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Abstract

The authors establish the existence of nontrival periodic solutions of the asymptotically
linear Hamiltonian systems in the general case that the asymptotic matrix may be degenerate
and time-dependent. This is done by using the critical point theory, Galerkin approximation
procedure and the Maslov-type index theory introduced and generalized by Conley, Zehnder

and Long.
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§1. Introduction and Main Results

We study 1-periodic solutions to the following systems:

ż = JH ′(t, z), (HS)

where H ′(t, z) denotes the gradient of H with respect to the variable z, ż = dz/dt, and

J =

(
0 −IN
IN 0

)
with IN being the identity matrix in RN and N being a positive integer.

We assume:

(H1) H ∈ C2([0, 1]×R2N ,R) is a 1-periodic function in t and satisfies

|H ′′(t, z)| ≤ a1|z|s + a2, ∀(t, z) ∈ R×R2N , where s ∈ (1,∞), a1, a2 > 0,

(H2) H ′(t, z) = B0(t)z + o(|z|) as |z| → 0 uniformly in t,

(H3) H ′(t, z) = B∞(t)z + o(|z|) as |z| → ∞ uniformly in t,

where B0(t) and B∞(t) are 2N × 2N symmetric, continuous 1-periodic matrix functions.

In case B∞(t) is “nondegenerate”, i.e., 1 is not a Floquet multiplier of the linear system

ẏ = JB∞(t)y, the problem (HS) has been studied by many authors. We refer to the papers

by Amann-Zehnder[1], Chang[2], Conley-Zehnder[3], Li Liu[4], Long-Zehnder[5], Long[6] and

the bibliography therein. However, only few papers have treated the case that B∞(t) is

“degenerate”. For example, in [7] and [8], K. C. Chang and A.Szulkin considered the case

that B∞(t) is constant; and in [9], the first author considered the case that B∞(t) is

“finitely degenerate” (see Remark 2.1).

The purpose of this paper is to study the existence of nontrival periodic solutions of (HS)

in the general case that B∞(t) is degenerate and continuous 1-periodic in t. In Sectioin 2,
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for a given continuous 1-periodic and symmetric matrix function B(t), we assign a pair of

integers (i, n) ∈ Z × {0, · · · , 2N} to it, and call the pair (i, n) the Maslov-type index of

B(t), just as in [6]. Using the results in [5,6] and the Galerkin approximation method[4],

we establish the relation theorem (Theorem 2.1) between the Maslov-type index and Morse

index. The main idea comes from [5, 6, 8]. In Section 3, based on the minimax principle[7,10],

we prove the following main results.

Set G(t, z) = H(t, z)− 1
2 (B∞(t)z, z), and we denote by (i0, n0) and (i∞, n∞) the Maslov-

type indices of B0(t) and B∞(t) respectively. One of the main results reads as:

Theorem 1.1. Suppose that H satisfies (H1)–(H3) and G′(t, z) is bounded. Then (HS)

has a nontrival solution in each of the following two cases:

(i) i∞ /∈ [i0, i0 + n0], and either n∞ = 0 or G(t, z) → −∞ as |z| → ∞ uniformly in t.

(ii) i∞ + n∞ /∈ [i0, i0 + n0], and either n∞ = 0 or G(t, z) → +∞ as |z| → ∞ uniformly

in t.

Theorem 1.1 generalizes the corresponding results in [1, 3, 4, 5, 6, 8, 11], where B∞(t) is

restricted to either being constant matrix or being nondegenerate.

In Section 4, we consider the periodic solutions of strong resonant Hamiltonian systems.

This is largely motivated by Chang[7,12]. Our result reads as:

Theorem 1.2. Suppose H satisfies (H1)–(H3) and

G(t, z) → 0, |G′(t, z)| → 0 as |z| → ∞ uniformly in t. (1.1)

Then (HS) has a nontrival solution if one of the following three cases occurs:

(1)
∫ 1

0
H(t, 0) dt = 0.

(2)
∫ 1

0
H(t, 0) dt > 0 and i∞ /∈ [i0, i0 + n0].

(3)
∫ 1

0
H(t, 0) dt < 0 and i∞ + n∞ /∈ [i0, i0 + n0].

Theorem 3.1 of [7] may be regarded as the special case of Theorem 1.2, where B∞(t) is

restricted to constant matrix and |H ′′(t, z)| is bounded.
In Section 5, as an appendix, we give some results which were proved in [13, 14] and used

to prove Theorem 2.3 in Section 2. We sketch the proof briefly.

§2 Maslov-Type Index and Morse Index

Maslov-type index was introduced and generalized by Conley-Zehnder[3], Long-Zehnder[5]

and Long[6]. Here we repeat it briefly, for more details we refer to [6].

Let W = Sp(N,R) = {M ∈ L(R2N ) :MTJM = J}. We define

P = {γ ∈ C1([0, 1],W ) : γ(0) = I, γ̇(1) = γ̇(0)γ(1),

and Jγ(t)γ−1(t) is symmetric for each t}.

For every γ ∈ P, we define its Maslov-type index (i(γ), n(γ)) ∈ Z× {0, · · · , 2N} as follows:

n(γ) = dimker (γ(1)− I).

If n(γ) = 0, i(γ) is defined just the same as the one in [3,5]. If n(γ) ̸= 0, according to the

following Lemma 2.1 proved by Long[6], we define i(γ) = i(γ−v) for v ∈ (0, 1].

Lemma 2.1. For every γ ∈ P, n(γ) ̸= 0, there exists h ∈ C1([−1, 1] × [0, 1],W ), which

we denote by h(v, t) = γv(t) for (v, t) ∈ [−1, 1]× [0, 1], such that
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(i) γv ∈ P, γ0 = γ and γv → γ in C1([0, 1],W ) as v → 0.

(ii) n(γv) = 0 for all v ̸= 0 (in this case i(γv) is well-defined). Moreover,

i(γv) = i(γv′), i(γ−v) = i(γ−v′) for all v, v′ ∈ (0, 1].

(iii) i(γv)− i(γ−v) = n(γ), if v ∈ (0, 1].

For a given continuous 1-periodic and symmetric matrix function B(t), let γ(t) be the

fundamental solution matrix of the linear Hamiltonian systems:

ẏ = JB(t)y (2.1)

with γ(0) = I. Then γ(t) ∈ P and the Maslov-type index (i(γ), n(γ)) is defined. We also

call (i(γ), n(γ)) the Maslov-type index of B(t).

Let S1 = R/(2πZ), E = W 1/2,2(S1,R2N ). Recall that E is a Hilbert space with norm

∥·∥ and inner product ⟨ , ⟩, and E consists of those z(t) in L2(S1,R2N ) whose Fourier series

z(t) = a0 +
∞∑

n=1

(an cos(2πnt) + bn sin(2πnt))

satisfies

∥z∥2 = |a0|2 +
1

2

∞∑
n=1

n(|an|2 + |bn|2) <∞,

where aj , bj ∈ R2N . We define two selfadjoint operators A,B ∈ L(E) by extending the

bilinear forms

⟨Ax, y⟩ =
∫ 1

0

(−Jẋ, y) dt, ⟨Bx, y⟩ =
∫ 1

0

(B(t)x, y) dt (2.2)

on E. Then B is compact (cf. [5]). Using the Floquet theory, we have

n(γ) = dimker (A−B). (2.3)

Let B∞(t) be the matrix functioin in (H3) with the Maslov-type index (i∞, n∞), and B∞

be the operator, defined by (2.2), corresponding to B∞(t). Then by (2.3) we have

n∞ = dimker (A−B∞).

Let · · · ≤ λ′2 ≤ λ′1 < 0 < λ1 ≤ λ2 ≤ · · · be the eigenvalues of A − B∞, and let {e′j} and

{ej} be the eigenvectors of A−B∞ corresponding to {λ′j} and {λj} respectively.

For m ≥ 0, set E0 = ker(A−B∞), Em = E0⊕ span{e1, · · · , em}⊕ span{e′1, · · · , e′m} and

Pm to be the orthogonal projection from E to Em. Then {Pm} is an approximation scheme

with respect to the operator A − B∞, i.e., (A − B∞)Pm = Pm(A − B∞) and Pmx → x as

m → ∞ for any x ∈ E. In the following we denote T# = (TImT )
−1, and we also denote by

M+(·), M−(·) and M0(·) the positive definite, negative definite and null subspaces of the

selfadjoint linear operator defining it, respectively.

Lemma 2.2. For any continuous 1-periodic and symmetric matrix function B(t), there

exists an m∗ > 0 such that for m ≥ m∗,

dimker (Pm(A−B)Pm) ≤ dimker (A−B).

Proof. There is an m1 > 0 such that for m ≥ m1,

dim Pm ker(A−B) = dimker (A−B). (2.4)
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For otherwise, there exist xj ∈ ker(A − B) ∩ (I − Pmj )E such that ∥xj∥ = 1. Notice that

(A−B∞)xj = (I − Pmj )(B −B∞)xj . Then we have

∥(A−B∞)xj∥ ≥ ∥(A−B∞)#∥−1 > 0,

and

∥(I − Pmj )(B −B∞)xj∥ ≤ ∥(I − Pmj )(B −B∞)∥ → 0

as j → ∞, a contradiction. Thus (2.4) holds.

Take m ≥ m1, let Xm = Pm ker(A−B) and Em = Xm ⊕ Ym. Then we have

Ym ⊂ Im(A−B).

Let d = 1
4∥(A−B)#∥−1. Since B and B∞ are compact, we have

∥(I − Pm)(B −B∞)∥ → 0 as m→ +∞.

Hence there is an m2 ≥ m1 such that for m ≥ m2,

∥(I − Pm)(B −B∞)∥ ≤ 2d. (2.5)

For m ≥ m2, ∀y ∈ Ym, we have

y = (A−B)#(A−B)y = (A−B)#(Pm(A−B)Pmy + (Pm − I)(B −B∞)y).

This implies that

∥y∥ ≤ 1

2d
∥Pm(A−B)Pmy∥. (2.6)

Hence by (2.4) and (2.6) we have

dimker Pm(A−B)Pm ≤ dim Xm = dimker (A−B).

Theorem 2.1. For any continuous 1-periodic and symmetric matrix function B(t) with

the Maslov-type index (i0, n0), there exists an m∗ > 0 such that for m ≥ m∗ we have

dim M+
d (Pm(A−B)Pm) = m+ i∞ − i0 + n∞ − n0,

dim M−
d (Pm(A−B)Pm) = m− i∞ + i0, (2.7)

dim M0
d (Pm(A−B)Pm) = n0,

where d = 1
4∥(A−B)#∥−1, M+

d (·), M−
d (·) and M0

d (·) denote the eigenspaces corresponding

to the eigenvalue λ belonging to [d,+∞), (−∞,−d] and (−d, d) respectively.
Proof. Case 1, n0 = 0. By (2.3) we have dimker (A−B) = 0.

Since B and B∞ are compact, there exists an m∗ > 0 such that for m ≥ m∗,

∥(I − Pm)(B∞ −B)∥+ ∥(B∞ −B)(I − Pm)∥ ≤ 1

2
∥(A−B)−1∥−1.

Since Pm(A−B)Pm = (A−B)Pm + (Pm − I)(B∞ −B)Pm, for m ≥ m∗ we have

∥Pm(A−B)Pmx∥ ≥ 1

2
∥(A−B)−1∥−1∥x∥ for any x ∈ Em.

Hence we have

M⋆
d (Pm(A−B)Pm) =M⋆(Pm(A−B)Pm), where ⋆ = +,−, 0.
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Notice that

A−B = Pm(A−B)Pm + (I − Pm)(A−B∞)

+ (I − Pm)(B∞ −B) + Pm(B∞ −B)(I − Pm)

= A− (B∞ + Pm(B −B∞)Pm) + (I − Pm)(B∞ −B) + Pm(B∞ −B)(I − Pm).

By Theorem 5.1, Theorem 5.2 and Definition 5.1, we have

I(B,B∞) = I(B∞ + Pm(B −B∞)Pm, B∞)

= dim M+(Pm(A−B)Pm)− dim M+(Pm(A−B∞)Pm)− n∞.

Hence dim M+(Pm(A−B)Pm) = I(B,B∞) +m+ n∞ = i∞ − i0 +m+ n∞.

Similarly, dim M−(Pm(A−B)Pm) = m− i∞ + i0.

Case 2, n0 > 0. Let γ be the fundamental solution matrix of (2.1) and γv be the things

described in Lemma 2.1. For −1 ≤ v ≤ 1, we define

Bv(t) = −Jγ̇v(t)γ−1
v (t), 0 ≤ t ≤ 1.

By Lemma 2.1 we have B0(t) = B(t), n(γv) = 0 for v ̸= 0, and ∥Bv − B∥ → 0 as v → 0,

where Bv is the operator, defined by (2.2), corresponding to Bv(t).

Choose 0 < v0 ≤ 1 such that for v = ±v0, ∥B − Bv∥ ≤ 1
2d. By Case 1, there exists an

m1 ≥ 0 such that for m ≥ m1,

M+(Pm(A−Bv)Pm) = m+ i∞ − i(γv) + n∞,

M−(Pm(A−Bv)Pm) = m− i∞ + i(γv), (2.8)

M0(Pm(A−Bv)Pm) = 0.

By Lemma 2.2 there exists an m∗ ≥ m1 such that for m ≥ m∗,

dim M0
d (Pm(A−B)Pm) ≤ n0. (2.9)

For otherwise, there exists y ∈M0
d (Pm(A−B)Pm) ∩ Ym, ∥y∥ = 1, where

Em = Pm ker(A−B)⊕ Ym, dim Pm ker(A−B) = n0.

Then ∥Pm(A−B)Pmy∥ ≤ d∥y∥, a contradiction to (2.6).

Since Pm(A−Bv)Pm = Pm(A−B)Pm + Pm(B −Bv)Pm, by Lemma 2.1 and (2.7), for

m ≥ m∗ we have

M+
d (Pm(A−B)Pm) ≤M+(Pm(A−Bv0)Pm) = m+ i∞ − i0 − n0 + n∞,

M+
d (Pm(A−B)Pm) ≥M+(Pm(A−B−v0)Pm)−M0

d (Pm(A−B)Pm)

= m+ i∞ − i0 + n∞ −M0
d (Pm(A−B)Pm).

By (2.9), we have M0
d (Pm(A−B)Pm) = n0 and

M+
d (Pm(A−B)Pm) = m− i∞ − i0 − n0.

Similarly, we have M−
d (Pm(A−B)Pm) = m− i∞ + i0.

Remark 2.1. (i) We say that B(t) is admissible for B∞(t) if ∥(Pm(A−B)Pm)#∥−1 ≥ d

for m large enough and some d > 0 independent on m. It is easy to show that B(t) is

admissible for B∞(t) iff dimker (Pm(A−B)Pm) = dimker (A−B) for m large enough.

(ii) If B∞(t) = 0, then {Pm} is the usual approximation scheme with respect to the

operator A. In this case, we can prove Theorem 2.1 similarly. If B(t) is admissible for 0,
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Theorem 2.1 is the same as Theorem 6 in [6]. It is easy to show that if B(t) is constant

or B(t) is nondegenerate or B(t) is “finitely degenerate” (i.e. ker(A − B) ⊂ Em0 for some

m0 ≥ 0), then B(t) is admissible for 0.

Lemma 2.3. Suppose that f ∈ C2(Rn,R) and there are symmetric matrix L on Rn and

constants r > 0, d > 0 such that

|f ′(x)− Lx|/|x| → 0 as |x| → 0,

|f ′′(x)− L| < 1

2
d, ∀x ∈ V2r = {x ∈ Rn : |x| ≤ 2r}.

If f ′(x) ̸= 0 for any x ∈ Cr = {x ∈ Rn : r ≤ |x| ≤ 2r}, then for any ϵ > 0 there exists a

g ∈ C2(Rn,R) such that

(1) g(x) = f(x) for |x| ≥ 2r, g′(x) ̸= 0 for x ∈ Cr, and |f(x)− g(x)| < ϵ for x ∈ Rn.

(2) g(x) has only finite number of nondegenerate critical points, say {x1, · · · , xm0}, in Vr
satisfying

dim M−
d (L) ≤ dim M−(g′′(xj)) ≤ dim M−

d (L) + dim M0
d (L), for j = 1, 2, · · · ,m0.

Proof. Just the same as the proof of [4, Theorem 1.3], we repeat it briefly.

For any x ∈ Cr, since f
′(x) ̸= 0, we have |f ′(x)| ≥ ρ > 0. Let g(x) = f(x)+ (a, x)h(|x|2),

where a ∈ Rn, |a| < min{ϵ/2r, ρ/(2 + 64r)}, and h : [0,+∞) → [0, 1] is a smooth truncated

function

h(s) =


0, s ≥ 2r,

smooth, 3
2r ≤ s ≤ 2r, satisfying |h′(s)| ≤ 4/r,

1, s ≤ 3
2r.

Then g satisfies (i), and for any x ∈ Vr, g
′′(x) = f ′′(x).

On the other hand, for any x ∈ Vr, u ∈M−
d (L)\{0},

(f ′′(x)u, u) ≤ (Lu, u) + |f ′′(x)− L|∥u∥2 ≤ −1

2
d|u|2 < 0.

Then dim M−(f ′′(x) ≥ dim M−
d (L), ∀x ∈ Vr .

Similarly, dim M+(f ′′(x)) ≥ dim M+
d (L) for x ∈ Vr. Now by Sard’s Lemma we can

choose the vector a ∈ Rn such that g satisfies (ii). The proof is complete.

Lemma 2.4. Suppose xn ∈ ker(Pn(A−B)Pn), ∥xn∥ → +∞ as n→ +∞, h ∈ C([0, 1]×
R2N ,R) and K ⊂ Lq([0, 1],R2N ) is compact for q ≥ 1. Then

(i) (h(t, x) → 0 as |z| → ∞ uniformly in t ∈ [0, 1])

=⇒ ( lim
n→∞

∫ 1

0
|h(t, xn + y)| dt = 0 uniformly in y ∈ K).

(ii) (h(t, z) → ±∞ as |z| → ∞ uniformly in t ∈ [0, 1])

=⇒ ( lim
n→∞

∫ 1

0
|h(t, xn + y)| dt = ±∞ uniformly in y ∈ K).

Here the limit “ lim
n→∞

” is in the sense of subsequence.

Proof. Let un = xn/∥xn∥. It is easy to show that

un → z0 ∈ ker(A−B) ( in the sense of subsequence).

We claim that ∀ϵ > 0, there exist δ(ϵ) > 0, n∗ > 0 such that for n ≥ n∗,

meas {t ∈ [0, 1] : |un(t)| < δ(ϵ)} < ϵ. (2.10)

In fact, since z0 ∈ ker(A−B) and ∥z0∥ = 1, we have

meas {t ∈ [0, 1] : |z0(t)| = 0} = 0.
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Hence it is easy to show that

(1) ∀ϵ > 0, there exists δ(ϵ) > 0 such that

measΩ0(ϵ) ≡ meas {t ∈ [0, 1] : |z0(t)| < δ(ϵ)} < ϵ.

(2) ∀ϵ > 0 and ∀δ > 0, there exists n1 = n1(ϵ, δ) > 0 such that for n ≥ n1,

measΩ1(ϵ, δ) ≡ meas {t ∈ [0, 1] : |z0(t)− un(t)| > δ} < ϵ.

If the claim is false, then there exists an ϵ0 > 0, and for any integer k ≥ 1 there exists an

nk > k such that

measΩk ≡ meas {t ∈ [0, 1] : |unk
(t)| < 1

k} ≥ ϵ0.

Let ϵ1 = 1
4ϵ0 in (1). Then there exists δ(ϵ1) such that

measΩ0(ϵ1) < ϵ1. (2.11)

Let ϵ2 = 1
2ϵ0, δ2 = 1

2δ(ϵ1) in (2). Then there exists an n2 = n(ϵ2, δ2) > 0 such that for

n ≥ n2,

measΩ1(ϵ2, δ2) < ϵ2.

Now we take k large enough such that 1
k <

1
2δ(ϵ1), nk ≥ n2. It is easy to show that

Ωk ∩ ([0, 1]\Ω1(ϵ2, δ2)) ⊂ Ω0(ϵ1).

By (2.11), we have

1

4
ϵ0 = ϵ1 > measΩ0(ϵ1) ≥ meas (Ωk ∩ ([0, 1]\Ω1))

≥ measΩk −measΩ1(ϵ2, δ2) ≥ ϵ0 − ϵ2 =
1

2
ϵ0.

This is a contradiction. Hence (2.9) holds.

Since K is compact, using the same arguments as in the proof of [11, Lemma 3.2], we

have that ∀ϵ > 0 there exists M(ϵ) > 0 such that

meas {t ∈ [0, 1] : |v(t)| > M(ϵ)} < ϵ for any v ∈ K. (2.12)

By (2.10) and (2.12), using the same arguments as in the proof of [11, Lemma 3.2], we get

(i), (ii).

§3. Periodic Solution of (HS)

In this section we establish the periodic solutions of (HS) and prove Theorem 1.1. Just as

in Section 2, let E =W 1/2,2(S1,R2N ) and {Pm} be the approximation scheme with respect

to A−B∞, Em = PmE. We define

f(z) =
1

2
⟨Az, z⟩ −

∫ 1

0

H(t, z) dt

on E. It is well known that f ∈ C2(E,R) whenever H satisfies (H1). Looking for the

solution (HS) is equivalent to looking for the critical points of f (see [4, 8]).

Let fm be the restriction of f to the space Em.

We say that f satisfies the (PS)∗c condition for c ∈ R, if any sequence {xm} such that

xm ∈ Em, f ′m(xm) → 0 and fm(xm) → c possesses a subsequence convergent in E (cf. [4]).

Now let (i∞, n∞) be the Maslov-type index of B∞(t) and

G(t, z) = H(t, z)− 1

2
⟨B∞(t)z, z⟩.
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Lemma 3.1. If G′(t, z) is bounded, then for any c ∈ R, f satisfies (PS)∗c and fm satisfies

(PS)c in each of the following three cases:

(i) n∞ = 0,

(ii) G(t, z) → −∞ uniformly in t as |z| → ∞,

(iii) G(t, z) → +∞ uniformly in t as |z| → ∞.

Proof. Let ψ(z) =
∫ 1

0
G(t, z) dt for z ∈ E. Then

f(z) =
1

2
⟨(A−B∞)z, z⟩ − ψ(z).

It is easy to show that ψ′(z) is compact and bounded. In view of Lemma 2.4, the proof is

just the same as the proof of Lemma 2.1 in [4] and Lemma 7.1 in [8].

Proof of Theorem 1.1. Step 1. Let (i0, n0) be the Maslov-type index of B0(t) and B0

be the operator, defined by (2.2), corresponding to B0(t). Let d = 1
4∥(A− B0)

#∥−1. Then

there exists an m1 > 0 such that Theorem 2.1 holds for m ≥ m1.

For m ≥ m1, we consider

fm(z) =
1

2
⟨Az, z⟩ −

∫ 1

0

H(t, z)dt =
1

2
⟨(A−B0)z, z⟩ − ψ0(z)

on Em, where ψ0(z) =
∫ 1

0
(H(t, z)− 1

2 (B0(t)z, z)) dt. Since H satisfies (H2) and (H3), using

the same arguments as [4, Lemma 3.1], we have

∥f ′(z)− (A−B0)z∥/∥z∥ → 0, ∥f ′′(z)− (A−B0)∥ → 0 as ∥z∥ → 0. (3.1)

Noticing that f ′m(z) = Pm(A−B0)z − Pmψ
′
0(z), we have

∥f ′m(z)− Pm(A−B0)Pmz∥/∥z∥ ≤ ∥f ′(z)− (A−B0)z∥/∥z∥ → 0,

as ∥z∥ → 0 and z ∈ Em. By (3.1) there exists r > 0 such that

∥f ′′(z)− (A−B0)∥ <
1

2
d for z ∈ V2r = {z ∈ E : ∥z∥ ≤ 2r}.

Hence we have

∥f ′′m(z)− Pm(A−B0)Pm∥ ≤ ∥f ′′(z)− (A−B0)∥ <
1

2
d for z ∈ V2r ∩ Em.

Now we claim that there exists an m2 ≥ m1 such that for m ≥ m2, f
′
m(x) ̸= 0 for x ∈ Em

and r ≤ ∥x∥ ≤ 2r.

For otherwise, there exist xj ∈ Emj such that r ≤ ∥xj∥ ≤ 2r and f ′mj
(xj) = 0. Then

by Lemma 3.1, it is easy to show that there is a critical point x∗ ∈ E of f such that

r ≤ ∥x∗∥ ≤ 2r and the proof is complete.

Take m ≥ m2. By Lemma 2.3, for any 0 < ϵ ≤ 1
2 , there exists gm ∈ C2(Em,R) satisfying

Lemma 2.3 (1), (2).

For any z ∈ V2r, we have

|f(z)− f(0)| ≤ 1

2
d · (2r)2 + ∥A−B0∥(2r)2.

Let a0 = |f(0)| + 4r2( 12d + ∥A − B0∥) + 1. Then |fm(z)| < a0 for any z ∈ V2r ∩ Em and

fma = gma for |a| ≥ a0, where fma = {x ∈ Em : fm(x) ≤ a}.
Step 2. Let ψ(z) =

∫ 1

0
G(t, z)dt. Then |ψ′(z)| ≤ c1 and

fm(z) =
1

2
⟨(A−B∞)z, z⟩ − ψ(z), ∀z ∈ Em.
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Set E+ = M+(A − B∞), E− = M−(A − B∞), E0 = M0(A − B∞), E+
m = PmE

+ and

E−
m = PmE

−. Then dim E+
m = dim E−

m = m.

Let r1 = (c1 + 1)∥(A − B∞)#∥ and Dm = (E+
m ∩ Vr1) × (E−

m ⊕ E0). Noticing that

Pm(A − B∞) = (A − B∞)Pm, just as in the proof of [10, Lemma II 5.1], we know that f

has no critical points outside Dm, and that −df(x) points inward to Dm on ∂Dm.

Now we prove Theorem 1.1 in the Case (ii). By Lemma 2.4, either ψ(P0x) = ψ(0)

whenever n∞ = 0 or ψ(P0x) → +∞ as ∥P0x∥ → ∞ whenever G(t, z) → +∞ as |z| → ∞
uniformly in t. Just as in the proof of [10, Lemma II 5.1], there exist a1 < a2 < −a0,
r2 > r3 > 0 such that

(E+
m ∩ Vr1)× ((E−

m ⊕ E0)\Vr2) ⊂ fma1 ∩Dm

⊂ (E+
m ∩ Vr1)× ((E−

m ⊕ E0)\Vr3) ⊂ fma2 ∩Dm,

and a1, a2, r2, r3 are independent of m. For any x ∈ Dm, we have

fm(x) ≤ 1

2
∥A−B∞∥r21 −

1

2
∥(A−B∞)#∥−1∥x−∥2

+ c1(∥x−∥+ r1)− ψ(P0x).

It is easy to show that there exists b ≥ a0, which is independent of m, such that fm(x) < b

for x ∈ Dm.

We claim that there exists an m3 ≥ m2 such that for m ≥ m3, fm has not any critical

points in {x ∈ Em : a1 ≤ fm(x) ≤ a2} .

For otherwise, there exist {xj} such that xj ∈ Emj , f
′
mj

(xj) = 0 and a1 ≤ fmj (xj) ≤ a2.

By Lemma 3.1, it is easy to show that there exists x∗ ∈ E such that f ′(x∗) = 0, a1 ≤
f(x∗) ≤ a2 < −a0 ≤ f(0) and the proof is complete.

Using the same arguments as in [10, Lemma II 5.1] we have

Hq(gmb, gma2) = Hq(fmb, fma2)

∼= Hq(Dm, Dm ∩ fma2)
∼= δq(m+n∞).

Since fm satisfies (PS)c condition, it is easy to show that gm also satisfies (PS)c condition.

By Principle II in [6], there exists a critical value cm ∈ (a2, b) of gm, which is determined by

cm = inf
τ∈[τ ]

sup
x∈|τ |

gm(x), where 0 ̸= [τ ] ∈ Hm+n∞(gmb, gma2),

where τ is a singular chain in [τ ], and |τ | is the support of τ .

If the number of critical points of gm with the critical value cm, #Kcm(gm) < +∞, by

Principle II in [6], there exists xm ∈ Kcm(gm) such that the critical group

Cm+n∞(gm, xm) ̸= 0.

By Lemma 2.3 and Theorem 2.1, if ∥xm∥ < r, we have

m− i∞ + i0 ≤ m+ n∞ ≤ m− i∞ + i0 + n0,

a contradiction to the condition that i∞ + n∞ /∈ [i0, i0 + n0]. Hence ∥xm∥ ≥ 2r.

If #Kcm(gm) = +∞, by Lemma 2.3, there is a critical point xm ∈ Em of gm such that

gm(xm) = cm and ∥xm∥ ≥ 2r.

But fm(z) = gm(z) if ∥z∥ ≥ 2r, therefore we have

f ′m(xm) = 0 and fm(xm) = cm.
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By Lemma 3.1, it is easy to show that there exists a crtical point x∗ ∈ E of f such that

∥x∗∥ ≥ 2r. We have proved our conclusion in Case (ii) .

Similarly we can prove our conclusion in Case (i) and the proof is complete.

Based on the local link idea[4,15] and Remark 2.1, similarly, we can prove the following

local link theorem, we omit the details.

Theorem 3.1. Suppose that H satisfies (H1)–(H2) and G′(t, z) is bounded. If B0(t) is

admissible for B∞(t) (cf. Remark 2.4), then (HS) has a nontrival solution in each of the

following two cases:

(i) i∞ ̸= i0 + n0, G0(t, z) = H(t, z) − 1
2 (B0(t)z, z) > 0 for |z| > 0 small, and either

n∞ = 0 or G(t, z) → −∞ as |z| → ∞ uniformly in t;

(ii) i∞ + n∞ ̸= i0, G0(t, z) < 0 for |z| small, and either n∞ = 0 or G(t, z) → +∞ as

|z| → ∞ uniformly in t.

As a direct consequence, we have

Corollary 3.1. Suppose that G′(t, z) is bounded and G′(t, z) = o(|z|) uniformly in t as

|z| → 0. If n∞ ̸= 0, then (HS) has a nontrival solution in each of the following two cases:

(i) G(t, z) > 0 for |z| > 0 small, and G(t, z) → −∞ as |z| → ∞ uniformly in t;

(ii) G(t, z) < 0 for |z| > 0 small, and G(t, z) → +∞ as |z| → ∞ uniformly in t.

§4. Strong Resonant Hamiltonian Systems

In this section, we consider the strong resonant Hamiltonian systems (HS) with G(t, z)

satisfying (1.1). This is motivated by Chang[7,12].

Lemma 4.1. Under the assumptions of Theorem 1.2, the function f satisfies (PS)∗c for

c ̸= 0. Moreover any (PS)∗c sequence {xm}, i.e., xm ∈ Em, f(xm) → c and f ′m(xm) → 0,

possesses a subsequence (still denoted by {xm}) with the property that either {xm} strongly

converges to a critical point of f in E or c = 0 and (I − P0)xm → 0, ∥P0xm∥ → ∞.

Proof. For z ∈ E, let ψ(z) =
∫ 1

0
G(t, z)dt. Then

f(z) =
1

2
⟨(A−B∞)z, z⟩ − ψ(z).

In view of the fact that (A − B∞)Pm = Pm(A − B∞), the proof is just the same as [12,

Lemma 3.1].

Proof of Theorem 1.2. By Lemma 4.1 and Lemma 2.3, using the same arguments as

Step 1 of the proof of Theorem 1.1, there exist m2 > 0, r > 0 and a0 > 0 such that for

m ≥ m2 and for any 0 < ϵ ≤ 1
2 there exists a gm ∈ C2(Em,R) satisfying Lemma 2.3 (1),

(2), and fma = gma for |a| ≥ a0.

Now we shall apply the abstract theorem on strong resonance problem in [8].

Let Sn∞ = E0 ∪ {∞}. We extend the function fm to the enlarged space:

f̃m(u, v) =

{
fm(u, v) = 1

2 ⟨(A−B∞)u, u⟩ − ψ(u, v), (u, v) ∈ PmE
⊥
0 × E0,

1
2 ⟨(A−B∞)u, u⟩ , (u,∞) ∈ PmE

⊥
0 × {∞}.

(4.1)

Let r1 = (c1 + 1)∥(A − B∞)#∥ and b ≥ a0 be the constants described in Step 2 of the

proof of Theorem 1.1. Then fm(x) < b for x ∈ (E+
m ∩ Vr1)× E−

m × Sn∞ .
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According to a theorem due to Chang[10,12], we have

Hq(PmE
⊥
0 × Sn∞ , f̃md) ∼= Hq((E

+
m ∩ Vr1)× E−

m × Sn∞ , f̃md)

∼= Hq−m(Sn∞)

for −d ≥ a0 large enough and independent of m. There is a pair of subordinate classes

[σm1] < [σm2] with

[σm1] ∈ Hm(PmE⊥
0 × Sn∞ , f̃md) and [σm2] ∈ Hm+n∞(PmE

⊥
0 × Sn∞ , f̃md).

Let

cmi = inf
τ∈[σmi]

sup
x∈|τ |

f̃m(x), i = 1, 2.

Then d ≤ cm1 ≤ cm2 ≤ b. In the sense of subsequence, we have

ci = lim
m→∞

cmi, d ≤ c1 ≤ c2 ≤ b.

Now by [12, Proposition 3.2], if K0(f) is compact (otherwise, our proof is complete),

there is a constant ϵ0 > 0 such that either c2 > ϵ0 is a critical value of f or c1 ≤ ϵ0 is a

critical value of f.

In Case (1), f(0) = 0. Thus there must be at least one ci ̸= 0 for i = 1, 2, which is a

critical value of f , and f has a nontrival critical point.

In Case (2), f(0) < 0. If c2 > ϵ0, the proof is complete. If c1 ≤ −ϵ0, there must

be an m3 ≥ m2 such that for m ≥ m3, c1 − 1
4ϵ0 ≤ cm1 ≤ c1 + 1

4ϵ0. Take m ≥ m3

and ϵ = min{1
2 ,

1
4ϵ0}. By Lemma 2.3 there exists a gm ∈ C2(Em,R) satisfying Lemma

2.3 (1), (2). It is easy to show that gm satisfies the conclusion of [12, Lemma 1.1], and

we can extend gm to g̃m : PmE
⊥
0 × Sn∞ → R, just as (4.1), which satisfies f̃md = g̃md,

|f̃m(u, v)− g̃m(u, v)| ≤ ϵ ≤ 1
4ϵ0. Hence [σm1] ∈ Hm(PmE

⊥ × Sn∞ , g̃md).

Let c∗m1 = inf
τ∈[σm1]

sup
x∈|τ |

g̃m(x). Then

cm1 −
1

4
ϵ0 ≤ c∗m1 ≤ cm1 +

1

4
ϵ0 ≤ c1 +

1

2
ϵ0 ≤ −1

2
ϵ0 < 0.

Therefore c∗m1 is a critical value of gm.

If #Kc∗m1
(gm) = +∞, then there exists a critical point xm ∈ Em of gm such that ∥xm∥ ≥

2r.

If #Kc∗m1
(gm) < +∞, by Principle I of [7], there is a critical point xm ∈ Em of gm such

that gm(xm) = c∗m1 and the critical group

Cm(gm, xm) = Cm(g̃m, xm) ̸= 0.

By Lemma 2.3 (2) and Theorem 2.1, if ||xm|| < r, then we have

m− i∞ + i0 ≤ m ≤ m− i∞ + i0 + n0,

a contradiction to the condition that i∞ /∈ [i0, i0 + n0].

Hence ||xm|| ≥ 2r. But fm(z) = gm(z) if ||z|| ≥ 2r, therefore we have

f ′m(xm) = 0 and fm(xm) = c∗m1.

By Lemma 4.1, it is easy to show that there exists a critical points x∗ ∈ E of f such that

||x∗|| ≥ 2r. Similarly, we prove the case (3). The proof is complete.

As a direct consequence, we have
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Corollary 4.1. Suppose that H satisfies (H1)–(H3) and (1.1). If [i0, i0 +n0]∩ [i∞, i∞ +

n∞] = ∅, then (HS) has a nontrival solution.

§5. Appendix

Let Ls(E) denote the space of the bounded selfadjoint linear operators from E to E and

let Lc(E) denote the space of the bounded linear compact operators from E to E.

Let Q ∈ Ls(E), S ∈ Ls(E) ∩ Lc(E); dim kerQ < +∞ and Q + S is invertible. Set

P+ : E →M+(Q) and P+
s : E →M+(Q+ S) are orthogonal projections.

Lemma 5.1. P+
s − P+ ∈ Lc(E).

Proof. By [16, Problem VI 2.36 and Lemma VI 5.6], we have

P+
s =

1

2
(U2

s (0) + Us(0)), P+ =
1

2
(U2(0) + U(0)),

U(0) = s− lim
r→0

t→+∞

Ur,t(0), Us(0) = s− lim
r→0

t→+∞

Us,r,t(0),

where

Ur,t(0) =
2

π

∫ t

r

(Q2 + y2)−1Qdy.

Us,r,t(0) =
2

π

∫ t

r

((Q+ S)2 + y2)−1(Q+ S) dy

= Ur,t(0) +
2

π

∫ t

r

((Q+ S)2 + y2)−1S dy

− 2

π

∫ t

r

((Q+ S)2 + y2)−1(S2 + SQ+QS)(Q2 + y2)−1Qdy.

Since Q+S is invertible and S ∈ Ls(E)∩Lc(E), it is easy to show that there are K1,K2 ∈
Lc(E) such that

Us(0) = U(0) +K1 +K2, U2
s (0) = U2(0) +K3,

where

K3 = (K1 +K2)
2 + (K1 +K2)U(0) + U(0)(K1 +K2) ∈ Lc(E).

Hence P+
s − P+ = 1

2 (K1 +K2 +K3) ∈ Lc(E).

Definition 5.1. Let Bi ∈ Ls(E) ∩ Lc(E), i = 1, 2. We define the relative Morse index

as

I(B1, B2) = dim (M+(A−B1) ∩M−(A−B2))

− dim ((M−(A−B1)⊕M0(A−B1)) ∩ (M+(A−B2)⊕M0(A−B2))).

Theorem 5.1. Suppose that Bi, Si ∈ Ls(E) ∩ Lc(E) satisfy M0(A − Bi − Si) = {0},
||Si|| < ||(A−Bi)

#||−1, for i = 1, 2. Then

I(B1 + S1, B2 + S2)− dim M0(A−B1)− dim M0(A−B2)

≤ I(B1, B2) ≤ I(B1 + S1, B2 + S2).

Proof. By P+
i , P−

i , P 0
i , P

+
is and P−

is we denote the orthogonal projections from E to

M+(A−Bi),M
−(A−Bi),M

0(A−Bi),M
+(A−Bi−Si) andM

−(A−Bi−Si) respectively,

i = 1, 2.
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Let T = (P+
2 + P 0

2 )P
+
1 : P+

1 E → (P+
2 E) ⊕ P 0

2E, Ts = (P+
2 + P 0

2 )P
+
1s : P+

1sE →
P+
2 E ⊕ P 0

2E.

It is easy to show that the Fredholm index

indT = I(B1, B2), indTs = I(B1 + S1, B2).

Let T ′
s = (P+

2 + P 0
2 )P

+
1sP

+
1 : P+

1 E → P+
2 E ⊕ P 0

2E. By Lemma 5.1, P+
1s − P+

1 ∈ Lc(E).

Noticing that

Ts(P
+
1sP

+
1 ) = T ′

s = T + (P+
2 + P 0

2 )(P
+
1s − P+

1 )P+
1 ,

we have

indT = indT ′
s = indTs + ind (P+

1sP
+
1 ).

Since M0(A − B1 − S1) = {0} and ||S1|| < ||(A − B1)
#||−1, it is easy to show that

− dim M0(A−B1) ≤ ind (P+
1sP

+
1 ) ≤ 0. Hence

I(B1 + S1, B2)− dim M0(A−B1) ≤ I(B1, B2) ≤ I(B1 + S1, B2). (5.1)

Using the same arguments as above, we have

I(B1 + S1, B2 + S2)− dim M0(A−B2) ≤ I(B1 + S1, B2) ≤ I(B1 + S1, B2 + S2). (5.2)

Our conclusion follows from (5.1) and (5.2).

Theorem 5.2. Let Bj(t) be continuous 1-periodic symmetric matrices in R2N with the

Maslov-type indices (ij , nj) and Bj be the operators, defined by (2.2), corresponding to Bj(t),

for j = 1, 2. Then I(B1, B2) = i2 − i1 − n1.

Proof. Case 1. n1 = n2 = 0. By [5, Lemma 3.2], for j = 1, 2, there is a continuous

family of matrices Bjs(t) deforming Bj(t) into the standard matrix Bij (t), 0 ≤ s ≤ 1.

Let Bjs and Bij be the operators corresponding to Bjs(t) and Bij (t) respectively. Then

M0(A − Bjs) = 0 and the Maslov-type index of Bij (t) is (ij , 0) for j = 1, 2. By Theorem

5.1, I(B1, B2) = I(Bi1 , Bi2). Since Bi1(t) and Bi2(t) are standard matrices, using the same

argumants as [13, Lemma 2.8] or the similar arguments as [10, Theorem IV 1.2] we can

prove that I(Bi1 , Bi2) = i2 − i1. Hence I(B1, B2) = i2 − i1.

Case 2. n1 ̸= 0 or n2 ̸= 0. For j = 1, 2, let γj be the fundamental solution of (2.1)

corresponding to Bj(t) and γjv be the things described in Lemma 2.1.

For −1 ≤ v ≤ 1, we define

Bjv(t) = −Jγ̇jv(t)γ−1
jv (t), 0 ≤ t ≤ 1.

Let Bjv be the compact operator corresponding to Bjv(t), defined by (2.2). By Lemma 2.1

we have M0(A− Bjv) = 0 for v ̸= 0, ∥Bjv − Bj∥ → 0 as v → 0. Now by Theorem 5.1 and

Case 1, for 0 < v ≤ 1 and close enough to 0, we have

I(B1, B2) ≤ I(B1v, B2,−v) = i(γ2,−v)− i(γ1v) = i2 − i1 − n1.

I(B1, B2) ≥ I(B1,−v, B2v)− dim M0(A−B1)− dim M0(A−B2)

= i(γ2v)− i(γ1,−v)− n1 − n2 = i2 − i1 − n1.

Hence I(B1, B2) = i2 − i1 − n1. The proof is complete.
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