of (p−1)2. Let π

denote the set of the odd prime divisors of p− 1 and let p− 1 = 2am, 2 †m. It is clear that

GL(2, p) contains a π-Hall subgroup H ∼= Cm × Cm. Hence the π-subgroup K is contained

by conjugate in H. So K is abelian and exp(K)|p− 1. The proof is now complete.

Lemma 2.6. PSL(2, pn) and SL(2, pn) have an outer automorphism of order 2, where

p is an odd prime.
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Proof. The automorphism group of PSL(2, pn) is a semi-direct product of PGL(2, pn)

by Cn and |PGL(2, pn) : PSL(2, pn)| = 2. Therefore we conclude that the lemma is true

for PSL(2, pn).

Set q = pn, G = GL(2, q) and let Fq denote a field with q elements. Write q − 1 = 2ms,

m ≥ 1 and 2 † s. Choose λ ∈ Fq such that |λ| = 2m. Then(
λ 0
0 1

)
∈ GL(2, q)\SL(2, q)

induces an automorphism φ of SL(2, q) of order 2m. If φ is an inner automorphism, then

there is (
a b
c d

)
∈ SL(2, q)

with ad− bc = 1 such that (
a b
c d

)(
λ 0
0 1

)
∈ CG(SL(2, q)).

From this we have λ = d2 and so λ2m−1

= 1, contradicting |λ| = 2m. Thus we conclude that

SL(2, pn) has an outer automorphism of order 2.

Lemma 2.7. Let H be a finite nonsolvable group. If |H| is cubefree, then H ∼= PSL(2, pn)

×N , where pn ≡ 3, 5(mod 8) and N is solvable.

Proof. Let N be the largest solvable normal subgroup of H and let K/N be a chief

factor of H. We have

K/N ∼= PSL(2, pn) pn ≡ 3, 5 (mod 8)

and K has the derived series:

K = K(0) ≥ K(1) ≥ · · · ≥ K(l).

Put M = K(l). Then K = MN and M ′ = M . We claim that D = M ∩N = 1. Suppose not.

Obviously, D = Φ(M) and so D is nilpotent. Let R > 1 be a Sylow r- subgroup of D with

r a prime dividing |D|. By hypothesis we see that 2p † |D| and |R| = r or r2. If D ≤ Z(M),

then M ∼= PSL(2, pn) (see [4, p.302]) and hence D = 1 as desired. We thus may assume

that R ̸⊆ Z(M). We have PSL(2, pn) ∼= M/D = M/CM (R) ∼= some subgroup of GL(2, r).

But as well-known, GL(2, r) cannot contain any nonabelian simple group. Thus the claim

holds. Hence

K = M ×N and M ∼= PSL(2, pn).

Finally, we show that H = K. We have H/N = H/CH(M) ∼= some subgroup of

Aut(M) = PGL(2, pn)Cn, n ≤ 2. Also, by hypothesis, 23 † |H|, we conclude that H/N ∼=
PSL(2, pn) and hence H = K. The proof of Lemma 2.7 is now complete.

Lemma 2.8. Let K be a minimal nonnilpotent group such that K/Φ(K) ∼= A4, the

alternating group of degree 4. Then K has an outer automorphism of order 2.

Proof. Let P be a Sylow 2-subgroup of K and Q a Sylow 3-subgroup of K. Then

P = ⟨x, y⟩, |x| = |y| = 2 if Φ(P ) = 1 and |x| = |y| = 4 if Φ(P ) > 1, and Q = ⟨w⟩, |w| = 3m

for some m. Also, Φ(P ) = P ′ = Z(P ) is of order 2 if Φ(P ) > 1. By suitably choosing x and

y, K has the defining relation:

xw = y, yw = xyz, z ∈ P ′,
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|z| = 1 if P ′ = 1 and |z| = 2 if P ′ > 1. Define the map σ by

σ =

(
x y z w
yz xz z w−1

)
.

Then

[σ(x), σ(y)] = [yz, xz] = [y, x] = z−1 = z,

σ(x)σ(w) = (yz)w
−1

= yw
−1

z = xz = σ(y),

σ(y)σ(w) = (xz)w
−1

= y(yw
−1

)−1 = yx−1

= yzxzx−2 = σ(x)σ(y)z.

So σ is an automorphism of K and has order 2. Obviously σ cannot be an inner automor-

phism. Thus the lemma holds.

Lemma 2.9. Suppose that |Aut(G)| is cubefree and G = [A]B, A is a nontrivial abelian

subgroup of odd order. Then G is 2-nilpotent.

Proof. If G is not 2-nilpotent, then |G/Z(G)|2 = 4 and so G has no outer automorphism

of order 2. On the other hand, α : ab → a−1b, ∀a ∈ A, b ∈ B is an automorphism of G of

order 2. So, there is g ∈ G such that

(ab)g = a−1b, ∀a ∈ A, b ∈ B.

Put g = uv, where u is 2-element and v is 2’-element, and |v| = m. Then (ab)u
m

= (ab)g
m

=

a−1b ∀a ∈ A, b ∈ B. So we may assume that g is 2-element and g ∈ B. Clearly g ∈ Z(B)

but g /∈ Z(G). Hence we have

|B/Z(B)|2 < |B/Z(G) ∩B|2 ≤ 4.

This implies that B is 2-nilpotent and so is G. This is a contradiction and thus the lemma

is proved.

§3. Proof of the Theorem

Suppose that the theorem is false and let G be a counterexample. We prove the theorem

in 3 steps.

(a) Solvability of G.

Suppose that G is nonsolvable and put Z = Z(G). By Lemma 2.7 we have

G/Z = M/Z ×N/Z,

where N is the largest solvable normal subgroup of G, M/Z = PSL(2, pn), 1 ≤ n ≤ 2 and

pn ≡ 3, 5(mod 8). Let M (r) be the terminal member of the derived series of M . We have

M = M (r)Z and M (r) ▹ G. Hence M (r)/M (r) ∩ Z ∼= PSL(2, pn). By checking the Shur

multipliers of PSL(2, pn) (see [4, p. 302]) we see

M (r) ∼= PSL(2, pn) or SL(2, pn).

If M (r) ∼= PSL(2, pn), then G ∼= PSL(2, pn) × N . By Lemma 2.6 G has an outer

automorphism of order 2. This is a contradiction.

Suppose that M (r) = SL(2, pn). We let S be a Sylow 2-subgroup of Z and so N = S×N1

where N1 is a 2’-group because |N/Z| must be an odd number. We have

G = SL(2, pn)S ×N1.
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If |S| > 2, then 2
∣∣|G : G′| because Z(SL(2, pn)) is of order 2. Thus G has a central automor-

phism of order 2 by Lemma 2.2. This is impossible. Hence |S| = 2 and soG = SL(2, pn)×N1.

By Lemma 2.6 G has an outer automorphism of order 2, again a contradiction. Thus (a) is

proved.

(b) |G| = 2n3m.

Suppose that (b) is not true. Since we are assuming that G has no Sylow tower, we see

that G cannot be 2-nilpolent because |G/Z(G)| is cubefree. Thus G contains a subgroup K

such that K/Z(K) ∼= A4. So

(b1) G has no outer automorphism of order 2.

Let p denote the largest prime divisor of |G| and let P be a Sylow p-subgroup of G. Then

P ▹ G and G has a p-complement H. So G = H[P ]. We may assume that K ≤ H. If

H ▹G, then by Lemma 2.3 G has an automorphism α of order 2 with αH = 1. Obviously α

cannot be an inner automorphism. This contradicts (b1). Hence H acts nontrivially on P

by conjugation and P is nonabelian by Lemma 2.9.

We claim that H acts trivially on each H-invariant abelian subgroup of P . Suppose not.

LetA be anH-invariant abelian subgroup of P and [A,H] > 1. We haveA = CA(H)×[A,H].

Also, by hypothesis |P : Z(P )| = p2 and Z(P ) = Z(G) ∩ P ≤ CP (H), so [A,H] has order p

and by Mashke’s Theorem (see [7, 12.3]) we see

P/Z(P ) = A/Z(P )×B/Z(P ),

where Z(P ) ≤ B and B is some H-invariant subgroup. Thus G = (H[A,H])[B]. This

contradicts Lemma 2.9 and hence the claim holds.

We now choose a subgroup P0 of P satisfying conditions: P0 is nonabelian, H acts

nontrivially on P0 and P0 has the smallest possible order. Put

G0 = HP0 and so

G = Z(G)G0. (3.1)

(b2) |P0| = p3 and exp(P0) = p.

Indeed, by choice of P0 we see that H acts trivially on each H-invariant proper subgroup

of P0. It follows by Hall-Higman’s Theorem (see [7, 7.25]) that P ′
0 = Φ(P0) = Z(P0) and

exp(P0) = p. On the other hand, P0 contains a minimal nonabelian subgroup, say N . By

Miller-Mereno’s Theorem[9], N ′ = ⟨c⟩, cp = 1. Thus P ′
0 = ⟨c⟩ since P0 = Z(P0)N . Therefore

we conclude |P0| = p3.

(b3) H/CH(P0) is cyclic.

By above P ′
0 = Φ(P0) = Z(P0) = ⟨c⟩ with cp = 1. It follows by a theorem of Hall that we

have CH(P0) = CH(P0/⟨c⟩). So CH(P0) is isomorphic to some subgroup of Aut(P/⟨c⟩) =
GL(2, p).

We first consider the case when H/CH(P0) has odd order. Suppose that H/CH(P0) is

noncyclic. By Lemma 2.5 H/CH(P0) is an abelian group with exponent a divisor of p− 1.

It follows that P0/⟨c⟩ has an H-invariant subgroup of order p, say A/⟨c⟩. Obviously A is an

abelian group of order p2. Put Â = AZ(P ). Then Â is also abelian and H- invariant. It

follows by Mashke’s theorem that we have G = (H[Â,H])[B] where B > Z(P ) is abelian.

This contradicts Lemma 2.9.
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Next suppose that H/CH(P0) has even order. In this case K = KCH(P0)/CH(P0) ∼= A4

or a 2-group. But GL(2, p) cannot contain a subgroup which is isomorphic to A4. Thus the

only possibility of K is a 2-group and hence CH(P0) contains a Sylow 3-subgroup of K and

K ∩ CH(P0) ▹ K. This is impossible because K/Z(K) ∼= A4. This proves (b3).

(b4) G0 has an outer automorphism γ of order 2 such that the restriction γ
Z(G0)

= 1.

Put C = CH(P0) and let uC be a generator of H/C. Then u defines an automorphism

σu of P0 by

σu : x 7→ u−1xu, ∀x ∈ P0.

We may assume

σu =

(
a b c
b arbsct c

)
, r ̸≡ 0 (mod p),

where a, b are generators of P0 and [a, b] = c. Choose k such that kr ≡ t(mod p). Then

σub−k =

(
a b c
b a−1bs c

)
.

We may replace u by ub−k. Further choose m such that 2m ≡ s(mod p) and replace u by

ub−m again. Then we get

σu =

(
a b c
b a−1b2mcm c

)
. (3.2)

On the other hand, it is clear that P0 has an automorphism α of order 2:

α =

(
a b c

a−1 b−1 c

)
and it is easy to check that ασu = σuα, that is, (u−1xu)α = u−1xαu ∀x ∈ P0. Thus we

obtain

(h−1xh)α = h−1xαh, ∀h ∈ H, x ∈ P0. (3.3)

Using (3.3) we can define an automorphism γ of G0 with order 2 as follows:

(hx)γ = hxα, ∀h ∈ H, x ∈ P0.

Obviously γ
Z(G0)

= 1 and γ must be an outer automorphism (see the proof of Lemma 2.9).

This proves (b4).

Now by Lemma 2.4 and G = Z(G)G0 (see (3.1)) γ is extendible to G. Thus G has an

outer automorphism of order 2. This contradicts (b1) and hence (b) is proved.

(c) G cannot exist.

As in (b), G contains a minimal nonnilpotent subgroup K such that K/Z(K) ∼= A4. By

Lemma 2.8 we see that G ̸= K, namely K < G.

(c1) First let |G/Z(G)| = 22 · 3. In this case

G = Z(G)K with K < G.

If 2
∣∣|G : K|, then by Lemma 2.2 |Cent(G)|2 > 1. But Z(G/Z(G)) = 1. Lemma 2.1

implies that G has an outer automorphism of order 2. This is a contradiction.

If 3
∣∣|G : K|, as in above, |Cent(G)|3 > 1. But |Cent(G)|3 ≤ 3. So |Cent(G)|3 = 3.

Applying Lemma 2.2 we see that G has a cyclic Sylow 3-subgroup. This yields G = K,

again a contradiction.
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(c2) Next let |G : Z(G)| = 22 · 32.
In this case |G : Z(G)K| = 3. Let P be a Sylow 2-subgroup of G and Q a Sylow 3-

subgroup of G and put M = Z(G)K. We have G/Core(M) ∼= a subgroup of S3. It follows

that M ▹ G because M cannot contain a subgroup of index 2. Thus P ▹ G and 3
∣∣|G : G′|.

If 3
∣∣|Z(G)|, we have |Cent(G)|3 = 3. It follows that Lemma 2.2 implies that G/G′ has a

cyclic Sylow 3-subgroup, and hence G has a cyclic Sylow 3-subgroup. Thus G = Z(G)K, a

contradiction.

If 3 † |Z(G)|, then |Q| = 32 and G has no central automorphism of order 3. On the other

hand, since A4 has no outer automorphism of order 3, we have G/Z(G) ∼= A4 × C3. Thus

Lemma 2.1 implies that G has a central automorphism of order 3. This is a contradiction

and hence the proof of the theorem is completed.
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