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Abstract

The model of the universal Teichmüller space by the derivatives of logarithm is the union of

infinite disconnected components. In this paper, the fact that each component is not starlike
with respect to its center is proved, and the outer radius of the space with respect to each
center is obtained.
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§0. Introduction

Let Ej denote the Banach space of functions ϕ which are analytic in the unit disk ∆ with

norm

∥ϕ∥j = sup
z∈∆

(1− |z|2)j |ϕ(z)| < ∞, j = 1, 2. (0.1)

Next let [g] = g′′/g′ for g holomorphic in ∆ and Sg = (g′′/g′)′ − 1
2 (g

′′/g′)2 , the Schwarzian

derivative of g, for g meromorphic in ∆, and define

S1 = {[g]| g conformal in ∆ with g(0) = g′(0)− 1 = 0, g(∆) ⊂ C},
S = {Sg|g conformal in ∆ with g(∆) ⊂ C}.

Let T1 and T denote the corresponding subsets of S1 and S for which the mapping g

has, in addition, a quasiconformal extension to C. It is well-known that T is the Bers

universal Teichmüller space[1], and T1 is an alternative model of the universal Teichmüller

space introduced in [2] and [3]. Astala and Gehring[2] gave a complete description of the

closure of T̄1, and Zhuravlev[3] obtained an interesting result that T1 is disconnected in the

topology induced by the norm ∥.∥1. He proved T1 = L ∪ {
∪

θ∈[0,2π)

Lθ}, where L and Lθ

are connected components of T1 with g bounded in ∆ and g(eiθ) = ∞ respectively, and

Lθ1 ∩ Lθ2 = ϕ for θ1 ̸= θ2 and L ∩ Lθ = ϕ. Let Hθ = z
1−e−iθz

, [Hθ] ∈ Lθ plays an important

role in the description of T1 (see [3]), and is used as the center of the component Lθ. In this

paper, we point out in chapter 1 that there exists a homeomorphism of Lθ onto T for every

θ ∈ [0, 2π). In chapter 2, we prove that Lθ is not starlike with respect to [Hθ], and we also
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obtain that the distance between [Hθ1 ] and [Hθ2 ] is 4 for arbitrary θ1 ̸= θ2. In chapter 3,

we discuss the inner radius and outer radius of Lθ and T1 with respect to [Hθ], and obtain

some exact evaluations.

§1. The Homeomorphism of Lθ onto T

There is a natural mapping I: T1 → T defined by the formula I(ϕ) = ϕ′ − 1
2ϕ

2. By using

the Cauchy integral formula, it is easy to get the estimate ∥ϕ′∥2 ≤ 16∥ϕ∥1 and ∥ϕ∥1 ≤ 6 for

ϕ ∈ T1, from which it follows that

∥I(ϕ1)− I(ϕ2)∥2 ≤ 22∥ϕ1 − ϕ2∥1 (1.1)

for ϕ1, ϕ2 ∈ T1.

Throrem 1.1. Lθ is homeomorphic to T for each θ ∈ [0, 2π).

Proof. We consider I: Lθ → T . It is clear that I is surjective and injective. We

can conclude from (1.1) that I is continuous. Now we need only to prove that I−1 is also

continuous. Let [f1], [f2] ∈ Lθ, i.e., fi is a q.c. mapping of C onto itself and fi is conformal

in ∆, fi(0) = f ′
i(0)− 1 = 0, fi(e

iθ) = ∞, i = 1, 2. Let µfi be the Beltrami coefficient of fi,

and let f = f2 · f−1
1 . Then f(∞) = ∞, f(0) = 0, fz(0) = 1,

µf (f1(z)) =
µf2(z)− µf1(z)

1− µ̄f1(z)µf2(z)

f̄1z
f1z

.

By [5], there exists a unique q.c. mapping f(z, t) such that f(0, t) = 0, fz(0, t) = 1,

f(∞, t) = ∞ and fz̄(z, t) = tµf (z)fz(z, t) for t ∈ ∆f = { t | |t| < 1/∥µf∥∞ }. f(z, t) is

conformal for z in f1(∆) and ϕ(t) = fzz(z, t)/fz(z, t) ρ−1
f1(∆)(z) is conformal in ∆f , where

ρf1(∆) is the Poincare metric of domain f1(∆). For t = 0, we have f(z, 0) = z, hence

ϕ(0) = 0. Osgood[6] proved that |ϕ(t)| ≤ 8.

By Schwarz Lemma, we have |ϕ(t)| ≤ 8∥µf∥∞t for t ∈ ∆f . Let t = 1, f(z, 1) = f(z).

Then | f
′′(z)

f ′(z) ||ρf1(∆)| ≤ 8∥µf∥∞. Hence

∥[f2]− [f1]∥1 ≤ 8∥(µf2 − µf1)/(1− µ̄f1µf2)∥∞. (1.2)

Let [µfi ] = {µFi
|Fi is a quasiconformal mapping of C onto itself and Fi|∆ = fi|∆}. From

(1.2), we have

∥[f2]− [f1]∥1 ≤ 8 inf
µi∈[µfi

]
∥(µ2 − µ1)/(1− µ̄1µ2)∥∞. (1.3)

Now let ϕ0 ∈ T , ϕn ∈ T , ϕ0 = I([f0]), ϕn = I([fn]) and [f0], [fn] ∈ Lθ, ∥ϕn − ϕ0∥2 → 0.

Then ∥Sfn − Sf0∥2 → 0.

As f0(∆) is a k-quasidisk for some k (1 ≤ k < ∞), by [7], there exists C(k) > 0

such that a conformal mapping f in f0(∆) can be quasiconformally extended to C and

∥µf∥∞ ≤ C(k) sup
z∈f0(∆)

{|Sf | · ρ −2
fo(∆) } whenever

sup
z∈f0(∆)

{|Sf | · ρ−2
f0(∆)} <

1

C(k)
.

Now, for each δ > 0, δ < 1
C(k) , there exists an n0 such that ∥Sfn − Sf0∥2 < δ < 1

C(k) for

n > n0, that is, |Sfn·f−1
0

| · ρ−2
f0(∆) < δ < 1

C(k) . Hence

∥µfn·f−1
0

∥∞ ≤ C(k) sup
z∈f0(∆)

{|Sfn·f−1
o

|ρ−2
f0(∆)} = C(k)∥Sfn − Sf0∥2.
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From (1.3), we have

∥[fn]− [f0]∥1 ≤ 8C(k)∥Sfn − Sf0∥2. (1.4)

From (1. 4), we see that I−1 is locally Lipschitz. Hence I−1 is continuous, which completes

the proof of Theorem.

Remark. It is easy to see that I : L → T is not injective.

§2. Non-Starlike of Connected Component Lθ

and the Distance Between Two Center Points

Krushkal[8] proved that L is not starlike with respect to zero, the center of L. In this

chapter, we will prove that Lθ is not starlike with respect to [Hθ] for each θ ∈ [0, 2π). We

need the following lemma.

Lemma 2.1.[9] There exists an isolated point in S in the topology induced by ∥ · ∥2.
The proof of Lemma 2.1 is based on the existence of rigid simply connected domains

D ⊂ C̄ having the property that any univalent meromorphic function h onD with sufficiently

small norm sup
D

{ρ−2
D |Sh|} must be a linear fractional transformation (see [9]).

Theorem 2.1. Lθ is not starlike with respect to [Hθ] for each θ ∈ [0, 2π).

Proof. Let Sf0 be an isolated point in S and f0(0) = f ′
0(0) − 1 = 0. Assume, contrary

to the assertion of the theorem, that for every [f ] ∈ Lθ, t[f ] + (1 − t)[Hθ] ∈ Lθ holds for

0 ≤ t ≤ 1.

Let fr = 1
rf0(rz), Gr(w) =

w
1−(fr(eiθ))−1w

(0 < r < 1). Then Gr · fr has a quasicon-

formal extension to C. Denote it by Fr. Then Fr(0) = F ′
r(0) − 1 = 0, lim

z→eiθ
Fr(z) = ∞.

Hence [Fr] ∈ Lθ. By assumption, t[Fr] + (1 − t)[Hθ] ∈ Lθ, so there exists an fr,t for each

r, t ∈ (0, 1) such that [fr,t] = t[Fr] + (1 − t)[Hθ] ∈ Lθ. We can choose rn → 1 such that

Frn → F0 locally uniformly in ∆, where F0 is conformal in ∆, frn(e
iθ) → w0 (w0 may be ∞

but nonzero) and frn,t → f0,t, where f0,t is conformal in ∆. So F0 = G0 · f0, G0 = w
1−w−1

0 w

and [f0,t] = t[F0] + (1− t)[Hθ] ∈ S1. But

∥[f0,t]− [F0]∥1 = ∥t[F0] + (1− t)[Hθ]− [F0]∥1 = (1− t)∥[F0]− [Hθ]∥1 ≤ 12(1− t) → 0

as t → 1, hence

∥Sf0,t − SF0∥2 ≤ 22∥[f0,t]− [F0]∥1 ≤ 264(1− t) → 0,

where Sf0,t ∈ S and Sf0 = SG0·f0 = SF0 . Hence Sf0 is not isolated in S, which is a

contradiction to Lemma 2.1. This completes the proof of Theorem 2.1.

Now we give the estimation on the distance between the centers of different components.

Theorem 2.2. ∥[Hθ]∥1 = 4, ∥[Hθ1 ]− [Hθ2 ]∥1 = 4 for θ1 ̸= θ2, θ1, θ2 ∈ [0, 2π).

Proof. By computation we know that [Hθ] =
2e−iθ

1−e−iθz
, hence ∥[Hθ]∥1 = 4 for θ ∈ [0, 2π).

Without loss of generality, we assume θ0 = θ1 − θ2 > 0, so

∥[Hθ1 ]− [Hθ2 ]∥1 = 2 sup
z∈∆

{∣∣∣ 1− e−iθ0

(1− z)(1− e−iθ0z)

∣∣∣(1− |z|2)
}

= 4
∣∣∣ sin θ0

2

∣∣∣ sup
z∈∆

{ 1− |z|2

|1− z||1− e−iθ0z|

}
.
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Letting z = reiθ, r → 1, we have ∥[Hθ1 ]− [Hθ2 ]∥1 ≥ 4. Now we prove∣∣∣ sin θ0
2

∣∣∣(1− |z|2) ≤ |1− z||1− e−iθ0z|

for z ∈ ∆. Let

F (r, θ) = (1 + r2 − 2r cos θ)(1 + r2 − 2r cos(θ − θ0))− (1− r2)2 sin2
θ0
2
, (2.1)

0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π. It is easy to see that

Fθ(r, θ) = 2r sin θ(1 + r2 − 2r cos(θ − θ0)) + 2r sin(θ − θ0)(1 + r2 − 2r cos θ)

= 4r sin
(
θ − θ0

2

)[
(1 + r2) cos

θ0
2

− 2r cos
(
θ − θ0

2

)]
.

Let Fθ(r, θ) = 0. Then r = 0, or sin(θ − θ0
2 ) = 0, or

(1 + r2) cos
θ0
2

− 2r cos
(
θ − θ0

2

)
= 0. (2.2)

If r = 0, then F (0, θ) ≥ 0. If sin(θ − θ0
2 ) = 0, then θ = θ0

2 or θ = π + θ0
2 . By computation

we have F (r, θ0
2 ) ≥ 0 and F (r, θ0

2 + π) ≥ 0.

It is clear that when θ0 = π,

F (r, θ) = (1 + r2 − 2r cos θ)(1 + r
2

+ 2r cos θ)− (1− r2)2 = 4r2 sin
2

θ ≥ 0.

When θ0 ̸= π, it follows from (2.2) that

1 + r2 − 2r cos θ =
2r sin θ sin θ0

2

cos θ0
2

, (2.3)

1 + r2 − 2r cos(θ − θ0) =
−2r sin(θ − θ0) sin

θ0
2

cos θ0
2

. (2.4)

Substituting (2.3) and (2.4) into (2.1), we have

F (r, θ) = tan2
θ0
2

[
− 4r2 sin θ sin(θ − θ0)− (1− r2)2 cos2

θ0
2

]
= tan2

θ0
2

[
− 4r2 sin θ sin(θ − θ0)− (1 + r2)2 cos2

θ0
2

+ 4r2 cos2
θ0
2

]
= 2r2 tan2

θ0
2

[
cos(2θ − θ0)− cos θ0 − 2 cos2

(
θ − θ0

2

)
+ 2 cos2

θ0
2

]
= 0.

So we conclude that F (r, θ) ≥ 0 for all r ∈ [0, 1] and θ ∈ [0, 2π], which implies ∥[Hθ1 ] −
[Hθ2 ]∥1 = 4.

§3. Inner and Outer Radius of T1 with Respect to [Hθ]

We define the inner radius τ(∆, θ) of T1 with respect to [Hθ] to be the supremum of the

constants b with the following properties: if f is analytic in ∆ with f(0) = f ′(0) − 1 = 0

and ∥[f ] − [Hθ]∥1 ≤ b, then f is injective. The outer radius O(∆, θ) of T1 with respect to

[Hθ] is defined to be the supremum of ∥[f ]− [Hθ]∥1 for [f ] ∈ T1.

Theorem 3.1. O(∆, θ) = 6 for θ ∈ [0, 2π).

Proof. Let Dθ be the image of ∆ under Hθ. Then for [f ] ∈ S1,

∥[f ]− [Hθ]∥1 = sup
z∈Dθ

{|[f ·H−1
θ ]|ρ−1

Dθ
},

where ρDθ
is the Poincare metric of Dθ and ρDθ

(Hθ(z))|H ′
θ(z)| = 1

1−|z|2 .
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Let f1 = f · H−1
θ . Then f1 is conformal in Dθ. For each w ∈ Dθ, let z ∈ ∆ such that

Hθ(z) =
z

1−e−iθz
= w. Next define

g(η) = Hθ

( η + z

1 + z̄η

)
=

η + z

1− e−iθz + (z̄ − e−iθ)η
.

Then g(η) : ∆ → Dθ is conformal and g(0) = Hθ(z) = w,

ρDθ
(w) =

1

|g′(0)|
. (3.1)

By computation and [10], we have [f1 · g] = ([f1] · g)g′ + [g], |[f1]||g′(0)| ≤ |[f1 · g](0)| +
|[g](0)| ≤ 4 + |[g](0)| and

|[g](0)| =
∣∣∣g′′(0)
g′(0)

∣∣∣ = 2
∣∣∣ z̄ − e−iθ

1− e−iθz

∣∣∣ = 2.

Hence |[f1](w)||g′(0)| ≤ 6, i.e., |[f1](w)| ≤ 6ρDθ
(w). Then ∥[f ]− [Hθ]∥1 ≤ 6 for [f ] ∈ S1.

Let fr(z) = z − 1
2 e−iθ rz2 (0 < r < 1), fr can be quasiconformally extended to C and

∥[fr]− [Hθ]∥1 = sup
z∈∆

{ |2 + r − 3rz|
|1− z||1− rz|

(1− |z|2)
}
≥ (2 + r − 3rn+1)(1 + rn)

1− rn+1
.

Then lim
r→1

∥[fr]− [Hθ]∥1 ≥ 6n+4
n+1 for all n ∈ N , hence

O(∆, θ) = sup
[f ]∈T1

∥[f ]− [Hθ]∥1 = 6.

Zhuravlev’s result[3,Theorem 3] implies τ(∆, θ) ≥ 1. Now we have

Theorem 3.2. τ(∆, θ) = 1 for θ ∈ [0, 2π).

Proof. By [11], for ε > 0, there exists an fε, which is not injective in H = {z|Rez > 0},
and 2Re

{
z
∣∣∣ f ′′

ε

f ′
ε

∣∣∣} ≤ 1+ ε. Let f∗
ε = fε ·ϕ ·Hθ, where ϕ : Dθ → H with ϕ = e−iθ η+ 1

2 . Then

(f∗
ε )

′ = fεe
−iθH ′

θ, (f∗
ε )

′′ = e−2iθf ′′
ε H

′2
θ + e−iθf ′

εH
′′
θ .

Hence [f∗
ε ] = e−iθ[fε]H

′
θ + [Hθ],

∥[f∗
ε ]− [Hθ]∥1 = sup

z∈∆
{|[fε]||H ′

θ|(1− |z|2)}

= sup
w∈H

{∣∣∣f ′′
ε

f ′
ε

∣∣∣ ∣∣∣w +
1

2

∣∣∣2(1− ∣∣∣w + 1
2

w − 1
2

∣∣∣2)}
= 2 sup

w∈H

{
Rew

∣∣∣f ′′
ε (w)

f ′
ε(w)

∣∣∣} ≤ 1 + ε.

Thus τ(∆, θ) ≤ 1 can be deduced from the fact that f∗
ε is not injective in ∆. Since τ(∆, θ) ≥

1, we know that τ(∆, θ) = 1. This completes the proof of Theorem 3.2.

For Koebe function K(z) = z
(1−z)2 , we know that [Kr] = [ 1rK(rz)] ∈ L. By some simple

computation, we have lim
r→1

∥[Kr]∥1 ≥ 6.

From [3] and the above discussion, we know that the inner and outer radius of L (with

respect to zero) are 1 and 6 respectively. From our proof of Theorem3.2, we also know that

the inner radius of Lθ with respect to [Hθ] is 1. Whether the outer radius of Lθ with repect

to [Hθ] is also 6 is still open.

From [2], we know [K(z)] ∈ ∂T1 and ∥[K]∥1 = 6. Though [Kr] ∈ L and Kr(z) → K(z)

locally uniformly in ∆, we point out [K] /∈ ∂L. Actually, we have the following

Theorem 3.3. [K] ∈ ∂L0, [K] /∈ ∂L
∪( ∪

θ ̸=0

∂Lθ

)
.
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Proof. Let ∆r = {z : |z − 1| < r ∩∆ } for sufficiently small r > 0 and [gn] ∈ T1 such

that

∥[gn]− [K]∥1 → 0 (n → ∞).

Now we prove [gn] ∈ L0 for n > n0.

If it is not the case, then there exists nk → ∞ such that [gnk
] /∈ L0, i,e., gnk

(1) ̸= ∞.

For a given ε > 0, there exists an n0 such that∣∣∣K ′′(z)

K ′(z)
− g′′n(z)

g′n(z)

∣∣∣ < ε

1− |z|2

holds for n > n0. Using the well-known relation

t
∂

∂t
log |g′n(z)| = Re

(
z
g′′n(z)

g′n(z)

)
, z = teiθ,

we obtain

t
∂

∂t
log

( |K ′(z)|
|g′n(z)|

)
≤ εt(1− t2)−1.

Dividing this inequality by t and integrating both sides of the expression obtained with

respect to t from 0 to |z|, we have |K ′(z)| <
(

1+|z|
1−|z|

) ε
2 |g′n(z)|.

By Cauchy inequality, we have(∫∫
∆r

|K ′(z)|dxdy
)2

≤
∫∫

∆r

(1 + |z|
1− |z|

)ε

dxdy

∫∫
∆r

|g′nk
(z)|2dxdy.

Since gnk
(1) ̸= ∞, we know that m(gnk

(∆r)) < ∞ for sufficiently small r, where m denotes

the planar Lebesgue measure. Hence for ε < 2, we have
∫∫

∆r
|K ′(z)|dxdy < ∞. This is a

contradiction to
∫∫

∆r
|K ′(z)|dxdy = ∞. Hence [K] ∈ ∂L0 and [K] /∈ ∂L ∪

( ∪
θ ̸=0

Lθ

)
. This

completes the proof of Theorem 3.3.

From our proof, we also have dist([K], Lθ) ≥ 2 for θ ̸= 0 and dist([K], L) ≥ 2.

Remark. Let Kθ = z
(1−e−iθz)2

. We can have [Kθ] ∈ ∂Lθ, dist([Kθ], Lθ′) ≥ 2, for θ ̸= θ′

and dist([Kθ], L) ≥ 2.
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