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LIMIT CYCLES AND BIFURCATION CURVES

FOR THE QUADRATIC DIFFERENTIAL SYSTEM

(III)m=0 HAVING THREE ANTI-SADDLES (II)**

Ye Yanqian*

Abstract

As a continuation of [1], the author studies the limit cycle bifurcation around the focus S1

other than O(0, 0) for the system (1) as δ varies. A conjecture on the non-existence of limit
cycles around S1, and another one on the non-coexistence of limit cycles around both O and

S1 are given, together with some numerical examples.
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In [1] we have studied the bifurcation problem of the quadratic system

ẋ = −y + δx+ lx2 + ny2 = P (x, y), ẏ = x(1 + ax− y) = Q(x, y) (1)

around the focus O(0, 0) under the conditions

m = 0, −1 < l < 0, b = −1, n+ l − 1 > 0, a ≤ 0, (2)

and drawn the bifurcation diagram in the (a, δ) plane. Now, we will study (1) and (2)1) in the

neighbourhood of the other anti-saddle S1(x1, y1) lying on y = 1+ax, where x1 > 0, y1 > 0.

The results got by us are not so satisfactory as in [1]; nevertheless, they are very interesting,

as we can see below.

Before discussing the bifurcation phenomena around S1 we prove first the following

Theorem 1.2) If

a < 0, n > 1, n+ l > 0, na2 + l < 0, a2n < (n− 1)(l + n)2, (3)

then3)

a2 − 4(n− 1)(1− l) < 0. (4)

Proof. Assume on the contrary, a2 − 4(n− 1)(1− l) ≥ 0. Then we have

a2/4(1− l) ≥ n− 1 > a2n/(l + n)2;
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therefore

(l + n)2 > 4n(1− l) > 4, so l + n > 2, n > 2− l > 2. (5)

Actually, we can prove by induction that

l + n > 2(2
k+1−1)/2k (→ 4)

for any natural number k, so we have n > 4.

On the other hand, from na2 < −l < n we get

1/4 > a2/4 ≥ (n− 1)(1− l) > n− 1,

i.e., n < 5/4; this contradicts (5).

In order to see whether limit cycle (LC, for abbreviation) can appear around S1, we study

first the condition for S1 to be on the line of divergence:

x = δ/(1− 2l). (6)

The y-coordinates of the intersection points of (6) with P (x, y) = 0 satisfy the equation

n(1− 2l)2y2 − (1− 2l)2y + δ2(1− l) = 0, (7)

which gives

y′1,2 = [1− 2l ±
√

(1− 2l)2 − 4n(1− l)δ2]/2n(1− 2l). (8)

So y′1 and y′2 are both positive when

0 < δ < (1− 2l)/2
√
n(1− l) = δ1, (9)

but (6) and P (x, y) = 0 have no intersection point when δ > δ1.

The line (6) intersects y = 1 + ax at (δ/(1 − 2l), (1 − 2l + aδ)/(1 − 2l)). In order that

this point lies on P (x, y) = 0, δ must satisfy the equation

[na2 + 1− l]δ2 − a(1− 2l)(1− 2n)δ + (n− 1)(1− 2l)2 = 0. (10)

The discriminant of (10) is

(1− 2l)2[a2 − 4(n− 1)(1− l)]. (11)

From Theorem 1 we see that (11) is negative under condition (3), so S1 can never be on

(6), i.e., S1 is always a stable node or focus, because div|S1 < 0 for δ = 0 and therefore for

all δ.

On the other hand, (3) implies that l5 goes to S1, but l1 always remains in the half plane

1 + ax− y > 0, and to the left of l5.
1) We conjecture that under conditions (3), there is no

LC around S1 when δ > 0 (see Conjecture 1 after Example 2).

Assume a2 − 4(n − 1)(1 − l) > 0. Then (10) has real roots. Denote them by 0 < δ2 <

δ3(< δ1). Therefore, under conditions a < 0, n > 1, n+ l > 0 at least one of the inequalities

na2 + l ≥ 0 and a2n ≥ (n− 1)(l + n)2 exists. This means either a saddle S′
2 appears to the

right of S1 on y = 1+ ax or l1 lies to the right of L.2) In the latter case since both l1 and l3
are not completely lying in a half plane 1+ax− y > 0 or 1+ax−y < 0, they need not both

turn clockwise or counter-clock-wise as δ increases. Numerical examples show that l1 and

l3 can coincide twise and LC can appear around S1 when δ lies in two different intervals.

1)For the meaning of the l′is, see Fig.1, or Fig.4 in [1].
2)For the meaning of the L, see Fig.3, or Fig.5 in [1].
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Example 1. Take n = 9/8, a = −2, l = −5. Then the two roots of (10) are

δ2 = 11/14, δ3 = 11/6. (12)

Now

δ1 = 11/3
√
3 > δ3, a = −2 > −

√
−l/n = −

√
40/3,

a2n− (n− 1)(l + n)2 = 1343/512 > 0, nδ22 + l = 1089/1568− 5 < 0.

But here n+ l < 0, a2 − 4(n− 1)(1− l) > 0 can be proved directly. So l1 lies on the upper

side of L when δ = 0.

For δ = δ2, the system

ẋ = −y + 11x/14− 5x2 + 9y2/8, ẏ = x(1− 2x− y) (13)

has critical points O,N, S1(1/14, 6/7) and S2(−7/2, 8). The line Px+Qy = 11/14−11x = 0

passes through S1, so S1 is a weak focus.

Transforming the origin to S1, we get

u̇ = u/14 + 13v/14− 5u2 + 9v2/8, v̇ = −u/7− v/14− 2u2 − uv. (14)

Then the transformation

u = 7(η + 5ξ)/5, v = −14η/5, dt/dτ = 14/5

or

ξ = (2u+ v)/14, η = −5v/14, dt/dτ = 14/5

changes (14) into

dξ

dτ
= −η − 77η2/125− 1078ξη/25− 588ξ2/5,

dη

dτ
= ξ + 98ξη/5 + 98ξ2. (15)

So, S1 is an unstable focus, since the first focal value at S1 is

1078(588/5 + 77/125)/25− 98(98/5− 1176/5) > 0.

For δ = δ3, the system

ẋ = −y + 11x/6− 5x2 + 9y2/8, ẏ = x(1− 2x− y) (16)

has critical points O(0, 0), N(0, 8/9), S1(1/6, 2/3) and S2(−3/2, 4). The line Px + Qy =

11/6− 11x = 0 passes through S1, so S1 is again a weak focus. Transformaing the origin to

S1, we get

u̇ = u/6 + v/2− 5u2 + 9v2/8, v̇ = −u/3− v/6− 2u2 − uv. (17)

Then the transformation

u = 3(η +
√
5ξ)/

√
5, v = −6η/

√
5,

dt

dτ
= 6/

√
5,

or

ξ = (2u+ v)/6, η = −
√
5v/6,

dt

dτ
= 6/

√
5

changes (17) into

dξ

dτ
= −η − 9η2/5

√
5− 198ξη/5− 108ξ2/

√
5,

dη

dτ
= ξ + 18ξη/

√
5 + 18ξ2. (18)

So, the first focal value at S1 is

−198(−9/5
√
5− 108/

√
5)/5− 18(18/

√
5− 216/

√
5) > 0,
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S1 is again an unstable weak focus.

Now, from (6) of [1] we get

dF (xi)

dδ
= xi + [(na2 + l)2xi + (δ + 2na− a)]

∂xi

∂δ
= 0,

which gives

∂x1

∂δ
= −x1

/∂F

∂x

∣∣∣
x1

> 0. (19)

Hence
∂div

∂δ

∣∣∣
S′
1

= 1 + (2l − 1)
∂x1

∂δ
= 1 + (1− 2l)x1

/∂F

∂x

∣∣∣
x1

. (20)

When δ = 11/14, we have x1 = 1/14,

∂x1

∂δ
=

−1/14

−1/14 + 11/14− 9/2 + 2
=

1

25
,

∂div

∂δ

∣∣∣
S′
1

= 1− 11

25
> 0.

This mwans that div|S′
1
increases as δ increases from 11/14. So, for δ ≥ 11/14, S′

1 is an

unstable focus. Therefore, when δ < 11/14 but increases to 11/14, there is an unstable LC

Γ1 contracting to S′
1. When δ = 11/6, we have x1 = 1/6.

∂x1

∂δ
=

−1/6

−1/6 + 11/6− 9/2 + 2
=

1

5
,

∂div

∂δ

∣∣∣
S1

= 1− 11

5
< 0.

This means that div|S1 decreases as δ increases from 11/6. So, for δ < 11/6 but |δ−11/6| <<

1, S1 is an unstable focus. As δ increases from 11/6, S1 becomes stable, an unstable LC Γ

appears around S1. Where comes the unstable LC when δ < 11/14 but |δ − 11/14| << 1?

Let us see the global phase-portrait of (13) shown in Fig.1, which was drawn by computer.1)

Fig.1

From the phase-portrait in the first quadrant we see apparently that the unstable LC

contracting to S1 when δ increases to 11/14 must come from the appearance of a separatrix

1)The author thanks Prof. J. C. Artes very much for drawing this figure and the explanation of the facts

shown in the next paragraph.
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loop passing through N at a certain value δ4 of δ. Numerical calculation in the computer

shows that δ4 ∈ [0.6, 0.7]. Notice that div|N = δ, so this separatrix loop must be inner

unstable. Moreover, the unstable LC generated from S1 when δ increases from 11/6 also

finally becomes again another separatrix loop passing through N at a certain value δ5 of δ,

where δ5 ∈ [1.9, 2]. For δ ∈ [11/14, 11/6], no LC exists around S1; this is also proved only

by computer.

The change of phase-portraits around S1 is shown in Figs. 2.

δ = 0 δ = δ4 δ4 < δ < 11
14 δ = 11

14 δ = 11
6

11
6 < δ < δ5 δ = δ5 δ > δ5 δ = 2.045 > δ5 δ > 2.045

Fig.2

Example 2. Consider the system

ẋ = −y + δx− x2 + 3y2/2, ẏ = x(1− x/3− y), (21)

here na2+ l < 0, n+ l > 0, n+ l−1 < 0, a2n− (n−1)(l+n)2 > 0, a2−4(n−1)(1− l) < 0.

The equation of critical points at infinity: 9k3 +2 = 0 has only one real root k=̇− 0.61. So,

S1(x1, y1) is always stable, while S2(x2, y2) is always unstable for all δ. The phase-portrait

of the system for δ = 0 is shown in Fig.3. Although n+ l − 1 < 0, l2 still goes into O(0, 0).

Fig.3

Conjecture 1. System (21), or more general, system (1) has no LC around S1 under

conditions (2) and

na2 < −l, a2 − 4(n− 1)(1− l) < 0. (22)
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Example 3. Consider the system

ẋ = −y + δx− x2 + 13y2, ẏ = x(1− 10x− y). (23)

Here

n = 13, l = −1, a = −10, na2 + l > 0, na2 < (n− 1)(l + n)2,

a2 − 4(n− 1)(1− l) > 0, a > −
√
n(n− 1),

S1 and S2 are both on the right side of the y-axis, l1(l2) lies on the lower side of L(L′), and

so goes around O when δ = 0.

Equation (10), which is now

1302δ2 − 750δ + 108 = 0

has two real roots

δ2 = 2/7=̇0.2857, δ3 = 9/31=̇0.2903.

For δ = δ2, (23) becomes

ẋ = −y + 2x/7− x2 + 13y2, ẏ = x(1− 10x− y). (24)

div(P,Q) = 0 is 2/7−3x = 0, it passes through S1(2/21, 1/21) (see Fig.4). Since the normal

form of (24) at S1 is

dξ

dτ
= −η + 441[7794η2 − 36

√
6ξη − 288ξ2]/5760,

dη

dτ
= ξ + 441(144ξ2 + 12

√
6ξη)/5760,

S1 is a stable weak focus of (24), S2(42/433, 13/433) is a saddle point. When δ > 2/7, S1

becomes unstable, a stable LC Γ1 appears around S1.

Fig.4 Fig.5

For δ = δ3, (23) becomes

ẋ = −y + 9x/31− x2 + 13y2, ẏ = x(1− 10x− y), (25)
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div= 9/31− 3x = 0 passes through S2(3/31, 1/31), S2 is a weak saddle, while S1(124/1299,

59/1299) is an unstable focus.

The tangent line of the separatrix l1 of (24) at N is y− 1/13=̇− 1.143x, which intersects

the x-axis at M(0.0674, 0). M lies on the left side of div= 2/7 − 3x = 0. So LC around O

already disappears when δ ≥ δ2. Therefore, LC cannot appear both around O and S1 at

the same time. Notice that when

δ = δ1 = (1− 2l)/2
√
n(1− l) = 3/2

√
26 = 0.2924 > 9/31, (26)

S1 = S2 = saddle-node, LC around S1 must disappear.

Conjecture 2. System (23), or more general, system (1) under the conditions

−l < na2 < (n− 1)(l + n)2, a2 − 4(n− 1)(1− l) > 0

cannot have LC around O and S1 at the same time. Moreover, if LC around S1 exists, it

must be unique.

Finally, let us prove the interesting

Theorem 2. For the quadratic system

ẋ = −y + lx2 +mxy + ny2, ẏ = x(1 + ax− y), n > 1, a < 0, l < 0, (27)

it is impossible that the phase-portrait shown in Fig.5 apperas, where O(S1) is a stable

(unstable) weak focus, and

div(P,Q)|N > 0, (div(P,Q)|S2 < 0).

Proof. The condition for div= (2l − 1)x+my = 0 to pass through S1 is

(1− l)m2 + (1− 2l)am+ (n− 1)(1− 2l)2 = 0, (28)

which gives

m = (2l − 1)[a+
√
a2 − 4(n− 1)(1− l)]/2(1− l) > 0. (29)

(Here we only take the positive sign before the square root, for the negative sign case, the

proof is the same.) The condition for O to be a stable weak focus is

W1 = m(l + n)− a(2l − 1)

= (2l − 1)[(l + n)(a+
√
a2 − 4(n− 1)(1− l))− 2(1− l)a]/2(1− l) < 0, (30)

i.e.,

(l + n)(a+
√
a2 − 4(n− 1)(1− l)) > 2(1− l)a,

or a(n+ 3l − 2) > −(l + n)
√

a2 − 4(n− 1)(1− l). (31)

(i) Assume n + 3l − 2 > 0. Then n + l > 0, and (31) means that the absolute value of

a(n + 3l − 2) is less than that of (n + l)
√
a2 − 4(n− 1)(1− l). The condsition for l1 lying

below L (tangent of l1 at N) is

Σ = a2n+ am(l + n)− (n− 1)(l + n)2 < 0,

i.e.,

a2n+ a(l + n)(2l − 1)[a+
√
a2 − 4(n− 1)(1− l)]/2(1− l)− (n− 1)(l + n)2 < 0. (32)

Taking the square of (31) and using (32) we get

a(2l − 1)[2a(1− l)− a(l + n)− (l + n)
√
a2 − 4(n− 1)(1− l)]/2(1− l) > 0,
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or

a(2− 3l − n) > (l + n)
√
a2 − 4(n− 1)(1− l); (33)

this contradicts (31).

(ii) Assume n + l > 0, but n + 3l − 2 < 0. Then (31) holds naturally, but (33) does not

hold, a contradiction to Σ < 0.

(iii) Evidently, when n+ l = 0, we have Σ > 0.

(iv) Assume now n + l < 0. Then surely we have W1 < 0, so O is always stable. We

have already proved that Σ > 0 when l + n ≥ o; moreover, if 0 < −(l + n) << 1, we have

still Σ > 0. So if for certain l + n < 0 and the cooresponding m, we have Σ < 0, then by

continuity, there must exist l∗, n∗,m∗ such that l∗ +n∗ < 0, Σ∗ = 0. This means that (27)∗

has an integral line L, and two weak foci O and S∗
1 . It is well-known that in this case O and

S∗
1 must be both centers. But this contradicts W ∗

1 < 0.

Remark. Theorem 2 shows in another way that (2,2) distribution of LC for a quadratic

system is impossible. (We may add δx(1+ ax− y) instead of δx in the first equation of (27)

to obtain a complete quadratic system).
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