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TO DETERMINE THAT ALL THE ROOTS

OF A TRANSCENDENTAL POLYNOMIAL

HAVE NEGATIVE REAL PARTS**
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Abstract

A transcendental polynomial which has all its roots lying in the left half-plane is called stable.
In this paper, the stability of transcendental polynomials which are nearly as general as those

discussed by L. S. Pontryagin are investigated through direct analytic method. For application
of the method presented in this paper, the asymptotic stability of some differential-difference
equations is investigated.

Keywords Transcendental polynomial, Direct analytic method, Asymptotic stability

1991 MR Subject Classification 34D20

Chinese Library Classification O175.13

§1. Introduction

Let

h(z, t) =
∑
m,n

amnz
mtn, (1.1)

where amn, z, t ∈ C, and m,n ∈ N+ ≡ {0, 1, 2, · · · }. From [16], we have the following:

Definition 1.1. We call the term arsz
rts the principal term of h(z, τ) if ars ̸= 0 and the

exponents r and s attain their maximum, that is, for each other term amnz
mtn in (1.1), for

amn ̸= 0, we have either r > m, s > n or r = m, s > n, or r > m, s = n.

We mention here that in this paper if arsz
rts is the principal term of h(z, t), so called is

arsz
resz of h(z, eτ ). Clearly, not every polynomial has a principal term, e.g., h(z, t) = z+ t.

Definition 1.2. For an entire function H(z), z0 is said to be a p-root (n-root) of H(z)

if H(z0) = 0 and Re z0 > 0 (Re z0 < 0).

For clearness, we indicate that in this paper the pure imaginary root means by nonzero

one.

Let

N(H(z)) ≡ {λ ∈ C|H(λ) = 0}, C− ≡ {λ ∈ C|Reλ < 0}.

Definition 1.3. An entire function H(z) is said to be stable if N(H(z)) ⊂ C−.
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From [8] or [13], we know, generally, the problem of asymptotic stability of differential -

difference equations is equvalent to the problem of stability of transcendental polynomials

of the kind h(z, ez).

For H(z) = h(z, ez), in the early 1940’s, L.S. Pontryagin[16] gave several theorems for the

judgement of its stability. But, due to the difficulties of calculation, these results are not

easy to be applied. Since then, many scholars, such as Chebotarev, Neimark, Michailov,

Kababov, Tzypkin and Yuanxun Qin, etc., studied this problem from different directions and

got some useful judging rules (see [2, 5, 18] and the literature therein). But the computation

is still not quite direct and convenient. Since 1980’s, direct analytic methods (see, e.g.,

[1, 4, 9, 14, 19–21]) have been used and some easy-checking results have been obtained.

Enlightened by the method in [21], we generalize it and apply to the above problem in a

more systematic and stricter way. In this paper, we lead in a time-delay parameter τ to

construct a new transcendental polynomial and analyze the robustness of transecndental

polynomial concerning τ by using implicit function theorem (see, e.g., [6]) and some kind

of continuity about its roots with respect to its coefficients. The method we use here is

analogous to D-decomposition method in [5].

For h(·, ·) given by (1.1), we define

H(z, τ) ≡ h(z, eτ ), (1.2)

where τ ≥ 0 is a time-delay parameter. The following lemmas (see [16]) tell us that in order

to study the stability of H(z) = H(z, 1), it is enough to take some kinds of transcendental

polynomials into consideration.

Lemma 1.1. If polynomial h(z, t) has no principal term, then H(z, 1) = h(z, ez) pos-

sesses an infinity of roots with arbitrarily large positive real parts.

Lemma 1.2. Suppose polynomial h(z, t) has principal term arsz
rts. By χ

(s)
∗ (t) we denote

the coefficient of zr in the polynomial h(z, τ). If the function χ
(s)
∗ (ez) has one p-root, then

H(z, 1) = h(z, ez) has an unbounded set of p-roots. If all the roots of the function χ
(s)
∗ (ez)

are n-roots, then H(z, 1) = h(z, ez) can have only a bounded number of p-roots.

It is worth mentioning that in this paper the roots are enumerated in multiplicity.

For simplicity, we assume

(A1) h(z, t) is a polynomial with real coefficients which has principal term arsz
rts (ars >

0).

(A2) N
( ∂rh(z,t)

∂zr

∣∣∣
t=ez

)
⊂ C−.

Actually in (A2), ∂rh(z,t)
∂zr

∣∣∣
t=ez

= r!χ
(s)
∗ (ez).

Proposition 1.1. If H(z, 0) = h(z, 1)has root zero or odd number of positive real roots,

then H(z, τ) is not stable for all τ ≥ 0.

Proof. If h(0, 1) = 0, it is easy to know H(0, τ) = 0 (∀τ ≥ 0). So h(z, τ) (τ ≥ 0) is not

stable when h(z, 1) has root zero. If h(z, 1) has odd number of positive real roots, then it

is necessary that H(0, 0) < 0. Since from (1.2), for any given τ ≥ 0, H(z, τ) > 0 for z > 0

large enough, from continuity we know that H(z, τ) has a positive real root. Hence, H(z, τ)

is not stable.

In fact, if h(0, 1) ≤ 0,H(z, τ) must not be stable. So we also assume
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(A3) h(0, 1) > 0.

Sometimes, we write χ
(s)
∗ (t) (without loss of generality, we assume ars > 0) as

χ
(s)
∗ (t) ≡ ars(t− t1)(t− t2) · · · (t− ts), (1.3)

where

tj = eαj+iβj (αj < 0, 0 ≤ βj < 2π, j = 1, 2, · · · , s). (1.4)

For definiteness, we make some definitions here: If a > 0, tan−1 a
0 ≡ π

2 , tan
−1 −a

0 ≡ −π
2 . For

a ≥ b,

a
∨
b ≡ max{a, b} = a; (a, b) = ∅.

[α] denotes the greatest integer not larger than α. Also for x ∈ RI n, we denote g(x)|f(x)(g(x)
- f(x)) to mean that polynomial f(x) is divisible (indivisible) by polynomial g(x).

§2. Preliminaries

For H(z, τ) given by (1.2), we introduce a polynomial (1− θz)2sh(z, (1+θz)2

(1−θz)2 ), namely,

G(z, θ) ≡
∑
m,n

amnz
m(1− θz)2s−2n(1 + θz)2n (θ ≥ 0), (2.1)

where θ is a parameter. It is worth mentioning that G(z, θ) is an algebraic polynomial, not

a transcendental one.

The following lemmas are used to determine the pure imaginary roots of H(z, τ) as well

as the corresponding time delays at which the number of p-roots may alter.

Lemma 2.1. For (y, τ, θ) ∈ (RI +)3,H(iy, τ) is equivalent to G(iy, θ) = 0, where

τy = 4 tan−1(yθ) (mod 2π). (2.2)

Its proof is a modification of the one in [21].

Lemma 2.2. For f(z) = a0z
n + a1z

n−1 + · · ·+ an(a0, a1, · · · , an ∈ RI , a0 ̸= 0), f(z) has

pure imaginary roots iff

an ̸= 0, ∆n−1 ≡

∣∣∣∣∣∣∣∣∣∣∣∣

a1 a0 0 · · · 0

a3 a2 a1 · · ·
...

a5 a4 a3 · · ·
...

...
...

...
. . .

...
a2n−3 a2n−4 a2n−5 · · · an−1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (2.3)

where ∆n−1 is the (n− 1)-order leading principal minor of Hurwitz matrix corresponding to

polynomial f(z). Here, we define ∆n−1 ≡ an if n ≤ 1.

Its proof can be found in [7].

For a given θ ≥ 0, G(z, θ) is a polynomial of z, so its Hurwitz determinant ∆∗(θ) can be

defined. Let

∆∗(θ) ≡
{
∆r−1, when θ = 0;
∆r+2s−1(θ), when θ > 0.

(2.4)

Generally speaking, ∆∗(θ) is not right continuous at θ = 0, e.g., H(z, τ) = (z+1)2(eτz +1).

From (2.1) and (2.4) respectively, we have ∆∗(0) = 4 and ∆∗(θ) = 0 (θ > 0).
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In order to study the stability ofH(z) = H(z, 1) , we consider the problem in the following

order. First, we lead in a time-delay parameter τ and get H(z, τ); then we enumerate the

changing number of p-roots of H(z, τ) as τ varies from 0 to 1. Since G(z, θ) is obtained by

substituting eτz = (1+θz)2

1−θz)2 into (1−θz)2sH(z, τ), we know ∆∗(θ) is determined definitely by

the coefficients of H(z, 1). In our method, ∆∗(θ) is utilized to get the set of pure imaginary

roots of H(z, τ) as well as the corresponding set of time delays. If ∆∗(θ) ≡ 0 (θ > 0), e.g.,

H(z, 1) = z2 + a2 or ez + 1, our method is not applicable. So, it is necessary to assume

(A4)’ ∆∗(θ) ̸≡ 0 (θ > 0).

Meanwhile, since implicit function theorem is used in most cases of this paper, we also

assume

(A5) H(z, τ) has no multiple pure imaginary roots for each τ ≥ 0.

The following propositions are related to (A4)’. They demonstrate that under assumption

(A1)-(A2), (A4)’ is equivalent to the assumption below:

(A4) For every a ≥ 0, (z2 + a2) - h(z, t).
Relatively speaking, it is easier to test (A4) than (A4)’. Let

Yτ ≡ {y > 0|H(iy, τ) = 0} (2.5)

and

Y ≡
∪
τ≥0

Yτ . (2.6)

Now, obviously, the set of pure imaginary roots of H(z, τ) is {±yi|y ∈ Y }. Since the imagi-

nary roots of H(z, τ) appear in conjugate pairs, it is enough to consider {yi|y ∈ Y }. First,
we have

Lemma 2.3. If Y is finite, then (A4) is equivalent to (A4)’.

Proof. If for certain a > 0, (z2+a2)|h(z, t), then H(z, τ) = h(z, eτz) has root ai for each

τ ≥ 0. Thus, we get ∆∗(θ) ≡ 0 (for θ ≥ 0) from Lemma 2.2. This proves that if (A4)’

holds then (A4) also holds.

Conversely, if Y is finite and ∆∗(θ) ≡ 0 (for θ > 0), we let θ = θn > 0, n = 1, 2, 3, · · · ,
such that G(iyn, θn) = 0 and θn → 0 (as n→ ∞). From Lemma 2.1, we get

H
(
iyn,

4

yn
tan−1(θnyn)

)
= 0.

Since Y is finite, {yn} must have a subsequence of which all elements take the same value.

Without loss of generality, we suppose yn ≡ y0 for every n ∈ N . Therefore when θn →
0, 4

y0
tan−1(θny0) → 0. Considering that H(iy0, τ) is an analytic function of τ , which has

only isolated zeros if it is not a constant, we conclude H(iy0, τ) ≡ 0 (for τ ≥ 0). Now, it is

easy to derive that (z2+y20)|h(z, t). Thus, we prove that if (A4) holds then (A4)’ also holds.

The equivalence of (A4) and (A4)’ is now proved.

On the other hand, if Y is infinite, the above proposition may not hold, e.g., h(z, t) = t+1.

Now, we may ask: Under what condition is Y finite?

Let

H(z, τ) = h(z, eτz) ≡
s∑

k=0

p
(s)
k (z)ekτz, (2.7)
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where p
(s)
k (z) (0 ≤ k ≤ s) is a real polynomial with its order not greater than r. Successively

define

p
(j)
k (z) ≡ det

(
p
(j+1)
j−k (−z) p

(j+1)
k+1 (z)

p
(j+1)
j+1 (−z) p

(j+1)
0 (z)

)
, 0 ≤ k ≤ j ≤ s− 1, (2.8)

and

Ỹ0 ≡
{
(0,∞), if p

(0)
0 (z) ≡ 0;

{y > 0|p(0)0 (iy) = 0}, if p
(0)
0 (z) ̸≡ 0.

(2.9)

We have the following

Proposition 2.1. Y ⊂ Ỹ0. If (A1)–(A2) hold, then Ỹ0 is finite; therefore, Y is finite.

Its proof is given in Section 6.

Generally, for H(z, τ) given by (1.2), from Lemma 2.1, we have

Y =
∪
θ∈Θ

{y > 0|G(iy, θ) = 0}, (2.10)

where

Θ ≡ {θ > 0|∆∗(θ) = 0}. (2.11)

Also, we need the following

Lemma 2.4. If there exist 0 ≤ α < β and a real analytic function y(τ), such that

H(iy(τ), τ) = 0 for τ ∈ [α, β], then ∆∗(θ) ≡ 0 for θ > 0.

Its proof is given in Section 6.

This lemma denies the possibility that implicit funciton z = z(τ) (such that H(z(τ), τ) =

0) will move through the imaginary axis along the real axis as τ varies. In addition, since

nonpositive p-roots always appear in double, we conclude that the number increment (or

decrement) of p-roots is even.

§3. Main Results

In this section, we will present the main results of this paper. Denote by Ωτ (τ ≥ 0) the

number of p-roots of H(z, τ). We have the following

Theorem 3.1. If (A1)–(A5) hold, then, for certain τ0, we have the following four steps

to determine Ωτ0 .

Step 1. From (2.10)–(2.11), calculate Y ≡ {yj |1 ≤ j ≤ m∗}.
Step 2. For each yj ∈ Y (1 ≤ j ≤ m∗), calculate

{τνj |H(iyj , τ
ν
j ) = 0, 0 ≤ τνj yj < 2π} ≡ {τνj |1 ≤ ν ≤ νj},

and therefore obtain

M̃ ≡
{
τνj,k ≡ τνj +

2kπ

yj

∣∣∣j = 1, 2, · · · ,m∗; ν = 1, 2, · · · , νj ; k ∈ N+
}
.

Step 3. For each τνj,k ∈ M̃ ∩ [0, τ0), there exists z(τ) = Re z(τ)+ iIm z(τ) in the neighbor-

hood of τνj,k, such that H(z(τ), τ) = 0 and z(τνj,k) = iyj , where Re z(τ) and Im z(τ) are real

analytic functions of τ . Differentiate both sides of H(z, τ) = 0 concerning τ and calculate
dRe z(τ)

dτ

∣∣∣
τ=τν

j,k

, d2Re z(τ)
dτ2

∣∣∣
τ=τν

j,k

and so on, till we get the least number µ = µ(j, k, ν) such

that dµ = dµRe z(τ)
dτµ

∣∣∣
τ=τν

j,k

̸= 0.



378 CHIN. ANN. OF MATH. Vol.18 Ser.B

Step 4. Define

σ(yj , τ
ν
j,k) = σ+(yj , τ

ν
j,k)− σ−(yj , τ

ν
j,k),

where

(σ+(yj , τ
ν
j,k), σ−(yj , τ

ν
j,k)) ≡


(1, 1), if µ is even and dµ > 0;
(0, 0), if µ is even and dµ < 0;
(1, 0), if µ is odd and dµ > 0;
(0, 1), if µ is odd and dµ < 0.

Stipulate that σ±(y, τ) = 0, if y ̸∈ Yτ and σ−(y, 0) = 0 for y ∈ Y0. Thus, we get

Ωτ0 = Ω0 + 2
m∗∑
j=1

νj∑
ν=1

∑
0≤νν

j,k<τ0

σ(yj , τ
ν
j,k)− 2

∑
y∈Yτ0

σ−(y, τ0).

Moreover, H(z, τ0) is stable iff τ0 /∈ M̃ and Ωτ0 = 0.

Its proof will be given in Section 4.

Remark 3.1. Step 1 is used to obtain all the possible pure imaginary roots. We will

see from Section 4, as τ varies, the change for the number of p-roots can only occur when

H(z, τ) has pure imaginary roots. If Y = ∅, then Ωτ = Ω0 for τ ≥ 0. Also from (A3), we

notice that Ω0 must be an even number. Since p-roots always appear in pairs, Ωτ is also an

even number. Step 2 is used to calculate all the possible time delays at which the number of

p-roots may alter. From Lemma 2.2, it is easy to know νj ≥ 1 (j = 1, 2, · · · ,m∗). In Step 3,

assumption (A5) and implicit function theorem guarantee the existence of analytic function

z(τ), while assumption (A4) and Lemma 2.5 make it sure that we need only finite steps to

get µ. In Step 4, for the case µ is even and dµ > 0, it means that in the neighborhood of

τνj,k, as τ increases from τ < τνj,k to τ > τνj,k, p-root z(τ) turns into iyj at τνj,k and later

becomes a p-root again. Similar discussions can be implemented on other cases.

Let

E−
τ0 = max

1≤j≤m∗
max

1≤ν≤νj

{
τνj +

2π

yj

[ (τ0 − τνj )yj

2π

]}
,

E+
τ0 = min

1≤j≤m∗
min

1≤ν≤νj

{
τνj +

2π

yj

[ (τ0 − τνj )yj

2π

]
+

2π

yj

}
.

From the theorem above, we have the following

Corollary 3.1. For τ0 ≥ 0 , if H(z, τ0) has no pure imaginary root, then there exists

a maximum time-delay interval Oτ0 , which contains τ0, and for each τ ∈ Oτ0 ,H(z, τ) and

H(z, τ0) have the same number of p-roots and no pure imaginary root as well. Here, Oτ0

can be expressed as

Oτ0 ≡


RI +, if Y = ∅;
(E−

τ0 , E
+
τ0), if Y ̸= ∅ and E−

τ0 ≥ 0;[
0, E+

τ0

)
, if Y ̸= ∅ and E−

τ0 < 0.
(3.1)

In Section 4, we will prove Theorem 3.1 under the assumption (A5). But in fact, we find

that sometimes (A5) may be reduced. For example, we only need the condition “H(z, τ)

has no multiple pure imaginary root in 0 ≤ τ < τ0” to study the stability of H(z, τ0). More

generally, if H(z, τ) has multiple pure imaginary roots, our method is still feasible. But

under the circumstances, we should introduce perturbation method, the efficiency of which
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can be proved through a limit process. Let

H̃(z, x) ≡
∑
m,n

amn(x)z
menz, (3.2)

where amn(x) is a real continuous function, x ∈ RI n1(n1 ∈ N). If at x = x0, H̃(z, x0) has

principal term ars(x0)z
resz, we denote by χ

(s)
∗ (ez, x0) the coefficient term of zr. We have

the following

Lemma 3.1. If H̃(z, x0) has principal term ars(x0)z
resz(ars(x0) > 0), but no pure

imaginary root, and N(χ
(s)
∗ (ez, x0)) ⊂ C−, then ∃ϵ > 0,M = M(x0, ϵ) > 0 and c =

c(x0, ϵ) > 0, such that when |x− x0| < ϵ, H̃(z, x) has principal term and no pure imaginary

root, N(χ
(s)
∗ (ez, x0)) ⊂ C−, and all the p-roots and pure imaginary roots of H̃(z, x) lie in

the open disk |z| < M. In addition, H̃(z, x) and H(z, x0) have the same number of p-roots

in |z| ≤M and all the roots of H̃(z, x) in |z| > M satisfy Re z < −c.
Its proof is similar to the first part of the proof of Lemma 4.1. It can be done by taking

into account the continuity of the coefficients (similarly see e.g. [15]) of H̃(z, x). Due to the

space limit, we omit it here.

Corollary 3.2. If H̃(z, x0) has principal term and no pure imaginary root, N(χ
(s)
∗

(ez, x0)) ⊂ C−, and meanwhile, there exists a real sequence {xn} such that xn → x0(n→ ∞)

and H̃(z, xn) has h p-roots but no pure imaginary root, then H̃(z, xn) has h p-roots.

Its proof is direct from Lemma 3.4.

When x ∈ RI 2, let x = (τ, ϵ), H̃(z, x) = H̃(z, τ, ϵ) and χ
(s)
∗ (ez, x) ≡ χ

(s)
∗ (ez, τ, ϵ). We have

the following corollary, which constructs the theory of our perturbation method.

Corollary 3.3. Suppose α(ϵ), β(ϵ) are two real continuous functions of ϵ in the neighbor-

hood of ϵ = 0, such that when τ ∈ (α(ϵ), β(ϵ)), H̃(z, τ, ϵ) has positive principal term as well

as h p-roots and no pure imaginary root, N(χ
(s)
∗ (ez, τ, ϵ)) ⊂ C−. Meanwhile, if α(ϵ) → α,

β(ϵ) → β(α < β) as ϵ → 0 and for each τ ∈ (α, β), H̃(z, τ, 0) has principal term and

N(χ
(s)
∗ (ez, τ, 0)) ⊂ C−, then H̃(z, τ, 0) has h p-roots for each τ ∈ (α, β).

Proof. For τ ∈ (α, β), we know ∃ϵ1 > 0 such that τ ∈ (α(ϵ), β(ϵ)) if |ϵ| < ϵ1.

Since H̃(z, τ, ϵ) has principal term as well as h p-roots and no more imaginary root, and

N(χ
(s)
∗ (ez, τ, ϵ)) ⊂ C−, and in addition, H̃(z, τ, 0) has principal term and N(χ

(s)
∗ (ez, τ, 0)) ⊂

C−, we obtain, from Corollary 3.5, that H̃(z, τ, 0) has h p-roots.

For H(z, τ) =
∑
m,n

amnz
menτz, when τ > 0, let z̃ = τz. Through some simplifications, we

have

H̃(z̃, τ) =
∑
m,n

amnτ
r−mz̃menz̃. (3.3)

Obviously, (3.3) is a special case of (3.2) and the stability of H(z, τ) (τ > 0) is equivalent

to that of H̃(z̃, τ).

§4. Proof of Theorem 3.1.

In this section, we will prove Theorem 3.1. In order to do so, we first present some

lemmas.
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Lemma 4.1. Suppose (A1)-(A5) hold. Then ∃ϵ > 0 such that for 0 < τ ≤ ϵ,H(z, τ) has

no pure imaginary root but Ω+
0 ≡ Ω0 + 2

∑
y∈Y0

σ+(y, 0) p-roots.

Proof. First, we prove the following several results.

1. ∃M1 > 0 such that all the roots of H(z, 0) as well as the pure imaginary roots and

p-roots of H(z, τ)(τ > 0) lie in the disk |z| ≤ M1, and all the roots of H(z, τ) (τ > 0) in

|z| > M1 satisfy Re z ≤ − ϵ0
2τ , where ϵ0 = min

1≤j≤s
|αj |.

It is easy to verify that ∃M0 > 0 such that all the roots of H(z, 0) lie in |z| ≤M0. Now,

we set

M1 = max
{
1,M0, max

m<r,n≤s

{r(s+ 1)|amn|
ϵ

}}
,

where

ϵ = ars min
1≤j≤s

(
e

αj
2 − eαj

)s
.

If |z| > M1, then

1

|z|
< min

{
1, min

m<r,n≤s

{ ϵ

r(s+ 1)|amn|

}}
.

Therefore ∑
m<r,n≤s

|amn||z|m−r < ϵ < ars

s∏
i=1

(1− eαj ),

that is ∑
m<r,n≤s

|amn||z|m < ϵ|z|r < ars

s∏
i=1

(1− eαj )|z|r. (4.1)

If z is a root of H(z, τ) such that |z| > M1 and Re z ≥ 0, from (1.3), we have

ars(1− t1e
−τz)(1− t2e

−τz) · · · (1− tse
−τz) = −

∑
m<r,n≤s

amnz
me(n−s)τz. (4.2)

Taking modular forms on both sides and making some estimations, we get

ars(1− eα1)(1− eα2) · · · (1− eαs)|z|r ≤
∑

m<r,n≤s

|amn||z|m,

which obviously contradicts (4.1). Thus, all the pure imaginary roots and p-roots of H(z, τ)

(τ > 0) lie in |z| ≤M1.

Suppose z is a root of H(z, τ) in |z| > M1. From the above conclusion, we know τ > 0

and Re z < 0. Now turn (4.2) into

ars(e
τz − t1)(e

τz − t2) · · · (eτz − ts) = −
∑

m<r,n≤s

amnz
menτz. (4.3)

Since |eτz − tj | ≥ |eτRe z − eαj | (1 ≤ j ≤ s), estimating (4.3) by utilizing inequality (4.1), we

get

ars

(
min

1≤j≤s
|eτRe z − eαj |

)s
|z|r ≤

∑
m<r,n≤s

|amn||z|m < ϵ|z|r.

Thus, we have inequality

min
1≤j≤s

|eτRe z − eαj |s < min(e
αj
2 − eαj )s,
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from which, we can easily obtain Re z ≤ − ϵ0
2τ .

2. Let M = M1 + 1. Then ∃ϵ1 > 0 such that when 0 < τ ≤ ϵ1, H(z, τ) and H(z, 0) have

the same number of p-roots in the disk |z| ≤ M . In addition, all the roots of H(z, τ) keep

certain kind of continuity with respect to τ .

It is easy to prove ∃ϵ2 > 0 such that when |z| = M, |H(z, 0)| ≥ ϵ2 > 0. Since when

τ → 0, H(z, τ) → H(z, 0) uniformly in |z| ≤ M, we know ∃ϵ1 > 0 (ϵ1 < ϵ2) such that

when 0 < τ ≤ ϵ1, |H(z, τ) − H(z, 0)| < ϵ2. Now, we know on the contour |z| = M ,

|H(z, τ)−H(z, 0)| < |H(z, 0)|. By Rouché’s theorem, we conclude that H(z, τ) and H(z, 0)

have the same number of p-roots in the disk |z| ≤M.

Let

BM (τ) ≡ N(H(z, τ)) ∩ {z ∈ C||z| ≤M}.

For τ1 ≥ 0, τ2 ≥ 0, we define the usual Hausdorff distance

dis(BM (τ1), BM (τ2)) ≡ max
{

sup
z∈BM (τ2)

dis(z,BM (τ1)), sup
z∈BM (τ1)

dis(z,BM (τ2))
}
.

The continuity we indicate here is actually the one of BM (τ) to τ in the meaning of Hausdorff

distance.

Now we come to the right continuity of p-roots of H(z, τ) at τ = 0. For each zj ∈
N(H(z, 0)) ≡ {zj |j = 1, 2, · · · , r} and arbitrary ϵ∗ > 0, we can find a disk Cj = {z ∈ C||z−
zj | ≤ 2ϵ∗j}, where ϵ∗j < ϵ∗

2 (1 ≤ j ≤ r) is a positive number such that Cj∩N(H(z, 0)) = {zj}.
For Dj ≡ {z ∈ C||z − zj | ≤ ϵ∗j}, similarly, we know, ∃δj(ϵ∗j ) > 0 such that when 0 ≤ τ ≤
δj(ϵ

∗
j ), H(z, τ) and H(z, 0) have the same number of roots in Dj . Let δ(ϵ

∗) = min
1≤j≤r

δj(ϵ
∗
j ).

We obtain dis(BM (τ), BM (0)) ≤ 2 max
1≤j≤r

ϵ∗j < ϵ∗ when 0 ≤ τ < min{ϵ1, δ(ϵ∗)}. Thus we

prove the right continuity we mean.

3. ∃ϵ3 > 0 such that H(z, τ) has no pure imaginary root if 0 < τ ≤ ϵ3.

Under assumptions (A1)–(A4), ∆∗(θ) ̸≡ 0(θ > 0). Therefore, Θ is also finite. From the

process of Steps 1–2 (see Theorem 3.1), we know T0 = {τνj |j = 1, 2, · · · ,m∗; ν = 1, 2, · · · , νj}
is also finite. Let

ϵ3 < τ0 ≡

{
min
τ∈T0

τ, if T0 ̸= ∅,
∞, if T0 = ∅.

We know H(z, τ) has no pure imaginary root when 0 < τ ≤ ϵ3.

With the results of 1–3, we can prove Lemma 3.1 now.

Let ϵ4 = min{ϵ1, ϵ3}. Then when 0 < τ ≤ ϵ4, we know H(z, τ) has no pure imaginary

root and H(z, τ) and H(z, 0) have the same number of roots in |z| ≤ M. Moreover, the

roots of H(z, τ) keep right-continuity at τ = 0, and the roots of H(z, τ) in |z| > M satisfy

Re z ≤ − ϵ0
2τ ≤ − ϵ0

2ϵ4
. Since if H(z, 0) has pure imaginary roots, they must be simple, for

each y ∈ Y0, by implicit function theory, we know, ∃z(τ) = Re z(τ) + iIm z(τ) such that

H(z(τ), τ) = 0 and z(0) = iy, where Re z(τ) and Im z(τ) are real analytic functions of

τ. From (A4)’ and Lemma 2.5, we have Re z(τ) ̸≡ 0. Thus, ∃0 < ϵ < ϵ4 such that when

0 < τ ≤ ϵ, for each y ∈ Y0, z(τ) = Re z(τ)+iIm z(τ) satisfies |Re z(τ)| > 0. Now, determining

the changing inclination of each Re z(τ) at τ = 0 by its dirivatives (stated as in Steps 3 -

4), we conclude that when 0 < τ ≤ ϵ,H(z, τ) has no pure imaginary root and the number
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of p-roots is Ω+
0 = Ω0 + 2

∑
y∈Y0

σ+(y, 0).

Similarly, we have the following

Lemma 4.2. Suppose (A1)–(A5) hold. Then for τ0 > 0, ∃ϵ > 0 such that when 0 <

|τ − τ0| < ϵ,H(z, τ) has no pure imaginary root; when τ0 − ϵ < τ < τ0,H(z, τ) has Ωτ0 +

2
∑

y∈Yτ0

σ−(y, τ0) p-roots; when τ0 < τ < τ0 + ϵ,H(z, τ) has Ωτ0 + 2
∑

y∈Yτ0

σ+(y, τ0) p-roots.

Now, we are in the stage to prove Theorem 3.1.

Proof of Theorem 3.1. From Lemma 4.1, we know that ∃ϵ0 > 0 such that when 0 < τ ≤
ϵ0, H(z, τ) has no pure imaginary root, and its number of p-roots is Ω+

0 = Ω0+2
∑

y∈Y0

σ+(y, 0).

Let

T̃ = {τ ′ > ϵ0|when τ ∈ (ϵ0, τ
′),H(z, τ) has Ω+

0 p-roots and no pure imaginary root}

and τ∗ = sup{τ |τ ∈ T̃}. From Lemma 4.2, we claim that T̃ = (ϵ0, τ
∗).

If τ∗ = ∞, then it is necessary that Y = ∅. In this case, H(z, τ) has Ω0 p-roots for every

τ ∈ RI +. Additionally, if Ω0 = 0, then H(z, τ) is stable for all τ ≥ 0, namely, H(z, τ) is

unconditionally stable.

If τ∗ < ∞, then H(z, τ∗) must have pure imaginary roots. Otherwise from Lemma 4.2,

∃ϵ > 0 such that when |τ − τ∗| ≤ ϵ,H(z, τ) has Ω+
0 p-roots, which obviously contradicts the

difinition of τ∗. Now from Lemma 4.2, Ωτ∗ = Ω+
0 − 2

∑
y∈Yτ∗

σ−(y, τ
∗) and ∃ϵ2 > 0 such that

when τ∗ < τ < τ∗ + ϵ2, H(z, τ) has Ω+
0 + 2

∑
y∈Yτ∗

σ+(y, τ
∗) p-roots.

As τ varies from 0 to τ0, repeating the procedures above, enumerating the number of

p-roots as stated in Step 4, we get Theorem 3.1.

§5. Asymptotic Stability of Linear
Differential-Difference Equations

In this section, we will mainly discuss the asymptotic stability of differential-difference

equation

y(n)(t) + cy(n)(t− τ) +

n−1∑
j=0

ajy
(j)(t) +

n−1∑
j=0

bjy
(j)(t− τ) = 0 (|c| < 1). (5.1)

Let

p(z, τ) = p(z)eτz + q(z), (5.2)

and

w(z) =
p′(z)

p(z)
− q′(z)

q(z)
, (5.3)

where

p(z) = zn +
n−1∑
j=0

ajz
j , (5.4)

q(z) = czn +
n−1∑
j=0

bjz
j . (5.5)

Clearly, the asympototic stability of equation (5.1) is equivalent to the stability of p(z, τ).
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In order to use Theorem 3.1, we need the following lemmas. Lemmas 5.1–5.2 can be

obtained by direct calculations.

Lemma 5.1. For each τ ∈ M̃, p(z, τ) has multiple root iy iff both p(z, τ) and τ + w(z)

have the same root iy.

Lemma 5.2. For p(z, τ) = p(z)eτz + q(z), we have

Y = {y > 0||p(iy)| = |q(iy)|}, (5.6)

where Y is defined by (2.6).

To calculate the value of τj in Step 2 of Theorem 3.1, we need the following two lemmas.

Lemma 5.3. For yj ∈ Y, τj such that p(iyj , τj) = 0 and 0 ≤ τjyj < 2π is given by

τj =
1

yj
(π + 2 tan−1K(yj)), (5.7)

where

K(yj) ≡
p(iyj)− q(iyj)

p(iyj) + q(iyj)
i (5.8)

is a real number.

Proof. For yj ∈ Y, since p(iyj , τ) = 0, we know there exists uniquely τj such that

p(iyj , τj) = 0, 0 ≤ τjyj < 2π. From Lemma 2.1 (here H(z, τ) = p(z, τ)), letting

θj =
1

yj
tg
τjyj
4
, (5.9)

we obtain G(iyj , θj) = 0, that is,

(1 + iyjθj)
2p(iyj) + (1− iyjθj)

2q(iyj) = 0.

Solving the above equation, we get

θj =
K(yj) +

√
1 +K2(yj)

yj
,

where K(yj) is given by (5.8). Since |p(iyj)| = |q(iyj)|, the equality ImK(yj) = 0 holds. So

we know K(yj) is a real number. Using formula

tan−1(k +
√

1 + k2) =
π

4
+

1

2
tan−1 k (k ∈ RI )

and (5.9), we finally obtain

τj =
π + 2 tan−1K(yj)

yj
.

However, sometimes, we prefer the following formula. For yj ∈ Y, we define

ϕ(yj) = arg(p(iyj)), for p(iyj) ̸= 0, (5.10)

ψ(yj) = arg(q(iyj)), for q(iyj) ̸= 0, (5.11)

and let ϕ(yj) = ϕ(yj + 0), ψ(yj) = ψ(yj + 0) for yj such that p(iyj) = 0 or q(iyj) = 0. We

also have

Lemma 5.4. For yj ∈ Y, τj such that p(iyj , τj) = 0 and 0 ≤ τjyj < 2π can be expressed

by

τj =
1

yj

(
ψ(yj) + π − ϕ(yj)− 2π

[ψ(yj) + π − ϕ(yj)

2π

])
. (5.12)
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Proof. Since p(iyj , τj) = 0, that is,

p(iyj) + q(iyj)e
−iτjyj = 0,

we have

arg(p(iyj)) = π + arg(q(iyj))− τjyj (mod 2π),

that is,

π + ψ(yj)− ϕ(yj) = τjyj (mod 2π).

Thus expression (5.12) follows.

Let

F (y) ≡ |p(iy)|2 − |q(iy)|2, (5.13)

p(iy) ≡ p1(y) + ip2(y), (5.14)

q(iy) ≡ q1(y) + iq2(y), (5.15)

where p1(y), p2(y), q1(y) and q2(y) are real polynomials. Also denote

Y = {y > 0|F (y) = 0} ≡ {yj |1 ≤ j ≤ m}. (5.16)

Then for each yj ∈ Y (1 ≤ j ≤ m) and corresponding τj,k = τj +
2kπ
yj
, where 0 ≤ τjyj <

2π, k ∈ N+ (Because of the specialty of (5.2), τνj,k in Step 2 of Theorem 3.1 has the form

τ1j,k(ν = 1), we omit the superscript hereafter), consider z(τ) = Re z(τ)+ iIm z(τ) such that

p(z(τ), τ) = 0 and z(τj,k) = iyj . We have

Lemma 5.5. For yj ∈ Y, if F ′(yj) ̸= 0, or F ′(yj) = 0 but τj,k +w(iyj) ̸= 0, then iyj is a

simple root of p(z, τj,k); if F
′(yj) = τj,k+w(iyj) = 0, then iyj is a multiple root of p(z, τj,k).

Meanwhile, for yj ∈ Y, if F ′(yj) ̸= 0, then dRe z(τ)
dτ

∣∣∣
τ=τj,k

has the same sign as F ′(yj); if

F ′(yj) = 0, then dRe z(τ)
dτ

∣∣∣
τ=τj,k

= 0 and w(iyj) ∈ RI . Moreover, if τj,k + w(iyj) ̸= 0 and

F ′′(y) ̸= 0, then d2Re z(τ)
dτ2

∣∣∣
τ=τj,k

has the same sign as −(τj,k + w(iyj))F
′′(yj).

The first part of Lemma 5.5 comes directly from Lemma 5.1, and the remaining part can

be derived through direct but complicated calculations by using e−τz = −p(z)
q(z) and (5.3).

We omit the proof here.

For yj ∈ Y, when F ′(yj) = 0, from (5.3), we can obtain

w(iyj) =
p1(yj)p

′
2(yj)− p2(yj)p

′
1(yj)

p21(yj) + p22(yj)
− q1(yj)q

′
2(yj)− q2(yj)q

′
1(yj)

q21(yj) + q22(yj)
. (5.17)

Now from Theorem 3.1, we have

Proposition 5.1. Suppose for each τ ∈ M̃, p(z, τ) and τ + w(z) have no common pure

imaginary root. Then equation (5.1) is asymptotically stable iff τ ∈ O ≡
J∪

i=1

Oi, where

O1, O2, · · · , OJ are intervals stated as in Corollary 3.1.

Hence, when a0, a1, · · · , an−1, b0, b1, · · · , bn−1 and c (|c| < 1) are assigned, the time delay

τ , at which differential-difference equation (5.1) is asymptotically stable , can be determined

from Lemmas 5.1–5.5 and Proposision 5.1. For some cases, we may also need Corollary 3.3

as well.

We point out that, though, for number system, the problem discussed above can be solved
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with the help of computers, for alphabet system, the problem is not fully solved. But for

systems of lower orders, such as order 1 or 2, the results are complete.

Proposition 5.2. If a+ b > 0, |c| < 1 and

p1(z, τ) ≡ z + a+ (cz + b)e−τz,

then p1(z, τ) is stable iff

0 ≤ τ < γ(a, b, c),

where

γ(a, b, c) ≡

{
+∞, if |a| ≥ |b|,
2
√
1−c2√

b2−a2
tan−1

√
(1−c2)(b2−a2)

(1−c)(b−a) , if |a| < |b|.
(5.18)

This result first appeared in [19]. It is easier to be proved by the method above. Due to

the space limit, we omit it here.

Let

p2(z, τ) ≡ z2 + a1z + a0 + (cz2 + b1z + b0)e
−τz(|c| < 1). (5.19)

Then we have

p(iy) = a0 − y2 + a1yi, (5.20)

q(iy) = b0 − cy2 + b1yi, (5.21)

and

F (y) = (1− c2)y4 − (2a0 − a21 − 2b0c+ b21)y
2 + a20 − b20. (5.22)

Define

∆ ≡ (2a0 − a21 − 2b0c+ b21)
2 − 4(1− c2)(a20 − b20), (5.23)

Λ ≡ 2a0 − a21 − 2b0c+ b21, (5.24)

y± ≡

√
Λ±

√
∆

2(1− c2)
. (5.25)

Then

Y = {y > 0|F (y) = 0} = {y+, y−} ∩ (0,+∞). (5.26)

Also let

τ± ≡ 1

y±
(π + 2 tan−1K(y±)) (5.27)

=
1

y±

(
arg(q(iy±)) + π − arg(p(iy±))− 2π

[arg(q(iy±)) + π − arg(p(iy±))

2π

])
,
(5.28)

and

m1 ≡
[2πy+ + y+y−(τ+ − τ−)

2π(y+ − y−)

]∨
1, (5.29)

m2 ≡
[y+y−(τ+ − τ−)

2π(y+ − y−)

]∨
0, (5.30)



386 CHIN. ANN. OF MATH. Vol.18 Ser.B

where

K(y±)

=
p(iy±)− q(iy±)

p(iy±) + q(iy±)
i (5.31)

=
(1− c)y±((a1c− b1)y

2
± + a0b1 − a1b0))

(a0c2 + (a0 − a21 − a1b1 − b0)c+ a1b1 + b21 − b0)y2± + a0b0 + b20 − (a20 + a0b0)c
.
(5.32)

We have the following

Theorem 5.1. If a0 + b0 > 0, then p2(z, τ) is stable iff

τ ∈ T, (5.33)

where T is a real number set listed in the following table corresponding to the various coef-

ficients.

Table

Line No. a1 + b1 ∆ |a0| − |b0| Λ b0 − a0c a1 Y T

1 < 0 ∅ RI +

2 < 0 {y+} [0, τ+)
3 > 0 ≤ 0 ∅ RI +

4 > 0 > 0 > 0 {y+, y−} Ω
5 = 0 ≤ 0 ∅ RI +

6 > 0 {y+} [0, τ+)
7 = 0 ≤ 0 ∅ RI +

8 > 0 {y+}(= {y−}) Ω01

9 ≤ 0 {y+} ∅
10 > 0 {y+, y−} Ω1

11 = 0 > 0 < 0 {y+, y−} Ω2

12 = 0 > 0 {y+}(= {y−}) Ω02

13 ≤ 0 {y+}(= {y−}) ∅
14 ≤ 0
15 < 0 ≤ 0 ∅
16 > 0 > 0 ≤ 0
17 > 0 {y+, y−} Ω3

where

in Line 4, Ω = [0, τ+)
∪( m1∪

k=1

(
τ− +

2(k − 1)π

y−
, τ+ +

2kπ

y+

))
,

in Line 8, Ω01 = RI \
{
τ+ + 2kπ

y+
|k ∈ N+

}
, in Line 10, Ω1 =

m1∪
k=1

(
τ− + 2(k−1)π

y−
, 2kπy+

)
,

in Line 11, Ω2 =
m2∪
k=0

(
2kπ
y−
, τ+ + 2kπ

y+

)
, in Line 12, Ω02 = RI +\

{
2kπ√
a0
|k ∈ N+

}
,

in Line 17, Ω3 =
m2∪
k=0

(
τ− + 2kπ

y−
, τ+ + 2kπ

y+

)
.

Its proof will be given in Section 6.

Theorem 5.1 can be regarded as an improved version of Capyrin’s Theorem[3] as Propo-

sition 5.2 of Hayes’s Theorem[10]. It plays an important role in the study of stabilization
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of two-dimensional linear systems by time-delay feedback controls[11,12]. Readers who are

interested in this topic may also see [22, 23].

§6. Appendix

Proof of Proposition 2.1. First, denote

Hs(z, τ) ≡ H(z, τ) ≡
s∑

k=0

p
(s)
k ekτz, (6.1)

where p
(s)
k (z) (k = 0, 1, · · · , s) is a real polynomial of z. Next, define successively

Hj(z, τ) ≡ e−τz(p
(j+1)
0 (z)e(j+1)τzHj+1(−z, τ)− p

(j+1)
j+1 (−z)Hj+1(z, τ)) (0 ≤ j ≤ s− 1).

(6.2)

Let

p
(j)
k (z) ≡ det

(
p
(j+1)
j−k (−z) p

(j+1)
k+1 (z)

p
(j+1)
j+1 (−z) p

(j+1)
0 (z)

)
(0 ≤ k ≤ j ≤ s− 1). (6.3)

We have

Hj(z, τ) =

j∑
k=0

p
(j)
k (z)ekτz (0 ≤ j ≤ s− 1). (6.4)

Define

hj(z, t) ≡
j∑

k=0

p
(j)
k (z)tk (0 ≤ j ≤ s), (6.5)

and denote for Hj(z, τ)

Ỹj ≡
∪
τ≥0

{y > 0|Hj(yi, τ) = 0}. (6.6)

We have the following

Lemma 6.1.1. Ỹj+1 ⊂ Ỹj (0 ≤ j ≤ s− 1). For y ∈ Ỹj , if |p(j+1)
0 (iy)| ̸= |p(j+1)

j+1 (iy)|, then
y ∈ Ỹj+1.

Proof. If y ∈ ỹj+1, then ∃τ ≥ 0 such that Hj+1(yi, τ) = 0. Taking the conjugate form,

we have Hj+1(−yi, τ) = 0. From (6.2), we obtain Hj(yi, τ) = 0. Thus, y ∈ Ỹj . This proves

Ỹj+1 ⊆ Ỹj .

If y ∈ Ỹj , there exists τ ≥ 0 such that Hj(yi, τ) = 0. From (6.2), we know

p
(j+1)
0 (yi)e(j+1)τyiHj+1(−yi, τ) = p

(j+1)
j+1 (−yi)Hj+1(yi, τ). (6.7)

Taking modular forms on both sides of (6.7), and noticing that

|Hj+1(yi, τ)| = |Hj+1(−yi, τ)| and |p(j+1)
0 (yi)| ̸= |p(j+1)

j+1 (−yi)|,

we obtain Hj+1(yi, τ) = 0. Thus y ∈ Ỹj+1.

If we denote in h(z, t)

χ
(s)
∗ (t) ≡ a(s)s ts + a

(s)
s−1t

s−1 + · · ·+ a
(s)
1 t+ a

(s)
0 (6.8)

and let

a
(j)
k ≡ (−1)r2

s−j−1

det

(
a
(j+1)
j−k a

(j+1)
k+1

a
(j+1)
j+1 a

(j+1)
0

)
(0 ≤ k ≤ j ≤ s− 1), (6.9)
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then we have the coefficient term of zr2
s−j

in hj(z, t) as follows:

χ
(j)
∗ (t) ≡

j∑
k=0

a
(j)
k tk. (6.10)

Definition 6.1.1. Polynomial f(t) = cst
s+cs−1t

s−1+ · · ·+c1t+c0 (ci ∈ C, 0 ≤ i ≤ s) is

called Schur polynomial, if it has all its roots lying strictly in the unit disk. For simplicity,

we denote f ∈ Schur.

For fs(t) = cst
s + cs−1t

s−1 + · · ·+ c1t+ c0 (cs ̸= 0), we define

f̂s(t) = c̄0t
s + c̄1t

s−1 + · · ·+ c̄s,

where c̄i (0 ≤ i ≤ s) is the conjugate number of ci.

Let

fj(t) ≡
1

t
(f̂j+1(0)fj+1(t)− fj+1(0)f̂j+1(t)) (1 ≤ j ≤ s− 1).

We have the following

Lemma 6.1.2. If fj+1 ∈ Schur, then |fj+1(0)| < |f̂j+1(0)|. If |fj+1(0)| < |f̂j+1(0)|, then
fj+1 ∈ Schur iff fj ∈ Schur.

Proof. From Viète’s Theorem, it is easy to verify that |fj+1(0)| < |f̂j+1(0)| is a necessary

condition for fj+1 ∈ Schur. Now we come to prove the equivalence of fj+1 ∈ Schur and fj ∈
Schur under the condition |fj+1(0)| < |f̂j+1(0)|. Obviously, if fj+1 ∈ Schur (or fj ∈ Schur),

for each t ∈ C1 ≡ {z ∈ C||z| = 1}, the following inequality

|f̂j+1(0)fj+1(t)− tfj(t)| = |fj+1(0)f̂j+1(t)| < |f̂j+1(0)fj+1(t)|

holds. From Rouché’s theorem, we assert that fj+1(t) and fj(t) have the same number of

roots in the open unit disk. Thus, our lemma follows.

Proof of Proposition 2.1. First, Y ⊂ Ỹ0 is directly obtained from Lemma 6.1.1. From

assumptions (A1)–(A2), we know χ
(s)
∗ ∈ Schur. Also from (6.9)–(6.10), we have

χ
(j)
∗ (t) = (−1)r2

s−j−1+1 1

t
(χ̂j+1(0)χj+1(t)− χj+1(0)χ̂j+1(t)) (1 ≤ j ≤ s− 1).

Therefore, H1(z, τ) has the form of Lemma 5.4. Thus, Ỹ0 = Ỹ1 is finite.

6.2. Proof of Lemma 2.4. From the given conditions, we know that when τ ∈
[α, β], H(z, τ) has root iy(τ), where y(τ) is a real analytic function. Clearly, y(τ) is contin-

uous of τ. Assumption (A3) guarantees that y(τ) ̸= 0 for each τ ∈ [α, β]. Thus, without loss

of generality, we assume y(τ) > 0 for τ ∈ [α, β].

Now, we are sure to find two numbers α′, β′(α ≤ α′ < β′ ≤ β) such that relation τy(τ)
2π ∈ N

does not hold for all τ ∈ [α′, β′]. For if it is not the case, there must be τy(τ) ≡ 2k0π, where

k0 is a fixed integer. Thus, H(iy(τ), τ) = 0 is equivalent to
∑
m,n

amn(iy(τ))
m = 0. If for

τ ∈ [α′, β′], y(τ) takes at least two different values, then from the continuity of y(τ), we know

that equation
∑
m,n

amnz
m = 0 has an infinite number of different roots. This is impossible. If

for τ ∈ [α′, β′], y(τ) ≡ c1 (c1 is a constant), then it also contradicts τy(τ) ≡ 2k0π. Therefore,

we may assume that for τ ∈ [α′, β′], θ(τ) = 1
y(τ) tan

τy(τ)
4 is a continuous function of τ. From

Lemma 2.1, ∆∗(θ(τ)) ≡ 0. If θ(τ) takes at least two different values, then ∆∗(θ) = 0

necessarily has an infinite number of roots. Since ∆∗(θ) is defined as a polynomial of θ,
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it is necessary that ∆∗(θ) ≡ 0 for θ > 0. If θ(τ) ≡ c2 (c2 is a constant) for τ ∈ [α′, β′],

then we have G(iy(τ), c2) ≡ 0. Since G(z, c2) = 0 has only a finite number of roots, it is

necessary that y(τ) ≡ c3 (c3 is a constant and G(ic3, c2) = 0). So, we get c2 ≡ 1
c3

tan τc3
4 for

τ ∈ [α′, β′], which is also impossible.

Combining all the above, we obtain ∆∗(θ) ≡ 0(θ > 0).

6.3. Proof of Theorem 5.1. First, from (5.22)-(5.25), we have

F ′(y±) = ±2y±
√
∆, (6.11)

F ′′(y±) = 4Λ± 6
√
∆. (6.12)

Also from Lemma 5.4, we get (5.28). From Lemma 5.3, we obtain

τ± =
1

y±
(π + 2 tan−1K(y±)), (6.13)

where

K(y±) =
p(iy±)− q(iy±)

p(iy±) + q(iy±)
i. (6.14)

Realificating the denominator of K(y±) and utilizing F (y±) = 0, we get another expression

of (6.14), i.e., (5.28).

Now, we can prove our theorem through Theorem 3.1, Lemmas 5.1–5.5, Proposition 5.1

and Corollary 3.3.

If a1 + b1 > 0, then p2(z, 0) is stable. From (5.26), we know Y = ∅ for Lines 1, 3, 5,

7 respectively. Thus from Corollary 3.1, we get T = RI +. For Line 2 and Line 6, since

Y = {y±} and F ′(y+) > 0, we know from Lemma 5.5 that iy+ is a simple root. Then, from

Theorem 3.1 and Lemma 5.5 again, we have T = [0, τ+). While for Line 4, Y = {y+, y−},
since F ′(y−) < 0, F ′(y+) > 0 and N(p2(z, 0)) ⊂ C−, from the continuity of the roots of

p2(z, τ) concerning τ , definitely we have 0 < τ+ < τ−. Now turn to Steps 2-3 of Theorem

3.1. If inequality

τ− +
2(k0 − 1)π

y−
< τ+ +

2k0π

y+
(k0 ≥ 1) (6.15)

holds, then the following inequality chain also holds:

τ+ +
2(k − 1)π

y+
< τ− +

2(k − 1)π

y−
< τ+ +

2kπ

y+
(1 ≤ k ≤ k0). (6.16)

The greatest integer such that (6.15) holds is k0 = m1. Thus, from Theorem 3.1 and

Proposition 5.1, N(p2(z, τ)) ⊂ C− iff

τ ∈ T = [0, τ)
∪( m1∪

k=1

(
τ− +

2(k − 1)π

y−
, τ+ +

2kπ

y+

))
. (6.17)

For Line 8, e.g.,

p2(z, τ) = z2 + 2z +
15

2
+ (

3

5
z2 + z)eτz,

we know F (y) = 0 has double root y∗ = y+ = y−, which satisfies F ′(y∗) = 0. By (5.17), for

the case y+ = y− (i.e., ∆ = 0), we have

w(iy∗) =
(a0 − b1c)y

2
∗ + a1a0 − b1b0

p21(y∗) + p22(y∗)
. (6.18)
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Since

∆ = Λ2 − 4(1− c2)(a20 − b20) = (b21 − a21)
2 + 4(a0 − b0c)(b

2
1 − a21) + 4(b0 − a0c)

2 = 0

and a0 + b0 > 0, a1 + b1 > 0, |c| < 1, we can easily obtain a0 > |b0| ≥ 0, a1 ≥ |b1| ≥ 0.

Therefore, we get w(iy∗) > 0. From Proposition 5.1, we know iy∗ is a simple root. Also,

from Proposition 5.1, for

τk = τ+ +
2kπ

y+
(= τ− +

2kπ

y−
, k ∈ N+),

we have

dRe z(τ)

dτ

∣∣∣
τ=τk

= 0,
d2Re z(τ)

dτ2

∣∣∣
τ=τk

< 0.

Thus, from Theorem 3.1, we assert that N(p2(z, τ)) ⊂ C− iff

τ ∈ RI +
\{

τ+ +
2kπ

y+

∣∣∣k ∈ N+
}
.

If a1 + b1 = 0, then p2(z, 0) has only pure imaginary roots. Now, Λ = 2(a0 − b0c) and√
∆ = 2|b0 − a0c|. In Line 9, |a0| − |b0| ≤ 0, since a0 + b0 > 0, we get b0 ≥ |a0|. At the

present case,

Λ−
√
∆ = (1 + c)(a0 − b0) ≤ 0.

So, Y = {y+}. Consider that p2(z, 0) is not stable. From Theorem 3.1, we conclude that

p2(z, τ) is not stable for τ ≥ 0. For Line 10, since |a0| − |b0| > 0 and b0 − a0c > 0, we have

y+ =

√
a0 + b0
1 + c

, τ+ = 0;

y− =

√
a0 − b0
1− c

, τ− =
1

y−

(
π − 2 tan−1 a1(1− c)y−

b0 − a0c

)
.

Through an analogous discussion as in Line 4, the conclusion is drawn. In Line 11, as

|a0| − |b0| > 0, b0 − a0c < 0, we have

y+ =

√
a0 − b0
1− c

, τ+ =
1

y+

(
π − 2 tan−1 a1(1− c)y+

b0 − a0c

)
;

y− =

√
a0 + b0
1 + c

, τ− = 0.

Consider all the open intervals of the form (2kπy−
, τ+ + 2kπ

y+
), similar to Line 4, we get our

result. In Line 12 , when |a0| − |b0| > 0, b0 − a0c = 0 and a1 > 0, we have

Y = {y+} = {y−} = {
√
a0}, τ+ = τ− = 0.

From (6.18), we get

w(
√
a0i) =

(a1 − b1c)a0 + a1a0 − b1b0
p21(

√
a0) + p22(

√
a0)

=
2(1 + c)

a1
> 0.

Analogous to Line 8, we can prove p2(z, τ) is stable iff

τ ∈ RI +
\{ 2kπ

√
a0

∣∣∣k ∈ N+
}
.

For Line 13, when |a0| − |b0| > 0, b0 − a0c = 0, a1 ≤ 0, we have

Y = {
√
a0}, τ+ = τ− = 0.
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If a1 = 0, then p2(z, τ) = (z2 + a0)(1 + ce−τz) is obviously not stable. When a1 < 0, we

have

w(
√
a0i) =

2(1 + c)

a1
, τk =

2kπ
√
a0

(k ∈ N+).

Therefore, if 2(1+c)
|a1| /∈ { 2kπ√

a0

∣∣k ∈ N}, then τk + w(iy) ̸= 0; thus
√
a0i is a simple root. Since

dRe z(τ)

dτ

∣∣∣
τ=τk

= 0,
d2Re z(τ)

dτ2

∣∣∣
τ=τk

∼ −
(
τk +

2(1 + c)

a1

)
F ′′(

√
a0) ̸= 0,

from Theorem 3.1, we assert that p2(z, τ) is not stable for all τ ≥ 0. If 2(1+c)
|a1| ∈ { 2kπ√

a0
|k ∈ N},

we set

a0(ϵ) = a0 + ϵ, b0(ϵ) = (a0 + ϵ)c (ϵ > 0),

where ϵ is sufficiently small such that

2(1 + c)

|a1|
/∈
{ 2kπ√

a0 + ϵ
|k ∈ N

}
.

Now, from the discussion above, we know

p2(z, τ, ϵ) = z2 + a1z + a0(ϵ) + (cz2 + b1z + b0(ϵ))e
−τz

is not stable for τ ≥ 0. Let ϵ → 0+. From Corollary 3.3, we conclude that p2(z, τ) is not

stable for all τ ∈ RI +.

If a1 + b1 < 0, then p2(z, 0) has two roots with positive real parts. In Line 14, if ∆ < 0,

then Y = ∅. It is easy to verify that p2(z, τ) (τ ≥ 0) is not stable. If ∆ = 0 and Λ ≤ 0,

we also have Y = ∅. Therefore, p2(z, τ) (τ ≥ 0) is not stable. If ∆ = 0 but Λ > 0, then

y+ = y− = y, τ+ = τ−. Similar to the proof of Line 8, we have

a0 > |b0| > 0, a1 ≤ −|b1| ≤ 0.

From (6.18), we know w(iy) < 0. If −w(iy) /∈ {τ+ + 2kπ
y+

|k ∈ N+}, as in Line 13, we can

prove that p2(z, τ) (τ ≥ 0) is not stable. If −w(iy) ∈ {τ+ + 2kπ
y+

|k ∈ N+}, set

a1(ϵ) = a1 + ϵ, b1(ϵ) =
√
b21 + 2a1ϵ+ ϵ2 (ϵ > 0),

where ϵ is small enough such that yϵ and τϵ corresponding to

p2(z, τ, ϵ) = z2 + a1(ϵ)z + a0 + (cz2 + b1(ϵ)z + b0)e
−τz

staisfy

−w(iyϵ) /∈
{
τϵ +

2kπ

yϵ

∣∣∣k ∈ N+
}
.

Since in the present case,

∆(ϵ) = (b21(ϵ)− a21(ϵ))
2 + 4(a0 − b0c)(b

2
1(ϵ)− a21(ϵ)) + 4(b0 − a0c)

2 = ∆ = 0,

from the above results, we know p2(z, τ, ϵ)(τ ≥ 0) is not stable. Now letting ϵ → 0+, we

conclude from Corollary 3.3 that p2(z, τ)(τ ≥ 0) is not stable. For Lines 15-16, Y = {y+}
and ∅ respectively. We can easily verify that T = ∅. For Line 17, e.g.,

p2(z, τ) = z2 + 1−
√
2

2
ze−τz

(p2(z, τ) is stable iff τ ∈ (
√
2
2 π,

3
√
2

4 π)), results are gained as in Line 13.
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Combining all the above, we thus prove our theorem.
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