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Abstract

The author studies M-D Riemann problems for a quasilinear nonstrictly hyperbolic system.
The initial data are taken as three different constants in three sections divided by three rays

starting from the origin. From each direction of these rays two waves coming from infinity
are allowed. All possible local singularity structures are carefully studied and classified. Then
based on such analysis, existence and global singularity structure of the solution are obtained
under some assumptions.
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§1. Introduction

Recently, the study of nonlinear hyperbolic system of conservation laws in multidimen-

sional case has been extensively developed (for instance see [1-4]). Correspondingly, the

study on multidimensional Riemann problems is then more interesting and attractive than

before (see [5] and its references). The M-D Riemann problem was first put forward by

R.Courant and K.O.Friedrichs in [6]. In the scalar equation case this problem has been

discussed by D. Wagner[7], W. B. Lindquist[8], T. Zhang and L. Xiao[9].

In the study of M-D Riemann problems for hyperbolic systems the following system(
u

v

)
t

+

(
ug1(u, v)

vg1(u, v

)
x

+

(
ug2(u, v

vg2(u, v)

)
y

= 0 (1.1)

attracts people’s special attention. Such a system arises in oil recovery, elastic theory and

magneto-hydrodynamics (see [10]). Generally, it is a nonstrictly hyperbolic system. The

M-D Riemann problem of the system is much more complicated than the scalar case. Mean-

while, it is simpler than the problem for general hyperbolic system, because in the study of

self-similar solutions to the system the appearance of domain of mixed type can be avoided.

That is why we are interested in the M-D Riemann problem for (1.1) and regard such a

study as a necessary step to more complicated and practical cases.
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When g1 = u, g2 = v, the system becomes(
u

v

)
t

+

(
u2

uv

)
x

+

(
uv

v2

)
y

= 0. (1.2)

Some first attack to its M-D Riemann problems was given in [11, 12]. In this paper we will

give a detailed discussion on the singularity structure of its solutions and a way to construct

the solution of M-D Riemann problems. The initial data of our problem are taken as

U |t=0 = (u0(x, y), v0(x, y)) (1.3)

which are composed of different constants (ui, vi) in three angular domains

Ωi : θi−1 < θ < θi, (1.4)

where θi = −π
2 + 2

3 iπ. We notice that the lines carrying discontinuity of the initial data

form a capital letter “Y ”, hence the problem is also called Y -shape Riemann problem. With

such initial data the problem will have a complicated flowery singularity structure. Since

(1.2) and (1.3) are invariant under dilation t → αt, x → αx, y → αy with α > 0, we may

only consider the self-similar solutions of (1.2). The singularity structure of the solution on

the plane {t = 1} represents the structure on the whole space R3, and then it is enough to

give the picture of such a structure on {t = 1}.
We will prove the existence of the solution to Riemann problem by constructive method.

By introducing the variables ξ = x/t, η = y/t, and regarding (u, v) as functions of ξ =

x/t, η = y/t, we can deduce our problem (1.2),(1.3) to(
2u− ξ 0

v u− ξ

)
Uξ +

(
v − η u
0 2v − η

)
Uη = 0, (1.5)

lim
r→∞

U(r, θ) = Ui if θi−1 < θ < θi. (1.6)

Then the main task is to give a global wave graph on the whole (ξ, η) plane. By the property

of finite propagation speed for hyperbolic system the wave for sufficiently large |(ξ, η)| can be

determined as a 1-D problem. Then according to the analysis in §2, generally there are two

waves come from infinity in each direction θ = θi. Therefore the problem becomes to match

all these waves coming from infinity. In order to do that we start from the classification

of nodes, which is formed by intersection of elementary waves. For Euler system J.Glimm

and others have shown the close relation between the classification of nodes and solution to

M-D Riemann problems in [13], which is helpful to our study. For nontrivial nodes for the

solutions to (1.5), which is defined in §3, our conclusion on its classification is

Theorem 1.1. Any non-trivial node can be classified as the following four types: (a)

SSS, (b) JSJS, (c) JJSJ or JJS, (d) JJR.

The theorem will be proved in section 3, while the picture of all types of nodes have been

shown in Fig. 1. Based on this classification we get a clear understanding on interaction of

different elementary waves. There are five basic cases for interaction of elementary waves,

i.e. R ⊗ S, R ⊗ J , S ⊗ S, S ⊗ J and J ⊗ J . In these cases all local singularity structures

of solutions are described. We will discuss them in §4, and will also indicate two kinds of

non-existence. Combining these local structures we can construct solutions to (1.5),(1.6) on

the whole (ξ, η) plane. The solutions are composed of elementary waves and constant states.

Hence we have
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Theorem 1.2. Under the assumptions (A1), (A2), the solution to (1.5), (1.6) does exist,

and it is composed of elementary waves and constant states. Moreover, the solution can be

actually constructed.

The assumptions (A1), (A2) will be formulated in §5. Briefly speaking, these conditions

are set to avoid the non-existence described in §4. Moreover, the method of constructing

the solution will also be given in §5. In the end of this paper we give an example by Figure

2, which shows the complete singularity structure of solutions of (1.5), (1.6) (or (1.2), (1.3))

with three contacts, two simple waves and one shock coming from infinity. The singularity

structure in other cases can also be obtained similarly.

§2. Basic Facts

For reader’s convenience let us briefly recall some basic facts on the system (1.2) first.

Denoting U = t(u, v), we can write the system (1.2) as

Ut +

(
2u 0
v u

)
Ux +

(
v u
0 2v

)
Uy = 0. (2.1)

For given µ, ν the eigenvalues of its characteristic matrix are λ1 = µu+νv, λ2 = 2(µu+νv).

The system (2.1) is strictly hyperbolic, if and only if µu+ νv ̸= 0. In this paper we always

require (u, v) ̸= (0, 0) in order to avoid strong degeneracy.

The Rankine-Hugoniot condition for (1.2) is

ϕt[U ] + ϕx[uU ] + ϕy[vU ] = 0 on ϕ(t, x, y) = 0, (2.2)

where ϕ(t, x, y) is the equation of the surface bearing the discontinuity of the solution, and

[ ] represents the jump of corresponding functions. (2.2) implies

ϕt + u±ϕx + v±ϕy = 0, and [u]/[v] = −ϕy/ϕx (2.3)

which represents a contact J , or

ϕt + (u+ + u−)ϕx + (v+ + v−)ϕy = 0 and u+/v+ = u−/v− (2.4)

which represents a shock S. Besides, on shock S the entropy condition should be assigned.

Denote the normal direction of S as (−σ, µ, ν) with µ2 + ν2 = 1, and let it point from

(u−, v−) to (u+, v+). Then the entropy condition is

λ1(u
−, v−;µ, ν) < σ, λ2(u

+, v+;µ, ν) < σ < λ2(u
−, v−;µ, ν) if λ1 < λ2,

σ < λ1(u
+, v+, µ, ν), λ2(u

−, v−;µ, ν) < σ < λ2(u
+, v+;µ, ν) if λ1 > λ2.

By the property of finite propagation speed for hyperbolic system the solution to (1.2),

(1.3) for sufficiently large (x/t, y/t) can be determined as a one dimensional problem. Its

explicit expression is given as follows.

Noticing that the system (1.2) is invariant under the rotation around t-axis, we may

assume that the initial data have the form

(u, v)|t=0 =

{
(u+, v+), x > 0,

(u−, v−), x < 0.
(2.5)
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For u+ > u− > 0, the solution is

(u, v) =


(u−, v−), x < u−t,

(u−, v+u−/u+), u−t < x < 2u−t,

(x/2t, xv+/(2tu+), 2u−t < x < 2u+t,

(u+, v+), x > 2u+t.

(2.6)

Generally, a simple wave and a contact appear in this solution, while the simple wave

disappears if u+ = u−, and the contact disappears if u+/v+ = u−/v−.

For u− > u+ > 0, the solution is

(u, v) =


(u−, v−), x < u−t,

(u−, v+u+/u−), u−t < x < (u+ + u−)t,

(u+, v+), x > (u+ + u−)t.

(2.7)

Generally, a shock and a contact appear in this solution, while the shock disappreas if

u+ = u−, and the contact disappears if u+/v+ = u−/v−.

The cases 0 > u− > u+ and 0 > u+ > u− are similar.

Remark 2.1. Here we emphasize that in the case u+u− < 0 the solution to the Cauchy

problem of system (1.2), (2.5) does not exist. For instance, take

(u, v)|t=0 =

{
(−1, 1), x > 0,

(1, 1), x < 0.
(2.8)

The first equation of (1.2) can be solved independently, its solution is simply

u = 1 if x < 0, u = −1 if x > 0.

Substituting it into the second equation of (1.2) we obtain v = 1 in both regions x < 0

and x > 0. But this contradicts the R-H condition σ = [uv]. The contradiction implies the

non-existence in the class of piecewise functions.

Now let us turn to the system (1.5). By direct computation we know that (1.5) is also

hyperbolic on the plane (ξ, η), and it is strictly hyperbolic if and only if vξ − uη ̸= 0. Two

eigenvalues for (1.5) are λ̃1 = (v − η)/(u− ξ), λ̃2 = (2v − η)/(2u− ξ). Correspondingly, the

first family of characteristics is linearly degenerate, and the second one is genuine nonlinear

if vη − uξ ̸= 0.

Consider the solution of (1.5) on the plane (ξ, η). If η = η(ξ) is a line carrying jump of the

solution U of (1.5), then the corresponding surface in the space (t, x, y) is y − tη(x/t) = 0.

In that case the slope of η = η(ξ) satisfies

dη

dξ
=

η − v+

ξ − u+

(
=

η − v−

ξ − u−

)
(contact) (2.9)

or

dη

dξ
=

η − (v+ + v−)

ξ − (u+ + u−)
and

v+

u+
=

v−

u− (shock) . (2.10)

(2.9) indicates that a contact J connecting the constant states (u1, v1) and (u2, v2) is the

straight line passing P1(u1, v1) and P2(u2, v2). And for a curved contact, its tangent line is

determined by the states on both sides at every point according to (2.9).

(2.10) indicates that a shock S connecting the states (u1, v1) and (u2, v2) must be a line

passing the point (u1 + u2, v1 + v2), and for a curved shock S, its tangent line is determined

by the states on both sides at every point according to (2.10). On the other hand, the points
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P1(u1, v1), P2(u2, v2) and P1+2(u1 + u2, v1 + v2) must lie on a line h passing through the

origin O.

The simple waves R in the plane (ξ, η) are composed of characteristic lines of second class.

Since the system (1.5) implies

∂

∂ξ
(
v

u
) +

v − η

u− ξ

∂

∂η

( v
u

)
= 0, (2.11)

we know that v/u is constant on the first characteristic line, and it is then a constant on

the whole region occupied by the simple wave. This means that if the state (u1, v1) is

connected with the state (u2, v2) by a simple wave, then v1/u1 = v2/u2 = k, and v/u ≡ k

on the region occupied by this simple wave. For any simple wave we call the characteristics

adjacent to constant region the front of simple wave. For any point (ξ, η) in the region of

the simple wave, the second characteristic starting from this point stops at (2u, 2v) on the

line h : η = kξ.

Remark 2.2. We also require that all second characteristics in a simple wave do not

intersect before they meet the line h. Therefore, in the whole region occupied by this simple

wave all points (u, v) must be located on h; moreover, these points are located in between

the origin and the centre wave, because (u, v) = (0, 0) is not allowed.

All characteristics are orientated by the direction from any point on them to the point

(u, v) (resp. (2u, 2v)) for the first class (resp. for the second class). On any shock the

entropy condition means that among four characteristics on both sides of the shock, three

characteristics point into the shock, and only one points away from the shock. Such a

condition is simply called “three incoming and one outgoing”. For any shock two second

characteristics on its both sides point into the shock, and the direction of the shock is taken

as from the point on it to the point (u−+u+, v−+v+), where (u±, v±) are the states on the

both sides of the shock. For any contact, if at a point on it the directions of characteristics

on its both sides coincide, then the direction is also taken as the direction of the contact at

this point.

Remark 2.3. The entropy condition also requires that the points (u1, v1),(u2, v2) on the

both sides of a shock lie on the same ray starting from the origin O. Meanwhile, these two

points are located in between the origin and the shock.

Remark 2.4. The solutions (2.6), (2.7) of 1-D problem have corresponding expressions

on (ξ, η) plane. Here we indicate that on (ξ, η) plane the shock, the contact and all second

characteristics in the simple wave are parallel to the line carrying the discontinuity of the

initial data. Comparing the place of simple wave R or shock S, the contact J is always

located nearer to the origin. Besides, the non-existence showed in Remark 2.1 also has its

corresponding version for system (1.5). It means that as a 1-D problem on (ξ, η) plane,

if two states U+, U− are located on a line m passing through the origin, but they are on

different sides to the origin, then the solution does not exist.

§3. Local Singularity Structure

Instead of solving the problem (1.2),(1.3), we solve (1.5) with the condition (1.6). The

solution for sufficiently large |(ξ, η)| can be determined as a one-dimensional problem, and
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it has been given in section 2 apart from a rotation of the coordinate system. Therefore

the problem becomes to match all waves coming from infinity. To do this we first give a

classification of local singularity structure at a node, which is the intersection of wave fronts.

Then we consider the interaction of waves from local viewpoint. Finally, we give a way to

establish a global wave graph on (ξ, η) plane.

We classify the local singularity structure by its flattened version. A point Q on the

(ξ, η) plane is called a non-trivial node of solution U ( or simply called a node), if U is

discontinuous at Q, and the following hypotheses are satisfied.

(H1) U is piecewise smooth, it has the form U = Uj for φj−1 < θ < φj , j = 1, · · · , n,
where φj is the angle between a ray issuing from Q and the horizontal line, φn = φ0 + 2π,

and each Uj is constant or a centre simple wave with centre Q.

The region, where U is constant, is called constant region. In the simple wave case, the

lines θ = φ(j − 1) and θ = φj are the fronts of the simple wave U .

(H2) U satisfies R-H conditions on the line, where U has jump. Moreover, U satisfies

entropy condition on any shock.

(H3) The node is non-degenerate. It means vξ − uη ̸= 0 in a neighbourhood of the node

Q; particularly, Q is different from O.

(H4) U is generic. It means that

1) any centre waves must emanate from a node;

2) at most two waves point to the node; and if there appear two incoming waves, then

they must be adjacent;

3) if two contact waves bound a constant region, then at least one of them points to the

node.

These hypotheses are set to avoid non-uniqueness. Indeed, there are examples to show

the non-uniqueness even for local singularity structure. The classification of such nontrivial

nodes are given in Theorem 1.1. Its proof can be deduced through a series of lemmas as

follows.

Lemma 3.1. Any singular line starting from a node cannot be both shock and contact;

meanwhile, the front of any simple wave cannot be a shock or a contact.

The fact is almost obvious, because under the hypothesis H3 the shock, the contact and

the front of simple wave must have different directions at any point.

By this lemma we know that shocks, contacts and simple waves at a node are separated

by constant regions.

Lemma 3.2. At any node the two boundaries of any constant region connot be “R and

R” or “S and R”, and if the boundaries are “S and S”, these S cannot be both outgoing.

Proof. Using the value of U in this region we draw a second characteristic τ starting

from Q (more precisely, from a point sufficiently near to Q in this region). Since τ cannot

coincide with the directions of the fronts of two different simple waves, then “R and R” is

impossible. For the case “R and S”, the direction of front of the simple wave R would be

outward with respect to the shock S, but according to the entropy condition the second

characteristics must point to the shock. Finally, for the case “S and S”, if both two S

were outgoing, then τ would be outward for one of them, this violates the entropy condition
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again.

For our convenience of analyzing the singularity structure of solutions we introduce some

notations. Denote by ℓ a ray starting from Q, denote by P the point with coordinates (u, v)

representing the state on ℓ. Sometimes we also denote by (P ) the constant region, where U

is equal to the coordinate of P . When ℓ rotates around the point Q, the point P moves on

the plane (ξ, η) correspondingly. For a given sector D with vertex at Q, its vertical sector

is denoted by D̃, and its angle is denoted by Ang(D). For a given ray J starting from Q,

the extension in its opposite direction is denoted by J̃ . If ℓ1 intersects ℓ2, we simply denote

as ℓ1 - ℓ2.
Continuing our discussion of the properties of nodes, we have

Lemma 3.3. If ℓ does not run over any contact wave J , then P moves along a ray h

starting from the origin. Moreover, the point P moves monotonously.

Proof. In this case v/u keeps a constant value, hence P is located on a line m passing

through the origin O. The point O divides m into m+ and m−. Now let ℓ rotate around

Q. When ℓ runs over a shock, P jumps on the line h, but it must stay in one side of m

according to Remark 2.3. On the other hand, when ℓ runs over a region of simple wave, the

point P moves continuously. The point P cannot reach the origin; otherwise, the state on ℓ

will be (0, 0), violating the hypothesis (H3). Meanwhile, P cannot go to infinity either, so it

must stay on the same side of m. This half of m will be denoted by h in the sequel. Besides,

since R and S cannot be adjacent waves, the monotonicity can be verified for simple wave

or for shock separately. The verification is a simple collorary of the equation of simple wave

or the entropy condition of shock.

Lemma 3.4. The case that only one contact issuing from the node Q is impossible.

Proof Notice that in any sector, containing only S or R, the ratio k = v/u keeps a

constant value. Now let the ray ℓ rotate starting from a given place θ = φ0. If it runs over

J , then the value u/v changes. Hence we are led to a contradiction when the ray rotates

back to its initial place φ0 + 2π.

Lemma 3.5. Assume that the sector D formed by the contacts J1 and J2 has its angle

less than π. If the solution in the sector D is not constant, and there are no other contacts

in D, then the origin must be located in D̃.

Proof. Lemma 3.3 shows when the ray ℓ runs over the region D from J1 to J2, the

corresponding point P moves on a ray h starting from the origin. Particularly, the points

representing the states near J1 and J2 in the sector D are on the ray h. Denote the four

sectors divided by J1,J2 and their extensions J̃1,J̃2 as D,D1, D2 and D̃. The origin O is not

on J1, J2, J̃1, J̃2 because of (H3), so we only need to show that O cannot be in D,D1 and

D2.

First we assume that O ∈ D. We know that h - J1, h - J2 is impossible, because of Lemma

3.3. Now suppose h - J1, h - J̃2, the points P1, P2 are their intersections, and OP1 < OP2.

Rotate ℓ from J1 to J2, ℓ could not meet simple wave first; otherwise the simple wave must

be incoming and then (H4) is violated. However, if ℓ meets a shock first, then the entropy

condition is not satisfied. Similarly, h - J̃1, h - J2 does not happen. The contradiction

indicates O /∈ D.
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Now we assume that O ∈ D1. Then we have h - J1, h - J2 at P1, P2 with OP1 < OP2, or

h - J̃2, h - J̃1 at P2 , P1 with OP2 < OP1. Let us only consider the first case. By the method

of constructing shock and simple wave we know that if the region (P ′) is adjacent to the

region (P2) through a shock or a simple wave, then OP ′ must stay outside the sector P1OP2.

But this is impossible, so the contradiction implies O /∈ D1. Similarly, we can exclude the

case O ∈ D2. Then the only possible case is O ∈ D̃.

Lemma 3.6. Assume that the contacts J1, J2 issuing from Q are on the same line. On

a half-plane there is not any other contact for the solution U , then U must be constant on

this half-plane.

Still let ℓ rotate over the half plane. Then the corresponding point P moves on a ray h

starting from O. Since h intersects J1 and J2 (or their extensions) at the same point, the

monotonicity of P shows that P just stays at this point. It means that U is constant.

Lemma 3.7. If there are only two contacts J1, J2 meeting at Q, they form a sector D1

with angle less that π and a sector D2 with angle greater than π, then we have

1) there is at most one shock in D1,

2) there is at most one shock or one centre wave in D2.

Proof. If U is not constant in D1, then the origin O is in its vertical region D̃1 according

to Lemma 3.5. The ray h defined in Lemma 3.3 intersects J1, J̃2 ( or J2, J̃1 ). Therefore, if

there is a simple wave in D1, it must be incoming, and this is not allowed. Furthermore, we

indicate that there could not be more than one shock in D1; otherwise, when ℓ rotates from

J1 to J2, the point P representing the state on ℓ does not move monotonously.

If U is not constant in D2, an outgoing centre wave is allowed. According to Lemma 3.2

we only need to exclude the possibility that two or more shocks appear in D2. Next we will

show that appearance of two shocks in D2 is impossible.

First we consider the case that both shocks point to the node. Since h - J̃1 or h - J̃2
implies that the number of incoming waves is greater than 3, the point 2 of (H4) is violated.

So we can only have h - J1 = h - J2. However, in this case the point 3 of (H4) is violated,

because O /∈ D̃1 implies U is constant according to Lemma 3.3.

The case that both shocks point away from the node is also impossible according to

Lemma 3.2, so we consider the case h - S1, h - S2, i.e. one shock is inward, and the other

is outward. In this case we could not have h - J̃1, h - J̃2 because it leads to the number of

incoming waves equal to 3. We could not have h - J1, h - J2 either, because O /∈ D1 implies

U is constant, and then the point 3 of (H4) is violated. However, h - J1, h - J̃2 (or vice versa)

is also impossible, because according to the entropy condition J1 is in between O and S1,

J̃2 is in between O and S̃2, and then S1 and S2 cannot be in D2 together.

Lemma 3.8. If three contacts emanate from Q, then

1) U is constant in one sector with angle less than π,

2) there are two contacts lying on the same line, and the solution U is constant on one

of the half plane bounded by this line.

Proof. Denote by Di(i = 1, 2, 3) the sector formed by rotating a ray from Ji to Ji+1

(J4 = J1). Among three Di at least two sectors, say D1 and D2, have angle less than π. If

U is not constant in both D1 and D2, then by Lemma 3.5 the origin O is in D̃1 ∩ D̃2, but
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this is an empty set. So we may assume U is constant in D1, and U is actually equal to

the coordinates of Q. We also confirm that U is not constant in D2; otherwise, the contact

between D1 and D2 would disappear. This does not coincide with the assumption of this

lemma.

Now consider the remaining sector D3. By the reason mentioned above, the angle of D3

could not be less than π. Thus we need to show that the angle of D3 could not be greater

than π either.

Now suppose Ang(D3) > π. Then as mentioned above U would not be constant in D3.

We know O ∈ D̃2 by Lemma 3.5, which also implies O /∈ D̃1. Observe the place of the

ray h. It cannot intersect J1 and J2 because of the hypothesis (H4)3. However, when it

intersects J̃1 and J̃2, both contacts J1 and J2 point into the node Q; meanwhile, there must

be one shock in the region D2 or D3 pointing into Q. This leads to a contradiction to the

hypothesis (H4)2.

Therefore, the only remaining possibility is Ang(D3) = π, that is, J1 and J3 are on the

same line. Then Lemma 3.6 gives the second conclusion of this lemma.

Proof of Theorem 1.1. By using all above lemmas we only need to show that there are

at most three contacts meet at a node. In fact, if we have four contacts meeting at a node,

they form four sectors Di(i = 1, · · · , 4) bounded by contacts. Choose any three sectors

among these four, then according to the argument in Lemma 3.8 there are two contacts

lying on the same line and having opposite directions. Therefore, among all Di we have two

pairs of contacts, which are on the same line. It is obviously impossible. Combining with

Lemma 3.4 we know that the number N of contacts starting from a node should be 0, 2 or

3.

If N = 0, we can only have shocks at the node Q according to Lemma 3.2. Moreover, the

number of incoming shocks is not more than 2 by (H4), and the number of outgoing shocks

is at most one. This is the case (a) in Theorem 1.1.

For N = 2 we can use the results in Lemma 3.7. The case “one shock appears in each

Di” corresponds to the type (b), “only one shock appears in one of two sectors” corresponds

to the type (c)2, “only one centre wave in D2” corresponds to the type (d) of Theorem 1.1

respectively.

The case N = 3 has been discussed in Lemma 3.8. It corresponds to the type (c)1 of

Theorem 1.1. Thus the proof of Theorem 1.1 is complete.

§4. Interaction of Elementary Waves

As mentioned in the introduction we observe the construction of the problem (1.5), (1.6)

as a problem of matching waves. Now let us work on interaction of two waves by using the

analysis of nodes in the last section. Since any simple wave is composed of characteristics of

second class, two simple waves will just merged into one simple wave, if they are adjacent.

Therefore, we need to consider five kinds of interaction, i.e. R⊗S,R⊗J, S⊗S, J⊗S, J⊗J .

By taking a rotation we may assume two elementary waves propagate from down to up,

and they meet on top of the figure. The left and right waves are called first and second

waves respectively. The three regions (right to the first wave, in between two waves and left



354 CHIN. ANN. OF MATH. Vol.18 Ser.B

to the second waves) are denoted by (1),(2) and (3) separately.

1) R⊗ S.

The front of the simple wave R is a second characteristic carrying weak singularity of U .

Since the solution itself is continuous on the front, and the R-H conditions only involve the

value U , the intersection of this front and shock does not form a non-trivial node. In this

case the shock generally becomes a curved shock, which can be determined by

dη

dξ
=

η − (v− + v+)

ξ − (u− + u+)
, η(ξQ) = ηQ, (4.1)

where (u+, v+) = (u(ξ, η), v(ξ, η)) is the solution in the domain of simple wave, and (u−, v−)

represents the state on the other side of the shock. The simple wave stops propagating after

its meeting the shock.

2) R⊗ J.

As mentioned above the intersection of the front of a simple wave and a contact does not

form a non-trivial node either. When interaction happens, the contact generally becomes a

curved contact, which can be determined by

dη

dξ
=

η − v+

ξ − u+
, η(ξQ) = ηQ, (4.2)

where (u+, v+) = (u(ξ, η), v(ξ, η)) is the solution in the domain of simple wave. Different

from the above case, the simple wave will still propagate after its cutting the contact J . On

the curved J as a boundary of the region of new simple wave we have two relations

v = ku, (η − v) =
dη

dξ
(ξ − u). (4.3)

By using (4.3) we may determine the value U at the point (ξ, η), and then determine the

direction of characteristics of second class passing (ξ, η). The value of U on this characteristic

equals its value at (ξ, η), then the simple wave crossing over the contact J is constructed.

Here we emphasize that when k = dη
dξ happens at some point, the above technique does not

work, and the local solution caused by such an interaction does not exist.

Now we consider the interaction of waves with strong discontinuity. In each case if we

flatten the local singularity structure, then the intersection of waves is a non-trivial node.

3) S ⊗ S.

Assume that two incoming shocks S12, S23 meet at Q. Then we get a node of type (a)

according to the classification in Theorem 1.1. Denote the states next to two incoming

shocks S12 and S23 by P1(u1, v1), P2(u2, v2) and P3(u3, v3) with P2 located between two

shocks. By (2.4) we have

v1/u1 = v2/u2 = v3/u3. (4.4)

Hence the points P1, P2, P3 are on the same ray starting from O, and P2 ∈ P1P3. Take Pa

such that OPa = OP1 +OP3. Then the outgoing shock S13 is just QPa.

4) S ⊗ J.

When an incoming shock meets a contact at Q, generally a new contact and a new shock

are formed after interaction. This situation belongs to the type (b) in Theorem 1.1. Assume

that the place of the shock and the contact are given as Figure 2, and they connect the

regions (1), (2) and (3). Notice that any state connected with the state (1) by a simple
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wave or a shock must be on the line OP1. Hence if OP1 intersects QP3 at P1′ , then the

state (3) can be connected with the state (1’) by the contact J1′3 : QP1′ , and (1’) is also

connected with the state (1) by the shock. The crucial point is whether OP1 intersects QP3

or not. When they intersect, the local singularity structure is thus constructed. Otherwise,

the solution with such local structure does not exist. Besides, we also indicate that if O is

located in the region (1) or (2), the reasonable local wave graph also does not exist.

5) J ⊗ J.

If contacts J12 connecting the states (1) (2) and J23 connecting the states (2) (3) meet

together, then the intersection Q coincides with the point P2 representing the state (2). Now

if the direction OP1 coincides with OP3, then we are led to the structure JJR or JJS in

Theorem 1.1. Otherwise we are led to the structure JJSJ or non-existence. More precisely,

suppose that the origin O is in the domain (3) (or (1) ), and the line P2P3 intersects the

line OP1 at P1′ . Let OPa = OP1 + OP2. By combining P2 and Pa we obtain a shock S11′

starting from P2, and by extending J23 we obtain contact J31′ . Particularly, if O,P1 and P3

are collinear, then the contact J3 disappears. However, if the line OP1 does not intersect

the line P2P3, then the solution does not exist.

On the other hand, if the origin O is in the domain (2), and OP1, OP3 coincide, we may

construct a centred rarefaction wave R13 starting from P2, which connects the state (1) and

(3). Otherwise, if O,P1 and P2 are not collinear, then the solution does not exist. Similarly,

when O is in the vertical domain of (2), the solution does not exist either.

§5. Solution to Essential M-D Problem

Come back to the problem (1.5),(1.6). We will fix some conditions, under which the

solution can be constructed by elementary waves and constant regions. For given P1(u1, v1),

P2(u2, v2), P3(u3, v3), let

E = {(ξ, η); ξ − ξ0 = cot θi(̇η − η0), where i = 1, 2, 3, (ξ0, η0) ∈ ∆P1P2P3}. (5.1)

If O ∈ E, then we may make a suitable rotation, so that one of θ = θi becomes Oη (η - axis),

and Oη ∩ ∆P1P2P3 is not empty, for instance, P1, P2 are in different sides of Oη. In this

case we will meet non-existence as mentioned in Remark 2.4. To avoid such non-existence

we set the assumption

(A1) O /∈ E.

Under the assumption (A1) by reflection and rotation of the coordinate system we may

assume that the points P1, P2 and P3 are located in the sector V = π
6 < θ < π

2 . We denote

OPi by βi for i = 1, 2, 3, which has slope ξi/ηi and plays an important role in constructing

the solution. Besides, in such a placement of the coordinate system we also assume

(A2) η1/ξ1 < η3/ξ3.

Next we are going to prove the conclusion of Theorem 1.2. That is, the assumptions

(A1), (A2) ensure the existence of the solution of (1.5), (1.6). We will prove Theorem 1.2

by constructive method.

As mentioned above we assume P1, P2, P3 ∈ V according to the condition (A1). Then we

have two waves from infinity in each direction θ = 2
3 (i− 1)π+π

6 on the plane (ξ, η), because of
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0 ̸∈ E. If we use T to denote S or R, then we have six waves as J12′ , T22′ , J2”3, T2”2, J1′3, T1′1.

In each direction the wave near to the origin is contact according to Remark 2.4.

Lemma 5.1. On the (ξ, η) plane there is not any bounded region whose boundary is

formed only by contacts.

Proof. Integrating the first equation of system (1.5) we have∫∫
D

(∂u2

∂ξ
+

∂(uv)

∂η
− ξ

∂u

∂ξ
− η

∂u

∂η

)
dξdη = 0,

∫
∂D

(u2 cos(n, ξ) + uv cos(n, η)− uξ cos(n, ξ)− uη cos(n, η))ds+

∫∫
D

2udξdη = 0,

where n denotes outer normal direction. Notice that on any contact (u−ξ, v−η) is tangential

to its direction, and the fact implies (u − ξ) cos(n, ξ) + (v − η) cos(n, η) = 0. Therefore we

have
∫∫

D
udξdη = 0. Similarly, by integrating the second equation of (1.5) we obtain∫∫

D
vdξdη = 0. However, in phase space U at any point in D should locate on a ray h

starting from the origin. This implies that u, v have the same sign on h respectively, and at

least one of them does not vanish. Hence we are led to a contradiction.

Lemma 5.2. If the origin belongs to an unbounded region D with its boundary being

composed of contacts, and U is constant at infinity in this region, then U is constant in

whole D, and the boundary is composed of two straight contacts.

Proof. For large |(ξ, η)| the boundary ∂D is composed of straight contacts J1, J2 connect-

ing D and other regions, so it must be on straight lines passing through P , the interaction

of J1 and J2. Then for large |(ξ, η)|, U is equal to the coordinates of P . Denote by D1 the

region, where U is such a constant. Now if D1 ̸= D, then U in D \D1 also locates on the

ray OP . Let Γ = ∂D1 \ ∂D, Q1 = J1 ∩ Γ. Then Γ near Q1 is a second characteristic or a

shock. According to the value of U , this part of Γ should be a straight line pointing to P ′

located on the extension OP . However this contradicts Γ ∈ D. Hence U must be a constant

in the whole D, bounded by two straight contacts J1 and J2.

According to Lemma 5.1, if a solution of (1.5),(1.6) exists, then the whole plane will be

divided by contacts into three parts. The boundary of each region is composed of contacts

extending to infinity. Then we may anticipate that all the three contacts coming from

infinity will form a distored letter “Y”. Correspondingly, the three parts devided by three

legs of this distored letter Y are denoted by Ω̃i, i = 1, 2, 3, respectively.

According to Lemma 5.2 the region Ω̃3 and U in this region can be easily determined.

Let J12′ intersect J2”3 at P3. The sector formed by these two contacts with angle 2
3π can

be taken as Ω̃3, which is just (P3).

Then we construct the region Ω̃1. When J12′ meets T1′1, its direction is changed to the

one pointing to P ′
1 = ∆1 ∩ J1′3. P ′

1 ∈ J1′3 because of (A2). If ξP1 > ξP3 , then T1′1 is R1′1.

The continuation Ja of J12′ obeys the equation (2.9), which becomes dη
dξ = η−k1ξ

ξ−2ξ or dη
dξ =

−η
ξ + k1.

It is easy to verify that d2η
dξ2 < 0 on Ja. The continuation of Ja, which is called J1′4,

can reach the point P1′ . The contacts J1′3, J1′4, Ja and J1′2 bound the region Ω̃1, and the

solution in Ω̃1 is then obtained.

Now if ξP1 < ξP3 , then T1′1 is S1′1. The intersection of J12′ and S1′1 forms a node with
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JSJS type. After intersection J12′ is changed to J1′4 immediately, which meets J1′3. Then

the region Ω̃1 and the solution U in it are also obtained.

The remaining part of the plane (ξ, η) is denoted by Ω̃2, whose boundary is composed of

contacts. The value of U at any point in Ω̃2 should be on the line β2: v/u = k2. Substituting

it into (1.5) we obtain the equation 2u∂u
∂ξ+2ku∂u

∂η−ξ ∂u
∂ξ−η ∂u

∂η = 0, which can also be obtained

in looking for self-similar solution to the scalar equation ∂
∂tu+

∂
∂xu

2+ ∂
∂yku

2 = 0. Therefore,

the discussion is essentially similar to [7]. In the region Ω̃2 the possible interaction of

elementary waves is only R⊗S or S⊗S. According to the discussion in §4 we can construct

all possible waves in Ω̃i successively. Since the construction includes tedious treatment,

which is various according to the different location of the points P1, P2, P3, we omit the

details. A typical example has been shown in Fig. 2, where the coming waves from infinity

are J, S in direction θ1; J,R in direction θ2 and J,R in direction θ3.

Remark 5.1. The condition (A2) can be somehow released. If η1/ξ1 > η3/ξ3, then the

extension of J12′ will meet J2”3, so it will interact with the centre wave starting from the

point P3 before meeting J2”3. But in this way the non-existence showed in the case 2) in §4
may happen. To avoid such a non-existence we need another condition involving (ξi, ηi) for

i = 1, 2, 3. The explicit form of this condition is

η∗ − η5
ξ∗ − ξ5

< k2, (5.2)

where ξ5 = (
√
3η3 + ξ3)/(

√
3k1 + 1), η5 = k1ξ5,

ξ∗ = ξ3 +
ξ1(2ξ5 − ξ3)(η3 − k1ξ3)

(η1 + ξ3/
√
3− k1ξ3)(2ξ5 − ξ3)− ξ1(2η5 − η3)

, η∗ = η3 + (ξ∗ − ξ3)
2η5 − η3
2ξ5 − ξ3

.

The process of obtaining (5.2) is omitted.
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Case a (SSS) Case b (JSJS)

Case c (JJSJ) Case d (JJR)

Fig.1

Fig.2


