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LIMIT CYCLES AND BIFURCATION CURVES
FOR THE QUADRATIC DIFFERENTIAL SYSTEM
(I11),._, HAVING THREE ANTI-SADDLES (II)**
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Abstract

As a continuation of [1], the author studies the limit cycle bifurcation around the focus Sy
other than O(0,0) for the system (1) as § varies. A conjecture on the non-existence of limit
cycles around S7, and another one on the non-coexistence of limit cycles around both O and
S1 are given, together with some numerical examples.
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In [1] we have studied the bifurcation problem of the quadratic system
&= —y+ox+lz®+ny’ = P(z,y), §=2(l+ax—y)=Q(z,y) (1)
around the focus O(0,0) under the conditions
m=0, —-1<Il<0, b=-1, n+!l—-1>0, a<0, (2)
and drawn the bifurcation diagram in the (a, §) plane. Now, we will study (1) and (2)") in the
neighbourhood of the other anti-saddle Sy (z1,y1) lying on y = 1+ ax, where 27 > 0,y; > 0.
The results got by us are not so satisfactory as in [1]; nevertheless, they are very interesting,
as we can see below.
Before discussing the bifurcation phenomena around S; we prove first the following
Theorem 1.2 If
a<0, n>1, n+l1>0 na®+1<0, a’n<(n—1)(1+n)? (3)
then®
a® —4(n—-1)(1-1)<0. (4)
Proof. Assume on the contrary, a? — 4(n — 1)(1 — 1) > 0. Then we have
a?/4(1—1) >n—1>a’n/(l+n)?
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therefore
(I+n)2>4n(1—1)>4, sol+n>2, n>2-1>2 (5)
Actually, we can prove by induction that
[+n>2@ =028y
for any natural number k, so we have n > 4.
On the other hand, from na? < —I < n we get
1/4>a*/4>(n—1)1-1)>n—1,

i.e., n < 5/4; this contradicts (5).
In order to see whether limit cycle (LC, for abbreviation) can appear around Sy, we study
first the condition for S; to be on the line of divergence:

x=4/(1-2l). (6)
The y-coordinates of the intersection points of (6) with P(z,y) = 0 satisfy the equation
n(1—20)2%y* — (1 — 2%y +6%(1 1) = 0, (7)
which gives
Yio=[1—20% /(1 —20)2 —dn(1 —1)62]/2n(1 — 21). (8)

So y; and y4 are both positive when

0<d<(1=20)/24/n(1=1) =14, 9)
but (6) and P(z,y) = 0 have no intersection point when ¢ > ;.
The line (6) intersects y = 1 + ax at (6/(1 —21), (1 — 20+ ad)/(1 — 21)). In order that
this point lies on P(x,y) = 0,0 must satisfy the equation

[na® +1 —1]6% — a(1 — 20)(1 — 2n)6 + (n — 1)(1 — 21)* = 0. (10)
The discriminant of (10) is
(1 —20)2[a® — 4(n — 1)(1 = 1)]. (11)

From Theorem 1 we see that (11) is negative under condition (3), so Sy can never be on
(6), i.e., Sy is always a stable node or focus, because div|g, < 0 for § = 0 and therefore for
all 4.

On the other hand, (3) implies that [5 goes to S7, but [; always remains in the half plane
1 +ax —y > 0, and to the left of I5.) We conjecture that under conditions (3), there is no
LC around S; when § > 0 (see Conjecture 1 after Example 2).

Assume a? — 4(n — 1)(1 — 1) > 0. Then (10) has real roots. Denote them by 0 < d; <
d3(< 81). Therefore, under conditions a < 0, n > 1, n+1 > 0 at least one of the inequalities
na?+1> 0 and a?n > (n — 1)(I + n)? exists. This means either a saddle S} appears to the
right of S; on y = 1+ ax or I; lies to the right of L.?) In the latter case since both I; and I3
are not completely lying in a half plane 1 4+az —y > 0 or 1+ ax —y < 0, they need not both
turn clockwise or counter-clock-wise as ¢ increases. Numerical examples show that [; and
I3 can coincide twise and LC can appear around S; when 4 lies in two different intervals.

DFor the meaning of the lis, see Fig.1, or Fig.4 in [1].
2)For the meaning of the L, see Fig.3, or Fig.5 in [1].
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Example 1. Take n = 9/8,a = —2,1 = —5. Then the two roots of (10) are
5y =11/14, 65 =11/6. (12)

Now

6, =11/3V3>63, a=-2>—\/—I/n=—/40/3,
a’n—(n—1)(1+n)? =1343/512 >0, nd3 +1=1089/1568 — 5 < 0.
But here n +1 < 0,a® — 4(n — 1)(1 — ) > 0 can be proved directly. So [; lies on the upper

side of L when § = 0.
For § = §5, the system

i =—y+1lx/14 — 52> + 9y*/8, y==x(1 -2z —y) (13)
has critical points O, N, S1(1/14,6/7) and S2(—7/2,8). The line P, +Q, =11/14— 11z =0
passes through S7, so S is a weak focus.

Transforming the origin to S, we get

0 =u/14 +13v/14 — 5u® + /8, &= —u/7 —v/14 — 2u* — w. (14)
Then the transformation
u="Tmn+58/5 v=—14n/5, dt/dr=14/5
or
E=(2u+v)/14, n=-5v/14, dt/dr=14/5

changes (14) into

d d
% = —n—T7Tn?/125 — 10780 /25 — 588£2/5, CTZ = £+ 98¢n/5 + 98¢2. (15)

So, Sp is an unstable focus, since the first focal value at S; is
1078(588/5 + 77/125)/25 — 98(98/5 — 1176/5) > 0.
For § = §3, the system
i=—y+1lz/6 — 52> + 9y*/8, ¥ ==x(1 - 22 —y) (16)

has critical points O(0,0),N(0,8/9),51(1/6,2/3) and S2(—3/2,4). The line P, + Q, =
11/6 — 11z = 0 passes through Si, so S7 is again a weak focus. Transformaing the origin to

S1, we get
U =u/64+v/2—5u* +%9°%/8, ©=—u/3—v/6—2u®—uv. (17)
Then the transformation
w=3(n+v5)/V5, v=—6n/V5, j—: = 6/+/5,

or
dt
£=2u+v)/6, n=—V50/6, e 6/v5
changes (17) into
de n

= 9% /5v/5 — 198¢n/5 — 108¢2//5, Z—T = ¢+ 186n/V5 + 182 (18)

So, the first focal value at S; is

—198(—9/5v/5 — 108/v/5) /5 — 18(18/V/5 — 216//5) > 0,
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S1 is again an unstable weak focus.
Now, from (6) of [1] we get

dF;l(;l) =2; + [(na® + 1)2z; + (6 + 2na — a) a;(; =0,
which gives
8.%'1 or
a5 an 1
5%~ Y ozl 70 (19)
Hence
adiv 014 oF
Wy @2 o112 [ 9
5o |5, =L+ =D =1 (=20 S| (20)
When 6 = 11/14, we have 21 = 1/14,
dxy ~1/14 _Lodivy _om
96 —1/14+11/14—9/2+2 25" 98 ls; 257

This mwans that div|g, increases as ¢ increases from 11/14. So, for 6 > 11/14, S7 is an

unstable focus. Therefore, when § < 11/14 but increases to 11/14, there is an unstable LC

I'y contracting to S7. When 6 = 11/6, we have x; = 1/6.
Oxy -1/6 1 odiv

11

9 16t 11j6—9212 5 @5 le 5 <0

This means that div|g, decreases as ¢ increases from 11/6. So, for § < 11/6 but |§—11/6] <<
1, Sy is an unstable focus. As ¢ increases from 11/6, S; becomes stable, an unstable LC T’
appears around S;. Where comes the unstable LC when § < 11/14 but |6 — 11/14] << 17

Let us see the global phase-portrait of (13) shown in Fig.1, which was drawn by computer.")

Fig.1
From the phase-portrait in the first quadrant we see apparently that the unstable LC
contracting to S; when ¢ increases to 11/14 must come from the appearance of a separatrix

DThe author thanks Prof. J. C. Artes very much for drawing this figure and the explanation of the facts
shown in the next paragraph.
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loop passing through N at a certain value 4 of §. Numerical calculation in the computer
shows that d4 € [0.6,0.7]. Notice that div|y = d, so this separatrix loop must be inner
unstable. Moreover, the unstable LC generated from S; when § increases from 11/6 also
finally becomes again another separatrix loop passing through N at a certain value &5 of 6,
where 05 € [1.9,2]. For ¢ € [11/14,11/6], no LC exists around Sy; this is also proved only
by computer.

The change of phase-portraits around S is shown in Figs. 2.

0=0 5:64 64<5<% 5:% 52%
L <d<ds 6 =165 6> 65 § =2.045 > d5 § > 2.045
Fig.2

Example 2. Consider the system
b=—y+dr—2?+3y%/2, y=2(1—-1z/3—y), (21)

here na?+1<0, n+1>0, n+1—1<0, a’n—(n—1)(I+n)?> >0, a®>—4(n—1)(1-1) <O0.
The equation of critical points at infinity: 9% + 2 = 0 has only one real root k= — 0.61. So,
S1(z1,y1) is always stable, while So(x2,y2) is always unstable for all 6. The phase-portrait
of the system for 6 = 0 is shown in Fig.3. Although n+1—1 < 0, Iy still goes into O(0,0).

Fig.3
Conjecture 1. System (21), or more general, system (1) has no LC around S; under
conditions (2) and

na® < —l, a®*—4(n—-1)(1-1)<o0. (22)
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Example 3. Consider the system

&= —y+ oz — 2% + 1347, (23)

gy =x(1—10x —y).

Here
n=13,1=—1, a=—10, na® +1> 0, na® < (n — 1)(I +n)?,

a>—4n—-1)(1—1)>0, a>—/n(n—1),
S7 and Sy are both on the right side of the y-axis, I1(l2) lies on the lower side of L(L'), and

so goes around O when ¢ = 0.

Equation (10), which is now
13026° — 7500 + 108 = 0

has two real roots
09 = 2/7=0.2857, d5 =9/31=0.2903.

For § = 02, (23) becomes
@ =—y+2x/7— 2%+ 13y°, (24)

y=xz(1l—10z — y).
div(P, Q) = 0is 2/7—3x = 0, it passes through S;(2/21,1/21) (see Fig.4). Since the normal

form of (24) at Sy is

d

% — )+ 441[77941? — 36V/6En — 288¢2]/5760),
d

le = € +441(144¢% + 12V/6¢7) /5760,

Sy is a stable weak focus of (24), S2(42/433,13/433) is a saddle point. When § > 2/7, Sy

becomes unstable, a stable L.C I'; appears around Sj.

Fig.4 Fig.h

For § = d3, (23) becomes

&= —y+92/31 — 2% + 13y?, (25)

y=xz(l —10z — y),
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div=9/31 — 3z = 0 passes through S2(3/31,1/31), S5 is a weak saddle, while S;(124,/1299,
59/1299) is an unstable focus.

The tangent line of the separatrix I; of (24) at N is y — 1/13= — 1.143x, which intersects
the z-axis at M (0.0674,0). M lies on the left side of div=2/7 — 3z = 0. So LC around O
already disappears when § > 5. Therefore, LC cannot appear both around O and S; at
the same time. Notice that when

§=0,=(1—-20)/2/n(1 —1) = 3/2v/26 = 0.2924 > 9/31, (26)

S| = S5 = saddle-node, LC around S; must disappear.
Conjecture 2. System (23), or more general, system (1) under the conditions

~l<na®*<(n—1)(1+n)?* a®—4n—-1)(1-1)>0

cannot have LC around O and S; at the same time. Moreover, if LC around S; exists, it
must be unique.

Finally, let us prove the interesting

Theorem 2. For the quadratic system

i=—y+le? +mry+ny®, g=z(1+ar—y), n>1, a<0, 1<0, (27)

it is impossible that the phase-portrait shown in Fig.5 apperas, where O(S1) is a stable
(unstable) weak focus, and

div(P,Q)|x >0, (div(P,Q)|s, <0).
Proof. The condition for div= (2] — 1)z + my = 0 to pass through S; is
(1 —0m? + (1 —2D)am + (n — 1)(1 —21)* = 0, (28)

which gives

m= (20 —1)[a++/a%2 —4(n— 1)1 —1)]/2(1 = 1) > 0. (29)
(Here we only take the positive sign before the square root, for the negative sign case, the
proof is the same.) The condition for O to be a stable weak focus is

Wy =m(l+n)—a(20—1)
=2 - D[ +n)a+ Va2 —4(n—-1)1-1)) —2(1 —1a]/2(1—-1) <0, (30)

ie.,

(+n)(a+ Va2 —4(n - 1)(1 1)) > 2(1 = )a,
or a(n+31—2) > —(+n)\/a® —4(n—1)(1 - 1). (31)
(i) Assume n + 3l —2 > 0. Then n +1 > 0, and (31) means that the absolute value of

a(n + 31 — 2) is less than that of (n + [)y/a2 — 4(n — 1)(1 — ). The condsition for /; lying
below L (tangent of [; at N) is

Y =a’*n+am(l+n)—(n—1)(1+n)* <0,
a®n+a(l +n)2l — Da+ /a2 —4(n—-1)1=0]/20-1) - (n—1)(1+n)? <0. (32)
Taking the square of (31) and using (32) we get

a2l = 1)[2a(1 = 1) — a(l +n) — (I + n)v/a2 —4(n — 1)(1 —1)]/2(1 = 1) > 0,
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or

a(2=31—n) > (I +n)y/a2 —4(n—1)(1-1); (33)
this contradicts (31).

(ii) Assume n + 1 > 0, but n + 3l — 2 < 0. Then (31) holds naturally, but (33) does not
hold, a contradiction to ¥ < 0.

(iil) Evidently, when n 4+ [ = 0, we have X > 0.

(iv) Assume now n + ! < 0. Then surely we have Wi < 0, so O is always stable. We
have already proved that ¥ > 0 when [ + n > o0; moreover, if 0 < —(l +n) << 1, we have
still ¥ > 0. So if for certain [ +n < 0 and the cooresponding m, we have ¥ < 0, then by
continuity, there must exist I*, n*, m* such that I* +n* < 0, ¥* = 0. This means that (27)*
has an integral line L, and two weak foci O and S7. It is well-known that in this case O and
S} must be both centers. But this contradicts W < 0.

Remark. Theorem 2 shows in another way that (2,2) distribution of LC for a quadratic
system is impossible. (We may add dx(1 + ax — y) instead of dx in the first equation of (27)
to obtain a complete quadratic system).
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