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a Kaehler manifold into the unitary group U(N) and obtain some optimal upper bounds of
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§0. Introduction

LetM be a Kaehler manifold and N be a Riemannian manifold. A smooth map φ :M →
N is called pluriharmonic if the (0, 1)-exterior derivative D”∂φ of ∂φ vanishes identically.

The notion of pluriharmonic maps is a natural extension of harmonic maps from Riemann

surfaces. There are many beautiful results on harmonic maps from surfaces (see [1, 5]).

It is interesting and important to generalize them to results for pluriharmonic maps from

Kaehler manifolds. In [9], Ohnita and Valli extended the famous work of Uhlenbeck[6] to

the case of pluriharmonic maps. They investigated the factorization for pluriharmonic maps

from compact complex manifolds to the unitary group. By the methods of [2], Ohnita

and Udagawa studied also the factorization for pluriharmonic maps into some Grassmann

manifolds (see [8]). However, the problem for explicit construction of any pluriharmonic

map into U(N) or a general Grassmannian is still open. The first step towards this problem

is to give a constructive factorization.

The purpose of this paper is to give some construction factorization theorems for plurihar-

monic maps from Kaehler manifold into U(N) or Gk(C
N ) (see Theorem 3.1 and Theorem

3.2). In fact, if M = S2, Theorem 3.1 was obtained by Wood[10]. As in [6, 9], we associate

with every pluriharmonic map a unique integer m(φ), the minimal uniton number which

reflects the level of complexity of pluriharmonic map. We obtain some optimal upper bounds

of minimal uniton numbers. Some of the above results generalize those in [4, 8, 10, 11].
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§1. Preliminaries

Let M be a connected Kaehler manifold and N be a connected Riemannian manifold.

Let φ : M → N be a smooth map from M to N . The differential dφ : TM → φ−1TN

extends by complex linearity to dφ : TMC → φ−1TNC . Relative to the complex structure

J of M we have a decomposition TMC = TM (1,0) ⊕ TM (0,1). By restricting dφ to each

factor we define the bundle maps ∂φ : TM (1,0) → φ−1TNC and ∂φ : TM (0,1) → φ−1TNC .

Using the induced connection▽φ and the ∂-operator of TM (1,0), we define the (0, 1)-exterior

derivative of ∂φ by (D′′
W
∂φ)(Z) = ▽φ

W
(∂φ(Z))− ∂φ(∂WZ) for each Z,W ∈ C∞(TM (1,0)).

Then φ is called pluriharmonic if φ satisfies D′′∂φ = 0.

Lemma 1.1.[9] A smooth map φ from a Kaehler manifold M to a Riemannian manifold

N is pluriharmonic if and only if, for any holomorphic curve τ : C → M , the composite

φ ◦ τ is always harmonic.

Let CN = M × CN denote the trivial complex bundle equipped with the standard Her-

mitian metric ⟨ , ⟩ on each fibre. Let U(N) denote the unitary group and u(N) its Lie

algebra. Denote by µ the Maurer-Cartan form of U(N) which is a left-invariant u(N)-

valued 1-form on U(N). Let φ : M → U(N) be a smooth map. Set αφ = 1/2φ∗µ, which

is a u(N)-valued 1-form on M . Then we decompose αφ into (1, 0) and (0, 1) parts with

respect to M : αφ = α′
φ + α′′

φ, where α
′
φ and α′′

φ are sections of T ∗M (1,0) ⊗ End(CN ) and

T ∗M (0,1) ⊗ End(CN ) respectively.

Lemma 1.2.[9] A smooth map φ :M → U(N) is pluriharmonic if and only if

∂α′
φ + [α′

φ ∧ α′′
φ] = 0, (1.1)

or, equivalently, if and only if

∂α′′
φ + [α′

φ ∧ α′′
φ] = 0. (1.2)

Here the Lie bracket is that of u(N).

This can be interpreted as follows. Set Dα = d+ αφ. Then Dα produces a holomorphic

vector bundle structure in CN , provided φ is pluriharmonic (see [9, Lemma 2.2]). The con-

dition (1.1) means that α′
φ is a holomorphic section of T ∗M (1,0) ⊗End(CN , Dα). Similarily

(1.2) means that α′′
φ is an antiholomorphic section of T ∗M (0,1) ⊗ End(CN , Dα). Note that

the map φ is constant if and only if α′
φ = 0 (or, equivalently, α′′

φ = 0). It is easy to see that

α′′
φ is minus the adjoint of α′

φ, that is, (α
′′
φ)

∗ = −α′
φ.

Let φ : M → U(N) be a smooth map. Set αφ = 1/2φ∗µ = α′
φ + α′′

φ. Set, for each

λ ∈ C∗ \ {0},

αλ = (1− λ−1)α′
φ + (1− λ)α′′

φ. (1.3)

We know that the general linear group GL(N,C) is the complexification of the unitary group

U(N). Denote by µC the Maurer-Cartan form of GL(N,C). We consider the following linear

differential equations

Φ∗
λµC = αλ (1.4)

of smooth maps Φλ :M → GL(N,C) for each λ ∈ C∗. By (1.3), (1.4) can be written as

∂Φλ = (1− λ−1)Φλα
′
φ, ∂Φλ = (1− λ)Φλα

′′
φ, λ ∈ C∗. (1.5)
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It is easy to verify that the integrability condition of (1.4) or (1.5) is equivalent to the

pluriharmonicity of φ. Thus, if φ is pluriharmonic, we can solve (1.4) in any simply connected

complex domain U ⊂M , and a solution Φ : C∗ ×U → GL(N,C) is uniquely determined by

prescribing Φλ(p) = h(λ) for any base point p ∈ U and any smooth map h : C∗ → GL(N,C).

Note that Φ1 is always a constant map, we lose nothing by assuming

Φ1 = I. (1.6)

From (1.5) we have ∂(ΦλΦ
∗
σ(λ)) = ∂(ΦλΦ

∗
σ(λ)) = 0, where σ(λ) = (λ)−1 and * denote the

conjugate transpose matrix. By (1.6), we get

ΦλΦ
∗
σ(λ) = I. (1.7)

From now on we consider only the case that the extended solution satisfying Φ(·, p) : C∗ →
GL(N,C) is holomorphic. Hence Φλ(x) = Φ(λ, x) is holomorphic in λ ∈ C∗ for each fixed

x ∈ U . From (1.5) and (1.6), we see that Φ−1 = Qφ for some Q ∈ U(N) constant. Following

[6, 9], we call Φ an extended solution of φ. If M is simply connected, we can choose U =M

and thus we have a global extended solution Φ : C∗ ×M → GL(N,C).

Note that a pluriharmonic map from a Riemann surface is just a harmonic map. By

Lemma 1.1 and (1.4), we immediately see the following

Lemma 1.3. Let φ :M → U(N) be a pluriharmonic map and Φλ be an extended solution

of φ. Let τ : C →M be a holomorphic curve. Then Φλ ◦ τ is an extended solution of φ ◦ τ
and every extended solution of φ ◦ τ is obtained in this way.

We recall the bijective correspondence between complex subbundles η of the vector bun-

dle CN =M ×CN with rank k and smooth maps Πη −Π⊥
η :M → Gk(C

N ) ⊂ U(N), where

Πη (respectively Π⊥
η ) denotes Hermitian projection onto η (respectively its orthogonal com-

plement η⊥ in CN ). We assume that Φ : C∗ ×M → GL(N,C) is an extended solution of

pluriharmonic map φ. For a smooth map Π − Π⊥ : M → Gk(C
N ), that is, Π2 = Π∗ = Π,

set Ψλ = Φλ(Π + λΠ⊥) :M → GL(N,C) for each λ ∈ C∗. Note that Ψ−1 :M → U(N).

Lemma 1.4.[9] The map Ψ is an extended solution if and only if the subbundle η of CN

satisfies the following:

(1) η is invariant by α′
φ,

(2) η is a holomorphic subbundle of the holomorphic vector bundle (CN , Dα).

Such a subbundle η or the corresponding map Π − Π⊥ is called a uniton for φ. The

procedure of making a new pluriharmonic map ψ = Ψ−1 (respectively a new extended

solution Ψλ) from a given pluriharmonic map φ (respectively a given extended solution Φλ)

is called the addition of a uniton. It is important to introduce the notion of unitons with

the singularity set, since we work over higher dimensional complex manifold.

Definition.[9] Let φ : M → U(N) be a pluriharmonic map from an m-dimentional

Kaehler manifold. We call η a meromorphic uniton for φ if η is a smooth uniton for φ

defined over M \ Sη, where Sη is an analytic subset of M with dimCSη ≤ m− 2.

Lemma 1.5. Let φ :M → U(N) be a pluriharmonic map. Then

(1) Imα′
φ is a meromorphic uniton for φ if α′

φ is considered as a bundle homomorphism

α′
φ : T ∗M (1,0) ⊗ CN → CN .

(2) Kerα′
φ is a meromorphic uniton for φ if α′

φ is considered as a bundle homomorphism

α′
φ : CN → T ∗M (1,0) ⊗ CN .
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Proof. We consider α′
φ as a bundle homomorphism α′

φ : T ∗M (1,0) ⊗ CN → CN . Set

Imα′
φ =

∪
x∈M

Im(αφ)x. Let t = max{dim Im(α′
φ)x;x ∈ M}. It induces a bundle homomor-

phism ∧tα′
φ : ∧t(T ∗M (1,0) ⊗ CN ) → ∧tCN . From Lemma 1.2, we see that α′

φ and ∧tα′
φ

are holomorphic. Set V = {x ∈ M ; (∧tα′
φ)x = 0} = {x ∈ M ; dim(Imα′

φ)x < t}, which
is an analytic subset of M . Then, Imα′

φ is a holomorphic subbundle of CN over M \ V .

Let V = V1 + V2 be a decomposition of V into the union of components of codimension

1 and the union of components of codimension at least 2. If x ∈ V1, then there exists a

neighborhood U of x and a holomorphic function w on U such that V1 ∩ U is defined by

w = 0. Thus we have, near x, ∧tα′
φ = wkσ, where σ is a local holomorphic section of

Hom(∧t(T ∗M (1,0)⊗CN ),∧tCN ). The image of σ defines a holomorphic subbundle of CN of

rank t over V1 around x. In this way, Imα′
φ extends to a holomorphic subbundle of (CN , Dα)

over M \ V2. By Lemma 1.4, we have (1). In a similar way, we can prove (2).

§2. Pluriharmonic Maps of Finite Uniton Numbers

Let φ :M → U(N) be a pluriharmonic map and Φλ be an extended solution of φ. Since

Φλ is holomorphic in λ ∈ C∗, we may expand Φλ in a Laurent series: Φλ =
+∞∑
s=−∞

Tsλ
s,

where Ts : U → gl(N,C). We say that a pluriharmonic map φ : M → U(N) has at most

uniton n if there exists a global extended solution Φ : C∗ ×M → GL(N,C) such that

(i) Φ has the Laurent expansion in λ ∈ C∗ of the form Φλ =
n∑
s=0

Tsλ
s, Tn ̸≡ 0,

(ii) Φ1 = I, (iii) ΦλΦ
∗
σ(λ) = I, (iv) Φ−1 = Qφ for some Q ∈ U(N).

Here Ts :M → gl(N,C).

Note that the uniton numbers n can be enlarged in a fake way by multiplying an extended

solution Φλ by a holomorphic map Q̃ : C∗ → GL(N,C) (constant in p ∈ M) with Q̃1 = I.

Setm(φ) = min{n;φ has an n-extended solution}. We callm(φ) the minimal uniton number

of φ.

Assume that M is a compact Kaehler manifold. From Theorem 4.2 in [9], we know that

a pluriharmonic map φ : M → U(N) has finite uniton number if φ has a global extended

solution Φ. In particular, any pluriharmonic map φ : M → U(N) from a simply connected

compact Kaehler manifold M always has finite uniton number.

Let f :M → Gk(C
N ) be a holomorphic map. Denote by Os(f) the s-th osculating spaces

along f . Then, there exists a unique positive integer n such that On−1(f) ⊂ On(f) and

On(f) = On+1(f). SetW = ∪Rs, where Rs is the singular set of Os(f) with codimCRs ≥ 2.

Then we obtain n+1 holomorphic subbundles ηs = Os(f) of CN overM \W , s = 0, 1, · · · , n.
If f is full, we have

ηs ⊂ ηs+1, ∂C∞(ηs) ⊂ C∞(ηs+1), ∂C∞(ηs) ⊂ C∞(ηs), ηn = (M \W )× CN . (2.1)

Proposition 2.1. Let Πs be the Hermitian projection on ηs, s = 0, 1, · · · , n, where ηs
satisfies (2.1). Then

Φλ = Π0 +
n∑
s=1

λs(Πs −Πs−1)

is an extended solution of a pluriharmonic map φ = Φ−1.
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Proof. For φ = Φ−1, we define αλ by (1.3). Let τ : C → M be any holomorphic curve.

From Theorem 10.1 of [6], we see that Φλ ◦ τ =
{
Π0 +

n∑
s=1

(Πs −Πs−1)
}
◦ τ is an extended

solution to the harmonic map φ ◦ τ , i.e.,

(Φλ ◦ τ)∗µC = (1− λ−1)α′
φ◦τ + (1− λ)α′′

φ◦τ = τ∗αλ.

Since τ : C →M is arbitary, by Lemma 1.1, we see that φ is pluriharmonic and Φ∗
λµC = αλ,

i.e., Φλ is an extended solution of φ.

Proposition 2.2. Assume that M is a compact Kaehler manifold with c1(M) > 0. Then

any pluriharmonic map φ :M → U(N) has finite uniton number.

Proof. Since M is a compact Kaehler manifold with c1(M) > 0, the solution of Yau

to Calabi conjecture[13] ensures the existence of a Kaehler metric on M with positive Ricci

corvature. From [12] we know that a compact Kaehler manifold with positive Ricci curvature

is simply connected. Hence φ has finite uniton number.

Proposition 2.3. Let φ :M → U(N) be a pluriharmonic map from a Kaehler manifold.

If φ has finite uniton number, then for any holomorphic curve τ : C → M , φ ◦ τ has finite

uniton number and m(φ ◦ τ) ≤ m(φ), where m(·) denotes the minimal uniton number of the

map. Furthermore, set Γ = {τ : C → M is a holomorphic curve }. Then max
τ∈Γ

{m(φ ◦ τ} =

m(φ).

Proof. This follows directly from Lemma 1.3.

In the case that M is an arbitary compact Kaehler manifold, not all pluriharmonic maps

have finite uniton numbers. If dimCM = 1, there are many harmonic maps with infinite

uniton numbers (see [3, 10]). The above proposition may be used to construct pluriharmonic

maps of infinite uniton number from a compact Kaehler mnifold M with dimCM > 1.

Example. Set M = S2 × T 2. Let ψ : T 2 → CP 2 be the Clifford minimal torus (see

[10]). Then we know that c ◦ψ : T 2 → U(3) is a harmonic map with infinite uniton number

(see [4]), where c : CP 2 → U(3) is the Cartan embedding. Let f : S2 → U(N − 3) be any

harmonic map. Then the map φ = (f, c ◦ ψ) : M → U(N) is a pluriharmonic map with

infinite uniton number.

§3. Factorization Theorems

Let φ :M → U(N) be a pluriharmonic map. We say that φ is factorable (as the product

of k uniton factors) if we can write

φ = φ0(β1 − β⊥
1 ) · · · (βk − β⊥

k ), (3.1)

where φ0 :M → U(N) is a constant map, k ∈ {0, 1, 2, · · · }, and, for each i = 1, · · · , k, βi is
a uniton for φi−1 = φ0(β1 − β⊥

1 ) · · · (βi−1 − β⊥
i−1).

Given an extended solution Φλ =
n∑
s=0

Tsλ
s of some pluriharmonic map with finite uniton

number. Set V0 = V0(Φλ) = linear closure of {v ∈ CN : v = T0(q)w, q ∈M,w ∈ CN}.
Theorem 3.1. Let Mm be a connected Kaehler manifold and φ : M → U(N) be a

pluriharmonic map of finite uniton number. Then φ has a unique factorization

φ = φ0(β1 − β⊥
1 ) · · · (βk − β⊥

k ), (3.2)

over M \ S into φ0 ∈ U(N) and βi − β⊥
i :M → Gr(CN ) (i = 1, 2, · · · , k), where
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(a) S is an analytic subset of M with dimCS ≤ m− 2,

(b) each φi = φ0(β1−β⊥
1 )···(βi−β⊥

i ) :M \S → U(N)(i = 1, 2, · · · , k) is a pluriharmonic

map,

(c) βi is a meromorphic uniton for φi−1 and β⊥
i = Im(α′

φ)(i = 1, · · · , k),
(d) β1 :M \ S → Gr(CN ) is a holomorphic map,

(e) m(φ) ≤ k < N .

Proof. From [6, 9], we know that there exists a unique extended solution Φλ =
n∑
s=0

Tsλ
s

of φ with V0(Φ) = CN and n = m(φ). By Lemma 1.5, Imα′
λ is a meromorphic uniton for φ

defined overM \S0, where S0 is an analytic subset ofM with dimC S0 ≤ m−2. Thus Φ(1) =

λ−1Φλ(α0+λ(α0)
⊥) :M \S0 → GL(N,C) is an extended solution of φ(1) = φ(α0− (α0)

⊥),

where α0 = Im(α′
φ). From (1.5) we have

T0α
′
φ = 0, (3.3)

∂T0 = T0α
′′
φ, ∂T0 = T0α

′
φ − T1α

′
φ. (3.4)

By (3.3), we see that Φ
(1)
λ has the following form

Φ
(1)
λ =

n∑
s=0

T (1)
s λs, (3.5)

where T
(1)
s = Ts(α0)

⊥ + Ts+1α0, s = 0, 1, 2, · · · , n. Since T
(1)
0 (α0)

⊥ = T0(α0)
⊥, T0α0 = 0,

we have V0(Φ
(1)
λ ) = CN and rank(T

(1)
0 ) ≥ rank(T0). Set M ′ = {x ∈ M ; rank(T0) and

rank(T
(1)
0 ) are maximal}, which is a connected dense open subset of M . We can show that

rank(T0) < rank(T
(1)
0 ) on M ′. If equality holds, we must have

Im(T1α0) = Im(T1α
′
φ) ⊂ Im(T0). (3.6)

We conclude from (3.4) and (3.5) that Im(T0) |M ′ is a holomorphic and antiholomorphic

subbundle of M ′ × CN . This implies that Im(T0) is a constant subspace V0 ⊂ CN . By

assumption, V0 = CN . However, from the reality condition (1.7), we have T0T
∗
n = 0, i.e.,

we get Tn = 0, a contradiction. Thus we show that rank(T0) < rank(T
(1)
0 ) on M ′.

Iterating the above construction we get a sequence of extended solution

Φλ,Φ
(1)
λ , · · · ,Φ(i+1)

λ = λ−1Φ
(i)
λ (αi + λ(αi)

⊥), · · · (3.7)

where Φ
(i)
λ is an extended solution of the pluriharmonic map φ(i) = φ(i−1)(αi−1 − (αi−1)

⊥)

and αi = Imα′
φ(i) is a meromorphic uniton for φ(i) defined overM \Si with dimCSi ≤ m−2.

We write Φ
(i)
λ =

n∑
s=0

T
(i)
s λs. If φ(i) is not a constant, then rank(T

(i+1)
0 ) > rank(T

(i)
0 ) on an

open dense subset ofM . This implies that there exists an integer k such that rank(T
(k+1)
0 ) =

N . From (1.7), we have Φ
(k+1)
λ = T

(k+1)
0 = I. By (3.7), we get

I = Qφ(α0 − (α0)
⊥) · · · (αk − (αk)

⊥), (3.8)

over M \ S where S = ∪Si and Q ∈ U(N). It is easy to verify that if α is a uniton for φ,

then α⊥ is a uniton for ψ = φ(α − α⊥) and φ = −ψ(α⊥ − α). Hence, from (3.8), we see

that φ has the desired factorization. The result (d) follows from Theorem 4.1 in [9]. From

the above discussion, we have rank(T0) < rank(T
(1)
0 ) < · · · < rank(T

(k+1)
0 ) = N . This shows

(e).
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Corollary 3.1. Let M be a simply connected compact Kaehler manifold and φ : M →
U(N) be a pluriharmonic map. Then φ has the factorization (3.2).

Remark 3.1. If M = S2, Wood proved that any harmonic map φ : S2 → U(N) has

the factorization (3.2) and he parametrized all harmopnic two-spheres in U(N) using only

algebra operations and integral transforms (see [10]).

Corollary 3.2. Let φ : M → U(N) be a pluriharmonic map of finite uniton number.

Then there exists a Q ∈ U(N) such that Qφ, φQ :M → SU(N).

Proof. From (3.2), we see that det(φ) =const. over M \S and thus det(φ) =const. over

M . Hence there exists a Q ∈ U(N) such that det(Qφ) = det(φQ) = 1.

Lemma 3.1. Let ψ : M → Gk(C
N ) be a smooth map and c : Gk(C

N ) → U(N) be the

Cartan embedding (see [6]). Then Im(αc(ψ)) = Im(Aψ(1,0)) ⊕ Im(Aψ
⊥

(1,0)), where Aψ(1,0) and

Aψ
⊥

(1,0) denote the ∂-second fundamental forms of ψ and ψ⊥ respectively (see [8] for details).

Proof. Since c(ψ) = c(ψ)−1 = ψ − ψ⊥ = 2ψ − I, we have

α′
c(ψ) = 1/2(ψ − ψ⊥)∂(ψ − ψ⊥) = (ψ − ψ⊥)∂ψ = −ψ⊥∂ψ − ψ∂ψ⊥. (3.9)

From [8], we know that the ∂-second fundamental forms of ψ and ψ⊥ are vector bundle

morphisms Aψ(1,0) : T
∗M (1,0) ⊗ ψ → ψ⊥ and Aψ

⊥

(1,0) : T
∗M ⊗ ψ⊥ → ψ defined by

Aψ(1,0)(ξ) = ψ⊥(∂ξ), ξ ∈ C∞(ψ); Aψ
⊥

(1,0)(η) = ψ(∂η), η ∈ C∞(ψ⊥). (3.10)

This lemma follows directly from (3.9) and (3.10).

Theorem 3.2. Let ψ :Mm → Gk(C
N ) be a pluriharmonic map of finite uniton number.

Then there is a sequence of pluriharmonic maps ψ(i) : M \ S → Gki(C
N ) (i = 0, 1, · · · , l)

such that (i) ψ(0) = ψ, (ii) ψ(i) is a transform of ψ(i−1) by adding the uniton Im(α′
c(ψ(i))

),

(iii) ψ(l) = const., where S is an analytic subset of M with dimCS ≤ m− 2.

Proof. As in the proof of Theorem 3.1, we consider following pluriharmonic maps

φ(0) = c(ψ), φ(1), · · · , φ(i) = φ(i−1)(αi−1 − (αi−1)
⊥), · · ·

over M \ S, where αi = Im(αφ(i)). From Lemma 3.1, we know that φ(0)(α0 − (α0)
⊥) =

(α0−(α0)
⊥)φ(0). This implies that φ(1) has image in a Grassmannian; that is, φ(1) = c(ψ(1))

for some ψ(1) : M \ S → Gk1(C
N ). By induction on i and Theorem 3.1, we see that

φ(i) = c(ψ(i)) for some pluriharmonic map ψ(i) : M \ S → Gki(C
N ) and there exists an

integer l such that ψ(l) =const.

Remark 3.2. (a) If ψ :M → Gk(C
N ) is a pluriharmonic map from a simply connected

compact Kaehler manifold or a compact Kaehler manifold with c1(M) > 0, then we have

a similar results (see Proposition 2.2). (b) In [8], Ohnita and Udagawa obtained a gen-

eralization of Burstall and Wood[2] for pluriharmonic maps from a Kaehler manifold with

c1(M) > 0 to a Grassmannian Gk(C
N ) for k = 2, 3 and N ≤ 12.

Corollary 3.3. Let ψ :M → CPN−1 = G1(C
N ) be a pluriharmonic map of finite uniton

number. Inductively, define a sequence ψi of pluriharmonic maps ψi : M \ S → CPN−1 by

ψi = Im(A
ψ(i−1)

(1,0) ) (i = 1, 2, · · · ) with ψ0 = ψ. Then, there exists an integer s such that ψs is

an anti-holomorphic map from M \ S into CPN−1, where s ≤ N − 1.

Proof. We set φi = −φ(i), where φ(i) is as in Theorem 3.2. By using Lemma 3.1, a
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simply calculation shows that

φi = Im(A
ψi−1

(1,0) )− (ImA
ψi−1

(1,0) )
⊥ = c(Im(A

ψi−1

(1,0) ) = c(ψi).

From Theorem 3.2, we see that A
ψl−1

(1,0) ≡ 0, that is, ψl−1 is anti-holomorphic. By Proposition

3.2 in [7], we know that ψi :M\ → CPN−1 (see also [8, Theorem 7.30]).

Remark 3.3. IfM is a compact Kaehler manifold with c1(M) > 0 and ψ :M → CPN−1

is a pluriharmonic map, Ohnita and Udagawa[8] proved the above result by using ∂-return

map.

Now we hope to estimate the minimal uniton number of a pluriharmonic map with finite

uniton number. In [4], the second author and Y. B. Shen proved that if φ :M → U(N) is a

harmonic map with finite uniton number from a Riemann surface, then m(φ) ≤ rank(α′
φ).

From Proposition 2.3, we immediately have the following

Theorem 3.3. Let φ : M → U(N) be a pluriharmonic map from a compact Kaehler

manifold. If φ has finite uniton number, then m(φ) ≤ max
τ∈Γ

rank(α′
φ◦τ ).

Remark 3.4. From [4, 6], we know that rank(α′
φ◦τ ) ≤ N − 1. Hence Theorem 3.3

generalizes Theorem 6.4 in [9].

Corollary 3.4. Let ψ : M → Gk(C
N ) be a pluriharmonic map of finite uniton number,

then m(ψ) ≤ min{2k, 2(N − k), N − 1}.
Proof. This result follows directly from Lemma 3.1 and Theorem 3.3 (see also [4]).
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