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Abstract

The model of the universal Teichmiiller space by the derivatives of logarithm is the union of
infinite disconnected components. In this paper, the fact that each component is not starlike
with respect to its center is proved, and the outer radius of the space with respect to each
center is obtained.
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§0. Introduction

Let E; denote the Banach space of functions ¢ which are analytic in the unit disk A with
norm

[6]l; = sup(L — [2[*)[¢(2)| < o0, j=1,2. (0.1)
zEA

Next let [g] = ¢" /¢’ for g holomorphic in A and S, = (¢"/¢')' — %(g”/g’)2 , the Schwarzian
derivative of g, for ¢ meromorphic in A, and define

S1 = {[g]| g conformal in A with g(0) = ¢’(0) — 1 =0, g(A) C C},
S = {Sy|g conformal in A with g(A) C C}.

Let T1 and T denote the corresponding subsets of S; and S for which the mapping g
has, in addition, a quasiconformal extension to C. It is well-known that T is the Bers
universal Teichmiiller spacel!!, and T} is an alternative model of the universal Teichmiiller
space introduced in [2] and [3]. Astala and Gehringl? gave a complete description of the
closure of T}, and Zhuravlev[® obtained an interesting result that 7} is disconnected in the

topology induced by the norm ||.||;. He proved Ty = LU{ |J Lg}, where L and Ly
0€[0,2m)

are connected components of T; with g bounded in A and g(e?) = oo respectively, and

Lg, N Lg, = ¢ for 01 # 02 and LN Ly = ¢. Let Hp = =7, |

role in the description of T3 (see [3]), and is used as the center of the component Lg. In this

Hy) € Ly plays an important
paper, we point out in chapter 1 that there exists a homeomorphism of Ly onto T for every
6 € [0,27). In chapter 2, we prove that Lg is not starlike with respect to [Hy|, and we also
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obtain that the distance between [Hy,] and [Hy,] is 4 for arbitrary 6; # 65. In chapter 3,
we discuss the inner radius and outer radius of Ly and T; with respect to [Hp], and obtain
some exact evaluations.

§1. The Homeomorphism of Ly, onto T

There is a natural mapping I: Ty — T defined by the formula I(¢) = ¢/ — $¢. By using
the Cauchy integral formula, it is easy to get the estimate ||¢’|2 < 16]|¢]/1 and ||¢||1 < 6 for
¢ € Ty, from which it follows that

[1(p1) = I(¢2)ll2 < 22||p1 — 2|11 (L.1)
for ¢1, ¢o € T1.

Throrem 1.1. Ly is homeomorphic to T for each 6 € [0, 27).

Proof. We consider I: Ly — T. It is clear that I is surjective and injective. We
can conclude from (1.1) that I is continuous. Now we need only to prove that I~ is also
continuous. Let [f1], [f2] € Lg, i.e., fi is a g.c. mapping of C onto itself and f; is conformal
in A, f;(0) = f/(0) =1 =0, fi(e??) = 00, i = 1,2. Let uy, be the Beltrami coefficient of f;,
and let f = fo- f{''. Then f(o0) = oo, f(0) =0, f.(0) =1,

_ B (2) — pp (2) fiz

H ) = B G e
By [5], there exists a unique g.c. mapping f(z,t) such that f(0,¢) = 0, £.(0,t) = 1,
f(oo,t) = oo and f3(z,t) = tps(2)fa(z,t) for t € Ay = {t | |t| < 1/|lpslleo }- f(z,0) is
conformal for z in f1(A) and ¢(t) = f..(2,t)/f.(2,1) p;ll(A)(z) is conformal in Ay, where

Pri(a) 18 the Poincare metric of domain f;(A). For ¢ = 0, we have f(z,0) = z, hence
#»(0) =0. Osgood!®! proved that lp(t)] < 8.

By Schwarz Lemma, we have |¢(t)| < 8|/t for t € Aj. Let t = 1, f(2,1) = f(2).
Then |];T(ZZ))HPf1(A)| < 8|4t¢]l00- Hence

If2] = il < 8l (ugs = 1) /(U= Bgapgs)lloo- (1.2)

F; is a quasiconformal mapping of C onto itself and F;|a = fi|a}. From

Let [us] = {nr,
(1.2), we have

[[f2] = [f1lllh < 8H if[lf | (2 = p1) /(1 = fap2)oo- (1.3)

i€lpyy
Now let ¢o € T, ¢n € T, ¢o = I([fo]), ¢n = I([fn]) and [fo], [fn] € Lo, |én — ¢oll2 = 0.
Then ||Sf” — Sf0||2 — 0.
As fo(A) is a k-quasidisk for some k (1 < k < o0), by [7], there exists C(k) > 0
such that a conformal mapping f in fo(A) can be quasiconformally extended to C' and
laslloo < CR) sup {1Ss]-p ;24 } whenever

z€ fo(A)
sup {1571+ p72a)} < .
“€fo(a) P& C(k)
Now, for each § > 0, § < ﬁ, there exists an ng such that ||Sf, — Syl < 6 < ﬁ for

n > ng, that is, |anvf0‘1| 'P?O%m <i< % Hence

g, gl SCO) sup (1S, 11072a)} = OISy, — Spla
z€fo(A)
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From (1.3), we have

1[fn] = [follls < 8C(K)||S, — S, ll2- (1.4)

From (1. 4), we see that =1 is locally Lipschitz. Hence I~! is continuous, which completes
the proof of Theorem.
Remark. It is easy to see that I : L — T is not injective.

§2. Non-Starlike of Connected Component Ly
and the Distance Between Two Center Points

Krushkall® proved that L is not starlike with respect to zero, the center of L. In this
chapter, we will prove that Ly is not starlike with respect to [Hy] for each 6 € [0,27). We
need the following lemma.

Lemma 2.1. There exists an isolated point in S in the topology induced by || - ||2.

The proof of Lemma 2.1 is based on the existence of rigid simply connected domains
D C C having the property that any univalent meromorphic function k on D with sufficiently
small norm sup{p;,?|Sx|} must be a linear fractional transformation (see [9]).

D

Theorem 2.1. Ly is not starlike with respect to [Hg] for each 6 € [0, 2m).

Proof. Let Sy, be an isolated point in S and fy(0) = fj(0) —1 = 0. Assume, contrary
to the assertion of the theorem, that for every [f] € Ly, t[f] + (1 — t)[Hy] € Ly holds for
0<t<I.

Let f. = Lfo(rz), Gr(w) = U e (0 < r < 1). Then G, - f, has a quasicon-
formal extension to C. Denote it by F,.. Then F,.(0) = F/(0) — 1 =0, zlirge F.(z) = o0.
Hence [F,] € Ly. By assumption, t[F,] + (1 — t)[Hg] € Lg, so there exists an f,, for each
r,t € (0,1) such that [f,,] = t[F,] + (1 — t)[Hg] € Lg. We can choose r,, — 1 such that
F., — Fy locally uniformly in A, where Fy is conformal in A, £, (¢?%) — wq (wo may be oo

but nonzero) and f,, + — fo,, where fo, is conformal in A. So Fy = Gy - fo, Go =
and [f()ﬂg] = t[Fo] + (1 — t)[Ha] € S1. But

Ifo.e] = [Follly = [[¢[Fo] + (1 — )[Ho] — [Folllx = (1 = #)[|[Fo] — [Hol[l, <12(1 —t) =0

as t — 1, hence

—1
l—wgy  w

1550,0 = Sroll2 < 22[[fo.e] — [Folllx < 264(1 —#) =0,

where Sy, € S and Sy, = Sg,.f, = Sr,- Hence Sy, is not isolated in S, which is a
contradiction to Lemma 2.1. This completes the proof of Theorem 2.1.
Now we give the estimation on the distance between the centers of different components.
Theorem 2.2. ||[[Hgl|1 =4, ||[Ho,] — [Ho,lll1 =4 for 61 # 63,601,02 € [0,27).
Proof. By computation we know that [Hy| = %, hence ||[Hp]|l1 = 4 for 0 € [0, 27).

Without loss of generality, we assume 6y = 61 — 05 > 0, so

(]~ [Hogllh = 2sup { | —— (1~ af3)
R U s [ e TS
.ty 1 —|z]?
:4‘sm— sup{ — }
2 | en U1 — 2|1 — eifoz|
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Letting z = re’® r — 1, we have ||[Hy,] — [Ha,]||1 > 4. Now we prove
‘sin%o‘(l — 2% < |1 = 2||1 — e oy
for z € A. Let
F(r,0) = (141 — 2r cos8)(1 + > — 2r cos(6 — p)) — (1 — %) sin? % (2.1)
0<7r<1,0<6< 27w It is easy to see that
Fp(r,0) = 2rsin0(1 + r% — 2r cos( — 6p)) + 2rsin(0 — 6p)(1 + r* — 2r cos 6)
0

7))

6o 6o
(1+7?)cos — 5 — 27 cos (9—5) =0. (2.2)

= 4rsin (0— 0—20) [(1+ )coso2 — 2rcos (9

Let Fyp(r,0) = 0. Then r =0, or sin(f — 0—0) =0, or

If r = 0, then F(0,0) > 0. If sin(6 — —) =0, then § =2 or § =7 + %0. By computation
we have F(r, %) >0 and F(r, % + ) > 0.
It is clear that when 6y = 7,
F(r,0) = (14 7% —2rcosf)(1 +r 2r cos ) — (1 —r?)? = 4r? sin” 0 > 0.
When 6y # 7, it follows from (2.2) that

9 2 sin 0 sin 2
1+7r%—2rcos = —————2 (2.3)
cos 90
-2 6—0 b
1452~ 2rcos(d — ) = 900) g (2.4

Substituting (2.3) and (2.4) into (2.1), we have

6o 6
F(r,0) = tan® 2[ 4r% sin @ sin(f — 0y) — (1 — r2)? cos? 50}

5 0o 6 0
= tan? 5 [ 4r% sin @ sin(f — 0y) — (1 +12)2 COS250 + 412 cos? 50}

0 0 0
= 2r? tan? 50 {COS(?@ —6p) — cos b — 2 cos? (6 - ?0> + 2 cos? 50} =0.
So we conclude that F(r,8) > 0 for all » € [0,1] and 6 € [0,27], which implies ||[Hg,] —
[H92]||1 =4

§3. Inner and Outer Radius of T3 with Respect to [Hy]

We define the inner radius 7(A, 6) of T} with respect to [Hy| to be the supremum of the
constants b with the following properties: if f is analytic in A with f(0) = f/(0)—1=10
and ||[f] — [Ho]|lL < b, then f is injective. The outer radius O(A, ) of T} with respect to
[Hy] is defined to be the supremum of ||[f] — [Hy]||1 for [f] € T}.

Theorem 3.1. O(A,0) =6 for 6 € [0,27).

Proof. Let Dy be the image of A under Hy. Then for [f] € S5,

I[f1 = [Holll» = Sup {ILf - Hy "lop, )

where pp, is the Poincare metric of Dy and pp, (Hg(2))|Hy(z)| = ﬁ
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Let f1 = f- H;l. Then f; is conformal in Dy. For each w € Dy, let z € A such that
Hy(z) = = w. Next define

gln) = Hy({-2) = e

__z
l—e— 10z

1+2zn l—e W24 (z—e )y’
Then g(n) : A — Dy is conformal and g(0) = Hp(2) = w,
1
PD, (W) = ——. 3.1

By computation and [10], we have [f1 - g] = ([fi] - 9)g’ + [9], |[f1]llg’(0)] < |[f1 - g](0)| +
[9(0)] < 4+ [[g](0)] and

" 5 —i6
i) =[S | = 2| T ==
Hence [[f1)(w)[lg"(0)] <6, i.e., [[f1](w)] < 6pp,(w). Then |[[f] — [Hp]|lx <6 for [f] € Si.

Let fr(z) =2z — 4 e " rz? (0 <r < 1), f» can be quasiconformally extended to C' and

_ _ g.n+tl n
11 = ol = sup { P20 ey > B DR,
Then lim I[f+] = [Ho]lls > &2 for all n € N, hence
O(A,0) = sup |[f] — [Holl[l» =6.
[f1eT

Zhuravlev’s result!®Theorem 3l implies 7(A,0) > 1. Now we have

Theorem 3.2. 7(A,0) =1 for 6 € [0, 2m).

Proof. By [11], for € > 0, there exists an f., which is not injective in H = {z|Rez > 0},
and 2Re{z ¢ } <l+e Let f* = f.-¢- Hp, where ¢ : Dy — H with ¢ = e~ n+ 1. Then

A
(f2) = fee " Hy, (f2)" = e fIHF + e fLH].
Hence [f2] = e™*[fe| Hj + [Hy),
1] = [Hollly = sgg{l[fg]IIHél(l — 12"}

’:2.

1 1’2< w+ 2
- o {5l 4024
s Il O-15=3
//(w)
:ZSup{Rew £ ‘}gl—«—s.
weH f&{(w)

Thus 7(A, ) < 1 can be deduced from the fact that f is not injective in A. Since 7(A, 0) >
1, we know that 7(A, ) = 1. This completes the proof of Theorem 3.2.

For Koebe function K(z) = =z, we know that [K,] = [2K(rz)] € L. By some simple
computation, we have 711—% I[K ]|l > 6.

From [3] and the above discussion, we know that the inner and outer radius of L (with
respect to zero) are 1 and 6 respectively. From our proof of Theorem3.2, we also know that
the inner radius of Ly with respect to [Hg] is 1. Whether the outer radius of Ly with repect
to [Hp] is also 6 is still open.

From [2], we know [K(z)] € 9Ty and [|[K][|s = 6. Though [K,] € L and K,(z) — K(2)
locally uniformly in A, we point out [K] ¢ OL. Actually, we have the following

Theorem 3.3. [K] € dLo, [K] ¢ 0L (ggOaLe),
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Proof. Let A, = {z: |z — 1| < rN A } for sufficiently small » > 0 and [g,] € 71 such
that

llgn] = K]l =0 (n — o).
Now we prove [g,] € Lo for n > ng.
If it is not the case, then there exists ny — oo such that [g,,] ¢ Lo, i,e., gn, (1) # oo.
For a given € > 0, there exists an ng such that
K6 g e
K'(z)  gp(z)l 12
holds for n > ny. Using the well-known relation

b 108194 ()| = Re(z gn(z)), 2 = tel,

we obtain

9 |K'(2)] 2y—
o log (m) < et(1—1?)

Dividing this inequality by ¢ and integrating both sides of the expression obtained with

respect to ¢ from 0 to |z|, we have |K'(2)| < (Hl |) lgr, (2)].
By Cauchy inequality, we have

(//AT|K’(2)|dxdy // z| dvdy // . (o) Pandy.

Since gy, (1) # oo, we know that m(gn, (AT)) < 00 for sufficiently small r, where m denotes

the planar Lebesgue measure. Hence for ¢ < 2, we have ffAr |K'(2)|dzdy < oco. This is a
contradiction to [, |K'(z)|dzdy = co. Hence [K] € Lo and [K] ¢ LU ( |J Lg). This
" 040

completes the proof of Theorem 3.3.
From our proof, we also have dist([K], Lg) > 2 for 6 # 0 and dist([K], L) > 2
Remark. Let Ky = We can have [Ky| € 0Ly, dist([Ky], Lg) > 2,
and dist([Ky], L) > 2.

for 0#£0

=z
(1—e—92)2"
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