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Abstract

This paper shows an important relation between the fractal analysis and the boundary
properties of harmonic functions. It is proved that the multifractal analysis of a finite measure
µ on RId determines the (non-tangential) boundary increasing properties of Pµ, the Poisson

integral of µ which is harmonic on RId+1
+ . Some examples are given.
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§1. Introduction

Consider the half-space RId+1
+ = {(x, r);x ∈ RId, r > 0} (d ≥ 1). Its boundary is ∂RId+1

+ =

{(x, 0);x ∈ RId} which will be identified with RId. The Poisson kernel with respect to RId+1
+ is

Py(x, r) = Γ
r

(|x− y|2 + r2)
d+1
2

,

where (x, r) ∈ RId+1
+ , y ∈ RId = ∂RId+1

+ , and Γ is a constant depending only on d.

Let µ be a finite positive measure on RId. It is well known that the Poisson integral of µ

Pµ(x, r) =

∫
Py(x, r)dµ(y)

is a positive harmonic function on RId+1
+ , and that locally (near a finite boundary point) any

positive harmonic function differs from a Poisson integral by a harmonic function with local

boundary values 0 (see the remark below).

Many general boundary properties of u = Pµ have been studied, especially for µ = f(x)dx

with f ∈ Lp(RId) (see for example [8, 9]). However, when µ is singular with respect to the

Lebesgue measure Ld we know that (apply [1, Corollary 6.7] to the harmonic functions u

and 1)

lim
r→0+

u(x, r) =

{
0 for Ld − a.e. x ∈ RId,
+∞ for µ− a.e. x ∈ RId.

Therefore, we must study the asymptotic behaviour of u as r → 0. We shall first define

the degree of u at a boundary point x ∈ RId in a natural way, and then establish the

relation between the degree and the local Lipschitz exponent of µ at x. We show that the
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multifractal analysis of µ is exactly the decomposition of the boundary according to the

degrees of u. Consequently some singular boundary properties can be deduced from the

multifractal analysis.

Remark 1.1. Instead of the Poisson kernel, we can use the Martin kernel Ky(x, r),

(x, r) ∈ RId+1
+ , y ∈ RId

∪
{∞} :

Ky(x, r) =

{
(1 + |y|) d+1

2
r

(|x−y|2+r2)
d+1
2

if y ∈ RId,

r if y = ∞,

the Martin boundary of RId=1
+ being ∆ = RId

∪
{∞}.

Then by the Martin representation theory or by a Riesz-Herglotz-type representation[3],

any positive harmonic function u can be uniquely represented as

u = Kµu =

∫
∆

Kydµu(y),

where µu is a finite measure on ∆.

If we study the local properties of u near a point (b, 0) ∈ ∂RId+1
+ , we can suppose that µu

is supported by B(b, 1). Then

u = Pµ, with dµ(y) = Γ−11B(b,1)(y)(1 + |y|2)
d+1
2 dµu(y).

Note that 1 ≤ 1 + |y|2 ≤ 1 + (|b| + 1)2 (y ∈ B(b, 1)). Hence all our results have similar

statements when the Martin kernel is applied.

We notice also that similar results still hold when RId+1
+ is replaced by the unit ball of

RId+1. In this case the Poisson kernel and the Martin kernel are the same.

We shall suppose without loss of generality in what follows that µ is a probability measure,

and u = Pµ.

§2. Preliminary

With the above notations, we define the degree of u at x as follows:

deg(u;x) = inf{s ≥ 0; u(x, t) = O(t−s), t ↓ 0},

which characterizes the asymptotic behaviour of u at the point x as r tends to zero.

Remark 2.1. It is easy to check that u(x, t) = O(t−d), so that deg(u;x) ∈ [0, d]. Note

also that if u(x, t) = O(t−s) and if s′ > s, then u(x, t) = O(t−s′).

The local Lipschitz exponent of µ at x is defined as

Lip(µ;x) = sup{α ≥ 0; µ(B(x, r)) = O(rα), r ↓ 0},

where B(x, r) denotes the open ball of RId, centred at x and with radius r.

Lemma 2.1. We have

deg(u;x) =

{
lim sup
r→0+

log u(x,r)
− log r , if the right side is nonnegative;

0, otherwise.

Lip(µ;x) = lim inf
r→0+

logµ(B(x, r))

log r
.

Proof. Let s = deg(u;x). Then by definition for any ε > 0

u(x, r) = O(r−s−ε),
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which means ∃ C > 0 and r0 ∈]0, 1[ such that for 0 < r < r0

u(x, r) ≤ Cr−s−ε.

It follows that
log u(x, r)

− log r
≤ logC

− log r
+ s+ ε

and then

lim sup
r→0+

log u(x, r)

− log r
≤ s+ ε

so that lim sup
r→0+

log u(x,r)
− log r ≤ s since ε is arbitrary.

Conversely, let s = lim sup
r→0+

log u(x,r)
− log r . Suppose first s ≥ 0. Then

log u(x, r)

− log r
< s+ ε if r is small enough,

which implies u(x, r) ≤ r−s−ε, then deg(u, x) ≤ s.

Now if s < 0, we may take ε < |s|. We get in the same way

u(x, r) ≤ r−s−ε ≤ 1,

which gives deg(u;x) = 0. Thus the fist assertion of the lemma is proved.

The second assertion can be proved in the same way.

Remark 2.2. By the Harnack Principle (see Lemma 2.4 below) the above limit for u

can be replaced by the non-tangential limit.

Remark 2.3. Since µ is supported by RId, the dimension of µ (see [5] and [6]) dimµ ≤ d.

Thus Lip(µ;x) ≤ d for µ− a.e. x ∈ RId (see [6]).

Lemma 2.2. ∀x ∈ RId, r > 0

u(x, r) ≥ Cr−dµ(B(x, r)),

where C is a positive constant depending only on d. In particular, we have

u(x, r) = O(r−s) =⇒ µ(B(x, r)) = O(rd−s).

Proof. Note that for y ∈ B(x, r), Py(x, r) ≥ Cr−d, hence

u(x, r) =

∫
Rd

Py(x, r)dµ(y) ≥
∫
B(x,r)

Py(x, r)dµ(y) ≥ Cr−dµ(B(x, r)).

It follows from Lemma 2.2 that
log u(x, r)

− log r
≥ C

− log r
+ d− logµ(B(x, r))

log r
, 0 < r < 1,

which yields the following corollary.

Corollary 2.1.

lim inf
r→0+

log u(x, r)

− log r
≥ d− lim sup

r→0+

logµ(B(x, r))

log r
,

lim sup
r→0+

log u(x, r)

− log r
≥ d− lim inf

r→0+

logµ(B(x, r))

log r
.

Now we show that the converse of Lemma 2.2 also holds.

Lemma 2.3. Let 0 ≤ s ≤ d, x ∈ RId. Then

µ(B(x, r)) = O(rs) =⇒ u(x, r) = O(rs−d).
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Proof. By hypothesis, there exist C > 0 and r0 > 0 such that

µ(B(x, r)) ≤ Crs, 0 < r ≤ 2r0. (2.1)

Note that

u(x, r) =

∫
Rd\B(x,r0)

Py(x, r)dµ(y) +

∫
B(x,r0)

Py(x, r)dµ(y)

and that the first integral tends to 0 as r → 0. It is sufficient to show∫
B(x,r0)

Py(x, r)dµ(y) = O(rs−d). (2.2)

Let 0 < r < r0, and let n be the integer such that

2n−1r < r0 ≤ 2nr.

Denote I0 = B(x, r) and

Ij = B(x, 2jr) \B(x, 2j−1r) for 1 ≤ j ≤ n.

Then we have∫
B(x,r0)

Py(x, r)dµ(y) ≤
∫
B(x,2nr)

Py(x, r)dµ(y) =
n∑

j=0

∫
Ij

Py(x, r)dµ(y). (2.3)

If y ∈ Ij(j ≥ 1), then |x− y| ≥ 2j−1r and Py(x, r) ≤ Cjr
−d, where Cj =

Γ
(2d+1)j−1 .

If y ∈ I0, then Py(x, r) ≤ C0r
−d, with C0 = Γ. Hence by (2.1) and (2.3) we have

successively ∫
B(x,r0)

Py(x, r)dµ(y) ≤
n∑

j=0

Cjr
−dµ(Ij) ≤

n∑
j=0

Cjr
−dµ(B(x, 2jr))

≤
n∑

j=0

CCjr
−d2jsrs = rs−d

n∑
j=0

CCj2
js ≤ Ĉrs−d,

where Ĉ = CΓ + CΓ2d+1
∞∑
j=0

1
(2d+1−s)j

is a finite positive constant depending only on C, s

and d. This establishes (2.2) which proves the lemma.

Remark 2.4. Similar result as Lemma 2.3 holds for more general case[10] .

The following Harnack Principle (or Harnack Inequality) will be useful (see [10, p.16]).

Lemma 2.4. Let x0 ∈ RId+1 and r > 0. Suppose that u is a positive harmonic function

defined on B(x0, r). Then ∀x, y ∈ B(x0, r/2), u(x)/u(y) ≤ 3d+1.

§3. Main Results

We can now prove the following

Theorem 3.1. Let u = Pµ be a positive harmonic function on RId+1
+ , and x ∈ RId. Then

we have

deg(u;x) =

{
d− Lip(µ;x), if Lip(µ;x) ≤ d;
0, otherwise.

Proof. We have first by Lemma 2.1 and Corollary 2.1 that

deg(u;x) ≥ d− Lip(µ;x).
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Let us prove the opposite inequality:

deg(u;x) ≤ d− Lip(µ;x).

Let s = Lip(µ;x). If s = 0, this inequality is trivial by Remark 2.1. If s > d, then it

follows that

µ(B(x, r)) = O(rd) (r ↓ 0),

which implies by Lemma 2.3 u(x, r) = O(1), hence deg(u;x) = 0.

Now let 0 < s ≤ d. Then for any ε > 0, ε < s,

µ(B(x, r)) = O(rs−ε).

Then Lemma 2.3 gives

u(x, r) = O(r−(d−s+ε))

so that

deg(u;x) ≤ d− s+ ε

and then by the arbitrary of ε, deg(u;x) ≤ d− s. The theorem is thus proved.

Corollary 3.1. If the limit lim
r→0+

log µ(B(x,r))
log r exists and ≤ d, then the limit lim

r→0+

log u(x,r)
− log r

exists and

lim
r→0+

log u(x, r)

− log r
= d− lim

r→0+

logµ(B(x, r))

log r
.

Proof. By Corollary 2.1 and Theorem 3.1 we have

d− lim
r→0+

logµ(B(x, r))

log r
≤ lim inf

r→0+

log u(x, r)

− log r
≤ lim sup

r→0+

log u(x, r)

− log r

= d− lim
r→0+

logµ(B(x, r))

log r
.

Let µ be a probability measure on RId. Consider its multifractal decomposition (see [4]

and [2]):

Eµ
α = {x ∈ RId; Lip(µ;x) = α} (0 ≤ α ≤ d), with dimEµ

α = f(α).

If we write Du
s = {x ∈ RId; deg(u;x) = s} (0 ≤ s ≤ d), then we have immediately

Theorem 3.2. With the above notations, we have

Dµ
s = Eµ

d−s, and then dimDu
s = f(d− s).

In particular if µ is unidimensional (see [5] or [6]) with dimµ = α, 0 ≤ α ≤ d, then the

corresponding harmonic function u satisfies

deg(u, x) = d− α for µ− a.e. x ∈ RId.

Proof. In fact, by [6] µ is unidimensional if and only if Lip(µ; ·) = α µ− a.e..

Remark 3.1. For the multifractal analysis, see [7] and [4]. In many “self-similar” cases

the function f(α) = dimEµ
α can be calculated by means of the Legendre transform (see for

example [2]). Then dim{deg(u; ·) = s} is determined by Theorem 3.2. As an application of

Theorem 3.2, we give the following example.

Example 3.1. By Remark 2.1 we know that 0 ≤ deg(u;x) ≤ d. It is not difficult to

show that for any s ∈ [0, d] there exists harmonic function u such that deg(u;x) = s for
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some x ∈ RId. Futhermore one can pose the following question: Is there a harmonic function

u such that the set {s; deg(u;x) = s for some x ∈ RId} is the whole interval [0, d]? Using

the multifractal analysis and Theorem 3.2, we can give a positive answer.

From the Moran fractals[2] we can construct without difficulty a series of measures µn ∈
M1([2n, 2n+ 1]d) (n > 0) (we omit the details of the construction) such that

dimEµn
α > 0, ∀α ∈

[ 1
n
, d− 1

n

]
.

Let u = P0 +
∞∑

n=1
2−nPµn. It is obvious that u is a harmonic function. We claim

that the set {s; deg(u;x) = s for some x ∈ RId} is the whole interval [0, d]. Moreover

dim{deg(u, ·) = s} > 0 for any s ∈ [0, d[. In fact, we observe that deg(u; 0) = d and that for

x ∈ [2n, 2n+ 1]d , deg(u;x) = deg(Pµn;x). It suffices then to apply Theorem 3.1.

Example 3.2. Recall that the classical Cantor’s set K ⊂ RI1 is defined as follows:

K =
∞∩
j=0

Ej , where E0 = [0, 1], · · · , Ej+1 = 1
3Ej

∪(
1
3Ej + 2

3

)
(j ≥ 0). It is clear that

Ej+1 ⊂ Ej and that Ej consists of 2j intervals Ij(k) = [aj(k), bj(k)] (k = 0, · · · , 2j − 1) of

length 3−j , with

aj(0) = 0, · · · , aj(k + 1) > 3−j + aj(k). (3.1)

For each j ≥ 0, define the probability measure µj on [0, 1] as the uniform distribution

on Ej . Then in M1[0, 1] (the spaces of probability measures on [0, 1] endowed with the

weak topology), {µj} has an adherent measure µ ∈ M1[0, 1]. It follows easily from the

construction that µ is supported by K and µ(Ij(k)) = 2−j , j ≥ 0, k = 0, · · · , 2j − 1.

Consider the corresponding harmonic function u = Pµ. By Theorem 3.1 the boundary

properties of u can be deduced from the fractal properties of µ. We can also get information

about µ by the boundary behaviour of u.

Let s = log 2
log 3 . We claim that u(x, r) ∼ rs−1, x ∈ K, r < 1

3 . That is, there exist two

absolute constants C1, C2 > 0 such that

C1r
s−1 ≤ u(x, r) ≤ C2r

s−1, x ∈ K, r <
1

3
. (3.2)

The first of the above inequalities is easy to prove. Let us prove the second.

Let x ∈ K and let N be the integer such that

3−N−1 < r ≤ 3−N . (3.3)

Then x ∈ IN (K) for an integer K ∈ {0, · · · , 2N − 1}. Since |x− aN (K)| ≤ 3r, we deduce

from the Harnack’s inequality (Lemma 2.4) that

u(x, r) ∼ u(aN (K), r).

For convenience, we suppose K = 0, that is, aN (K) = 0, the demonstration for K ∈
{1, · · · , 2N − 1} is similar. Therefore, we have only to establish (3.2) for x = 0.

In fact, using the fact that aN (k) ≥ k3−N ≥ kr (which follows from (3.1) and (3.3)) and

that

sup
y∈IN (k)

Py(0, r) ≤ Γ
r

r2 + (aN (k))2
,
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we have successively

u(0, r) =
2N−1∑
k=0

∫
IN (k)

Py(0, r)dµ(y) ≤ Γ2−Nr
2N−1∑
k=0

1

r2(1 + k2)
≤ 2−N

r
Ĉ, (3.4)

where Ĉ =
∞∑
k=0

Γ
1+k2 .

Finally noting that 3s = 2 , we have then by (3.3) 2−N ≤ 3srs. This combined with

(3.4) gives u(0, r) ≤ C ′rs−1, C ′ = 3sĈ, which proves our assertion.

An immediate consequence is the following

deg(u;x) = 1− s, then Lip(µ;x) = s (∀x ∈ K).

Remark 3.2. Using Corollary 4.1 below, we can also get lim
r→o+

log µ(B(x,r))
log r = s, x ∈ K.

§4. Further Discussions

It follows from the Harnack’s inequality that

u(x, r) ∼ u(x, r′), ∀x ∈ RId, r > 0, r ≤ r′ ≤ 2r.

From this fact we deduce that the increasing properties of u(x, r) as r ↓ 0 is characterized

by the sequence {u(x, 2−n)}n≥1.

In particular we have

Proposition 4.1. The limit lim
r→0+

log u(x,r)
− log r exists if and only if the limit lim

n→∞
log u(x,2−n)
− log 2−n

exists.

Note that in general there is no such property for lim log µ(B(x,r))
logr unless µ satisfies some

“homogeneous” properties. Then we can show the following further result.

Proposition 4.2. Let x ∈ RId. Suppose that for some positive constant C < 2d+1 and

r0 > 0,

µ(B(x, 2r)) ≤ Cµ(B(x, r)), ∀r ≤ r0. (4.1)

Then we have

u(x, r) ∼ r−dµ(B(x, r)) (r ↓ 0).

Proof. We have to show u(x, r) ≤ Const.r−dµ(B(x, r)) for r near 0. In fact, we can

suppose that µ is supported by B(x, r0/2). Then for r near 0 and 2nr ≤ r0, µ(B(x, 2nr)) ≤
Cnµ(B(x, r)). We can then proceed as in the proof of Lemma 2.3, where we notice that
∞∑

n=0

(
C

2d+1

)n
is convergent.

An immediate consequence of Proposition 4.2 is the following supplement of Corollary

3.1.

Corollary 4.1. If µ satisfies (4.1), then

lim inf
r→0+

log u(x, r)

− log r
= d− lim sup

r→0+

logµ(B(x, r))

log r
.

In particular, if lim
r→0+

log u(x,r)
− log r = α exists, then lim

r→0+

log µ(B(x,r))
log r exists and is equal to d−α.

Remark 4.1. If µ has positive finite density lim
r→0+

µ(B(x,r))
rs (0 ≤ s ≤ d), then the

condition (4.1) is satisfied with C = 2s+ε.
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Now let us estimate u(x, 2−n) in terms of µ. For simplifying notations we consider the

case where d = 1, x = 0 and suppose that µ is supported by the interval [0, 1].

For j ≥ 0, let Bj = B(0, 2−j), and Ij = Bj \Bj+1, µj = µ(Ij), vj = µ(Bj). Obviously

vn =
∑
j≥n

µj + µ({0}).

Then we have

Proposition 4.3. With the above notations, we have

2−nu(0, 2−n) ∼ vn + 4−n
n−1∑
j=0

4jµj

as n tends to +∞.

Proof. For y ∈ Ij , j < n, we have by a simple calculation that

2−nPy(0, 2
−n) ∼ 4j−n,

which gives

2−nu(0, 2−n) =

∫
Bn

2−nPy(0, 2
−n)dµ(y) +

n−1∑
j=0

∫
Ij

2−nPy(0, 2
−n)dµ(y)

∼ vn + 4−n
n−1∑
j=0

4jµj .

Similarly, we can obtain the following proposition, where µ ∈ M1(RId), u = Pµ, and

Bj = B(x, 2jr), Jj = Bj+1 \Bj (j ≥ 0).

Proposition 4.4. ∀x ∈ RId, r > 0,

rdu(x, r) ∼ µ(B(x, r)) +

∞∑
j=0

(2−d−1)jµ(Jj).

References
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