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Abstract

It is shown that the dual bialgebra of any quasitriangular bialgebra is braided, and the
dual bialgebra of some braided bialgebra is quasitriangular. Also it is proved that every non-
degenerate finite dimensional braided (dually, quasitriangular) bialgebra has an antipode.
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§0. Introduction

The quasitriangular Hopf algebras (or “quantum groups” in the strict sense) seem to be

developed as a mathematical algebraic tool to solve certain Yang-Baxter equations. Math-

ematically, the quasitriangular Hopf algebras (generally, bialgebras) H themselves enjoy

remarkable properties relating to their bialgebra structures and the distinguished elements.

One of those is that the category of allH-modules (i.e., representations ofH) forms a braided

monoidal category HMod. A natural question was: what structure on A would induce a

braided monoidal structure on AComod? The answer was provided by Larson-Towber in

[3], where they called it the braided bialgebra. Independently, the braided bialgebra (Hopf

algebra) was introduced by Majid, he called it the dual quasitriangular bialgebra (Hopf

algebra) (see, [6, 7]).

There are numerous dual properties between the quasitriangular bialgebras (Hopf alge-

bras) and the braided bialgebras (Hopf algebras).

In this paper we examine some dual aspects of the quasitriangular bialgebras and the

braided bialgebras. In section 1 we recall basic definitions and results used in the sequal. In

section 2 we review Sweedler’s bialgebra pair (H,H0). We show that the dual bialgebra of

every quasitriangular bialgebra is braided (Theorem 2.1), and the dual bialgebra of braided

bialgebra (under a finiteness condition) is quasitriangular (Theorem 2.2). We prove that

there exists a Hopf quotient for any braided bialgebra under some conditions. In particular,

any finite dimensional non-degenerate braided bialgebra has an antipode (Theorem 2.5),

dually, for any finite dimensional non-degenerate quasitriangular bialgebra.

We work over a fixed field K. All maps are K-linear. All modules and comodules are left

ones. For x ∈ H∗, h ∈ H we will write ⟨h, x⟩ for x(h).
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§1. Preliminaries

This section contains a review of some background material that will be used freely in

the sequel.

We adopt the usual notations for Hopf algebra (H,m, η,∆, ϵ,S), or simply H. Here

(H,m, η) is a unital algebras, ∆ : H → H ⊗H the comultiplication, ϵ : H → K the counit.

These define a bialgebra. By Hopf algebra we mean a bialgebra equipped also with an

antipod S : H → H. For any Hopf algebra H, there exists a dual Hopf algebra H0, which

is the “maximal” Hopf algebra contained in H∗. As a subspace, H0 consists of all x ∈ H∗

which vanish on a cofinite ideal of H, and the Hopf algebra structure maps m0, η0, ∆0, ϵ0,

and S0 are induced by ∆, ϵ, m, η and S, respectively (see [10]). The definition works also

for H a bialgebra; in this case, H0 is called the dual bialgebra of H (see [10] for details). A

Hopf algebra H is quasitriangular if it possesses an invertible element R ∈ H ⊗H such that

(∆⊗ id)(R) = R13R23, (id⊗∆)(R) = R13R12, (1.1)

∆op(h) = R∆(h)R−1 for all h ∈ H, (1.2)

where

R =
∑

R(1) ⊗R(2), R12 =
∑

R(1) ⊗R(2) ⊗ id,

R13 =
∑

R(1) ⊗ id⊗R(2), R23 =
∑

id⊗R(1) ⊗R(2),

and ∆op is the “twisted” comultiplication of H. We denote a quasitriangular Hopf algebra

with the distinguished element R by (H,R) (see [2]). The definition works also for H a

bialgebra; in this case, we call (H,R) a quasitriangular bialgebra.

As the dual setting, a braided Hopf algebra is a pair (A, σ), where A is a Hopf algebra

and σ is an invertible (with respect to the convolution product) bilinear form on A satisfying

σ(m⊗ id) = σ13 ∗ σ23, σ(id⊗m) = σ13 ∗ σ12, (1.3)

σ ∗m = mop ∗ σ, (1.4)

where

σ12(x⊗ y ⊗ z) = σ(x, y)ϵ(z),

σ13(x⊗ y ⊗ z) = ϵ(y)σ(x, z),

σ23(x⊗ y ⊗ z) = ϵ(x)σ(y, z),

and mop is the “twisted” multiplication of A. Similarly, we have the concept of braided

bialgebra (see [1]).

§2. The Quasitriangular and Braided Duality on Dual Bialgebras

Let H be a bialgebra, H0 the dual bialgebra of H. In this section we discuss the quasi-

triangular and braided relations on H and H0.

We rewrite the “braided” conditions of section 1 in the element relations. Thus (1.3) and

(1.4) are equivalent to

σ(xy, z) =
∑

σ(x, z(1))σ(y, z(2)), (2.1)

σ(x, yz) =
∑

σ(x(1), z)σ(x(2), y), (2.2)
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and ∑
σ(x(1), y(1))x(2)y(2) =

∑
y(1)x(1)σ(x(2), y(2)), (2.3)

respectively, where x, y, z belong to the braided bialgebra A. Note that (2.1) shows that

the map x 7→ σ(x,−) is an algebra map between A and A∗, and (2.2) shows that the map

x 7→ σ(−, x) is an antialgebra map between A and A∗.

Let (H,R) be a quasitriangular bialgebra. Then R induces a bilinear form σR on H0.

For any x, y ∈ H0, define

σR(x, y) =
∑

⟨R(1), x⟩⟨R(2), y⟩. (2.4)

Moreover, the inverse R−1 of R induces the inverse (with respect to the convolution product)

σR−1 of σR. Now we have

Theorem 2.1. Suppose that (H,R) is quasitriangular. Then (H0, σR) is braided.

Proof. By the definition, we have to show that (H0, σR) satisfies the conditions (2.1)–

(2.3).

σR(xy, z) =
∑

⟨R(1), xy⟩⟨R(2), z⟩
=

∑
⟨∆R(1) ⊗R(2), x⊗ y ⊗ z⟩

=
∑

⟨R13R23, x⊗ y ⊗ z⟩

=
∑

⟨R(1) ⊗R(1)′ ⊗R(2)R(2)′ , x⊗ y ⊗ z⟩

=
∑

⟨R(1), x⟩⟨R(1)′ , y⟩⟨R(2)R(2)′ , z⟩

=
∑

⟨R(1), x⟩⟨R(1)′ , y⟩⟨R(2), z(1)⟩⟨R(2)′ , z(2)⟩
=

∑
σR(x, z(1))σR(y, z(2)),

which shows (2.1). Similarly,

σR(x, yz) =
∑

σR(x(1), z)σR(x(2), y)

for (2.2) by using the latter of (1.1).

Also, for any h ∈ H,

⟨h,
∑

σR(x(1), y(1))x(2)y(2)⟩ =
∑

⟨R(1), x(1)⟩⟨R(2), y(1)⟩⟨h(1), x(2)⟩⟨h(2), y(2)⟩
=

∑
⟨R(1)h(1), x⟩⟨R(2)h(2), y⟩

= ⟨
∑

R(1)h(1) ⊗R(2)h(2), x⊗ y⟩.

On the other hand,

⟨h,
∑

y(1)x(1)σR(x(2), y(2))⟩ = ⟨
∑

h(2)R
(1) ⊗ h(1)R

(2), x⊗ y⟩.

From ∆op(h)R = R∆(h), we get∑
σR(x(1), y(1))x(2)y(2) =

∑
y(1)x(1)σR(x(2), y(2)),

which is just (2.3).

This concludes our proof.

Dually, we have

Theorem 2.2. Suppose that (A, σ) is braided with σ ∈ (A⊗A)0. Then (A0, σ) is quasi-

triangular.

Proof. Similar to the proof of the above theorem.
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Remark. The restricted condition σ ∈ (A ⊗ A)0 is to guarantee that σ ∈ A0 ⊗ A0.

Dropping the restriction for σ, Majid called it essentially quasitriangular, and Larson-Towber

discussed this subject in the context of topological modules.

The above results enable us to do some implications from one to another. For exam-

ple, from the result that cocommutative bialgebra is quasitriangular, we get the result that

commutative bialgebra is braided, and from the result that cocommutative braided bialge-

bra must be commutative, we imply that commutative quasitriangular bialgebra must be

cocommutative, etc.

We next discuss the duality of some special elements.

Recall that G(A) is the set of all group-like elements of the bialgebra A.

Proposition 2.1. Suppose that (A, σ) is braided, g ∈ G(A). Then both σ(−, g) and

σ(g,−) ∈ G(A0). Moreover, if g is invertible, then both σ(−, g) and σ(g,−) are invertible

(with respect to the convolution product), and

σ(−, g)−1 = σ(−, g−1), σ(g,−)−1 = σ(g−1,−).

Proof. Note that under the condition of the proposition, both σ(−, g) and σ(g,−) belong

to Alg(A,K), and Alg(A,K) = G(A0). The remaining can be verified straight.

Let (H,R) be a quasitriangular Hopf algebra. Denote

u =
∑

(SR(2))R(1), and v =
∑

R(1)(SR(2)).

The quantum Casimir element of H is c = uv. Then the dual elements of u, v and c are

τ = σ(id⊗ S)∆op, λ = σ(id⊗ S)∆, and τ ∗ λ, respectively, that is, for any h ∈ H

τ : h 7→
∑

σ(h(2),S(x(1))),

λ : h 7→
∑

σ(h(1),S(h(2))),

τ ∗ λ : h 7→
∑

σ(h(2),S(h(1)h(3))).

From these, the dual form of S2(h) = uhu−1 is

S2(x) =
∑

τ(x(1))x(2)τ
−1(x(3)).

We have derived

Corollary 2.1.[1,Theorem 1.3] Let (A, σ) be a braided Hopf algebra. Then

S2(x) =
∑

τ(x(1))x(2)τ
−1(x(3)).

Hence S is bijective.

Now suppose that (A, σ) is a braided bialgebra. Denote

σl(A) = {a ∈ A |σ(a, b) = 0 for all b ∈ A}.

Then it is easy to check that σl(A) is a bi-ideal of A. We call σl(A) the (left) radical of

σ. Similarly, we have the right radical σr(A) of σ. We call a braided bialgebra (A, σ) non-

degenerate, if the left radical σl(A) = 0, which is equivalent to the right radical σr(A) = 0.

Theorem 2.3. Let (A, σ) be a finite dimensional non-degenerate braided bialgebra. Then

A has an antipode.

Proof. We first prove that

A∗ = {σ(a,−) | a ∈ A}. (2.5)
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In fact, for any a ∈ A, σ(a,−) ∈ A∗. Let a1, a2, · · · , an be a base of A. Then σ(a1,−),

σ(a2,−), · · · , σ(an,−) are K-linear indepependent. Let ki ∈ K such that
n∑

i=1

kiσ(ai,−) = σ(
n∑

i=1

kiai,−) = 0.

Then the assumption of non-degeneracy implies that
n∑

i=1

kiai = 0, and hence ki = 0, i =

1, 2, · · · , n. Noting that dimA∗ = dimA, we obtain (2.5).

Next, let σ−1 be the inverse (with respect to the convolution product). For any a ∈
A, σ−1(a,−) ∈ A∗. By (2.5) and again the assumption of non-degeneracy, there exists a

unique element b ∈ A such that σ(b,−) = σ−1(a,−). We hence define S : A → A by

σ(S(a),−) = σ−1(a,−). (2.6)

We have proved that S is well-defined.

For any a, b ∈ A, we have

σ(
∑

a(1)S(a(2)), b) =
∑

σ(a(1), b(1))σ(S(a(2)), b(2))
=

∑
σ(a(1), b(1))σ

−1(a(2), b(2))

= (σ ∗ σ−1)(a, b)

= ϵA⊗A(a⊗ b)

= ϵ(a)ϵ(b)

= σ(ϵ(a), b).

By non-degeneracy, we get
∑

a(1)S(a(2)) = ϵ(a). Similarly,∑
S(a(1))a(2) = ϵ(a).

This proves that S is the antipode of A.

The above theorem ensures that any finite dimensional non-degenerate braided bialgebra

is Hopf algebra. For an arbitrary braided bialgebra (A, σ), if the left radical coincides with

the right one, then we say that σ is inducible. In this case, we call σ(A)(= σl(A)) the radical

of σ.

Denote σ(A,−) = {σ(a,−) | a ∈ A}, σ−1(A,−) = {σ−1(a,−) | a ∈ A}.
Corollary 2.2. Let (A, σ) be a braided bialgebra where σ is inducible and σ−1(A,−) ⊂

σ(A,−). Then A/σ(A) is a Hopf algebra.

Proof. By the assumption, σ induces a braided structure σ̄ on Ā = A/σ(A) by defining

σ̄(ā, b̄) = σ(a, b).

Moreover, σ̄ is non-degenerate on Ā, and σ̄ is invertible (with respect to the convolution

product on Ā∗ ⊗ Ā∗) with

σ̄−1 = σ−1 : (ā, b̄) 7→ σ−1(a, b).

On the other hand, σ̄−1(Ā,−) ⊂ σ̄(Ā,−) from σ−1(A,−) ⊂ σ(A,−). Then, the result

follows from the above theorem.

We say that a quasitriangular bialgebra (H,R) is non-degenerate, if the induced braided

bialgebra (H0, σR) is non-degenerate. In the finite dimensional case, that (H,R) is non-
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degenerate is equivalent to dimH = rank(R). Here

rank(R) = min
{
n
∣∣∣ R =

n∑
i=1

h1i ⊗ h2i ∈ H ⊗H
}
(see [9]).

Thus, we obtain a dual result for quasitriangular bialgebra.

Theorem 2.4. Let (H,R) be a finite dimensional quasitriangular bialgebra with rank(R)

= dimH. Then H is a Hopf algebra.
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