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Abstract

The author considers Verigin problem with surface tension. Under natural conditions the

existence of classical solution locally in time is proved by Schauder fixed point theorem.

Keywords Classical solution, Verigin problem, Surface tension, Model problem, Fréchet
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§1. Introduction

We shall consider “pushing oil by water around it” and assume that the displacement

of water and oil is piston-like. The displacement is called piston-like, that means during

the process of displacement porous media always can be divided in two parts: one of them

contains oil only and the other contains no oil but water. We neglect the gravity and consider

a two-dimensional “horizontal” field Ω̃ ∈ IR2, from which the oil is produced through the

well D in Ω̃. Let Ω1(t),Ω2(t) be the water field and the oil field respectively, Γt be the

interface of two fluids, Ω = Ω1(t) ∪ Γt ∪ Ω2(t) ≡ Ω̃−D.

When the porous media is compressible, Verigin put forth the mathematical model of

this kind of problem in 1957 as Muskat problem[9]. We call it Verigin problem[14]. In fact,

from the law of conservation of mass and Darcy’s law it follows that

∂pi
∂t

−∇ ·
(

k

µi
∇pi

)
= 0 in Qi ≡

∪
t>0

(Ωi(t)× {t}) (i = 1, 2), (1.1)

p1 − p2 = 0 on Γ ≡
∪
t>0

Γt × {t}, (1.2)

− k

µ1

∂p1
∂nt

= − k

µ2

∂p2
∂nt

= ϕVn on Γ, (1.3)

where Ω1(t),Ω2(t) are regions of water and oil respectively, Γt is a free boundary between

Ω1(t) and Ω2(t). Let Ω = Ω1(t) ∪ Γt ∪ Ω2(t) be a bounded annular domain in IR2, Ω2(t) is

inside. nt is a normal of Γt, pointing inside Ω2(t), p1 and p2 are pressures of water and oil

respectively, µ1 and µ2 are viscosities of water and oil respectively, k is the permeability, ϕ

is the porosity, Vn is the normal velocity of Γt.
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When two immiscible fluids are in contact in the interstices of a porous medium, a dis-

continuity in pressure exists across the interface separating them. Its magnitude depends

on the interface mean curvature at the point. The difference in pressure is called capillary

pressure pc (see [1]):

pnw − pw = pc,

where pnw, pw are the pressures in nonwetting and wetting phase respectively. And from

Laplace equation for capillary pressure pc = σK, where σ is the surface tension and K is

the mean curvature.

In the piston-like displacement two immiscible fluids are in contact only at the interface

which separates two fluids into two parts.

Thus Verigin problem with surface tension is the problem (1.1), (1.3) and

p1 − p2 = σK on Γ. (1.4)

In the physical fact the capillary force may affect the stability of the front (see [1]). For

the stability of the interface it is a good term, it always tends to stabilize the displacement

front.

So we expect that the above Verigin problem with surface tension is well-posed under

natural conditions.

In one-dimensional case, there are many results about Verigin problem (see [3], [8], etc.).

In multidimensional case, E. V. Radkerich has considered the problem (1.1)–(1.3) in [10].

This paper is devoted to the study of the problem (1.1), (1.3) and (1.4). It is organized

as follows. In Section 2, we shall parameterize the free boundary by the distance function ρ

from initial position of free boundary Γ0 (in R2) and reformulate the problem. In Section 3,

we construct an initial approximation and introduce two key Lemmas 3.1 and 3.2, which the

main result is based on. In Sections 4–5, we prove Lemma 3.2. In Section 4 we derive the

model problem. In Section 5 we study the model problem by establishing some estimates of

the kernels of it.

§2. Formulation of the Problem

For simplicity, we assume without loss of generality that ϕ = 1 (which corresponds to the

hypothesis that the porous media is homogeneous) and k
µ1

= 1. Then

k

µ2
=

µ1

µ2
≡ α(2) > 1.

Remark 2.1. In piston-like displacement of oil and water, the viscosity of viscositied

water is grater than the viscosity of oil, i.e., µ2 < µ1 (see [6]).

Introduce ω as the local coordinates of points on the surface Γ0. We also use x = X0(ω)

to denote the points on Γ0 in R2. Let n0(ω) be the unit normal to Γ0 which is outer with

respect to Ω1(0). Let ρ(ω, t) be a function of class C2,1(Γ0 × [0, T ]) such that ρ(ω, 0) = 0.

Let T > 0 be small and let

Γt = {x = X0(ω) + ρ(ω, t)n0(ω), t ∈ [0, T ]}

denote the free boundary.
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Straighten the free boundary (see [5]).

Γt

transformation
−−−−−−−−−−→ Γ0,∪

t

Ωi(t)
transformation
−−−−−−−−−−→QiT = Ωi(0)× [0, T ] (i = 1, 2),

p1(x, t), p2(x, t)
transformation
−−−−−−−−−−→ Vi = Vi(y, t) (i = 1, 2).

The Verigin problem with surface tension becomes

L(j)
ρ v(j)ρ = 0, j = 1, 2 in QjT , (2.1)

v(1)ρ − v(2)ρ = σK(ρ, ∂ωρ, ∂ω(∂ωρ)) on Γ0T , (2.2)

∂tρ = −α(2)Sρ∂ηv
(2)
ρ + α(2)kρ,ω∂ωv

(2)
ρ

= −Sρ∂ηv
(1)
ρ + kρ,ω∂ωv

(1)
ρ on Γ0T , (2.3)

v(j)ρ = g(j)(y, t) on ΓjT , (2.4)

v(j)ρ = ϕ(j)(y) at t = 0, (2.5)

where (see [10, 11])

a
(j)
ρkl(y, t) = a

(j)
kl (ρ, ∂ωρ), j = 1, 2, 1 ≤ k, l ≤ 2,

a
(j)
ρk (y, t) = a

(j)
k (ρ, ∂ωρ, ∂tρ, ∂ω(∂ωρ)), k = 1, 2,

σ0|ξ|2 ≤ a
(j)
ρklξkξl ≤ σ1|ξ|2, for ξ ∈ IR2,

σ0, σ1 > 0, depends on ρ, T,

Sρ = S(ρ, ∂ωρ), kρ,ω = k(ρ, ∂ωρ).

Γ1 = ∂Ω1(0) \ Γ0, Γ2 = ∂Ω2(0) \ Γ2, ΓiT = Γi × [0, T ] (i = 0, 1, 2),

L(j)
ρ = ∂t −

2∑
k,l=1

a
(j)
ρkl∂

2
ykyl

−
2∑

k=1

a
(j)
ρk ∂yk

,

g(j)(y, t) and ϕ(j)(y, t) are known functions defined on ΓjT and Ωj(0).

Let GT be an open set in IRn × (0,∞), n = 1, 2. Define

Ĉk+α,(k+α)/2(GT ) =
{
v ∈ Ck−1+α,(k−1+α)/2(GT ), ∂

2
xv ∈ Ck−2+α,(k−2+α)/2(GT )

}
,

0 < α < 1, k = 4, 5, · · · ;
∥v∥Ĉk+α,(k+α)/2(GT ) = ∥v∥Ck−2+α,(k−2+α)/2(GT ) + ∥∂tv∥Ck−3+α,(k−3+α)/2(GT )

+ ∥∂2
xv∥Ck−2+α,(k−2+α)/2(GT ).

Denote

C
◦
k+α,(k+α)/2(GT ) =

{
v ∈ Ck+α,(k+α)/2(GT ); v(·, 0) = 0

}
;

Ĉ
◦
k+α,(k+α)/2(GT ) =

{
v ∈ Ĉk+α,(k+α)/2(GT ); v(·, 0) = ∂tv(·, 0) = 0

}
.

Now we can state our main result as follows:

Theorem 2.1. If Γj ∈ C6+α (j = 0, 1, 2), dist (Γ0, ∂Ω) ≥ L > 0, and σ > 0. Then for

any initial boundary data

g(j)(y, t) ∈ C6+α,(6+α)/2(ΓjT ), ϕ(j)(y) ∈ C6+α(Ωj(0))
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satisfying the consistency conditions to order 3, on a sufficiently small time interval [0, T ]

there exists a classical solution of problem (2.1)–(2.5) such that

v(j)ρ ∈ C2+α,(2+α)/2(QjT ), ρ ∈ Ĉ4+α,(4+α)/2(Γ0T ).

Moreover,
2∑

j=1

∥v(j)ρ ∥C2+α,(2+α)/2 + ∥ρ∥Ĉ4+α,(4+α)/2

≤ C
[ 2∑
j=1

∥ϕ(j)∥C6+α(Ωj(0)) + ∥g(j)∥C6+α,(6+α)/2(ΓjT )

]
.

We now consider the nonlinear operator:

F(ρ) = ∂tρ+ Sρ∂ωv
(1)
ρ − kρ,ω∂ωv

(1)
ρ

on function ρ ∈ Ĉ4+α,(4+α)/2(Γ0T ) with small T , where v
(1)
ρ is a solution of the parabolic

diffraction problem in (2.1)–(2.5) for given ρ ∈ Ĉ4+α,(4+α)/2(Γ0T ) (here the first equality is

canceled in (2.3)). We have

F : Ĉ4+α,(4+α)/2(Γ0T ) → C1+α,(1+α)/2(Γ0T ).

Obviously, that (2.1)–(2.5) has solution (ρ, v
(j)
ρ ) (j = 1, 2) is equivalent to the existence of a

root of F(ρ) = 0. So Theorem 2.1 of this section is reformulated as follows.

Theorem 2.2. Under the same assumptions as in Theorem 2.1, for a sufficiently small

T , there exists ρ ∈ Ĉ4+α,(4+α)/2(Γ0T ) satisfying F(ρ) = 0. Here we suppose ρ is the only

unknown of the problem because v
(j)
ρ are obtained once ρ is determined.

§3. An Initial Approximation and Two Key Lemmas

From the compatibility condition which
{
g(j)(y, t), ϕ(j)(y)

}
satisfies up to order 3 at t = 0,

and using Theorem 4.3 in [7, p. 298], we know that there exists ρ0(ω, t) ∈ C6+α,(6+α)/2(ΓoT )

which satisfies

∥ρ0∥C6+α (6+α)/2(ΓoT ) ≤ C,

where C only depends on ∥ϕ(j)(y)∥C6+α (6+α)/2 .

Let v
(j)
ρo be a solution of parabolic diffraction problem (2.1)–(2.5) for ρ = ρo (here the

first equality is canceled in (2.3)). We have v
(j)
ρo (y, t) ∈ C4+α,(4+α)/2(QjT ), and

∥v(j)ρo
(y, t)∥C4+α,(4+α)/2 ≤ C,

where C is a constant, which only depends on initial-boundary data.

The proof of Theorem 2.2 is based on the following two key Lemmas.

Lemma 3.1. For any δρ ∈ Ĉ
◦
4+α,(4+α)/2(Γ0T ), ∥δρ∥Ĉ4+α,(4+α)/2(Γ0T ) ≤ N, where N is to

be determined later on, we define ρ = ρ0 + δρ and

m = B1(δρ) ≡ F(ρ)−F(ρ0)−DF(ρ0)δρ. (3.1)

Then m ∈ C
◦
1+α,(1+α)/2(Γ0T ) and

∥m∥C1+α,(1+α)/2(Γ0T ) ≤ C∥δρ∥2
Ĉ4+α,(4+α)/2(Γ0T )

, (3.2)

where C only depends on σ, g(j) ϕ(j).
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Lemma 3.2. For any m ∈ C
◦
1+α,(1+α)/2(Γ0T ), we define δρ = B2(m) as the solution of

−F(ρ0)−DF(ρ0)δρ = m. (3.3)

If T is small enough, then there exists a unique δρ ∈ Ĉ
◦
4+α,(4+α)/2(Γ0T ) satisfying (3.3), and

∥δρ∥Ĉ4+α,(4+α)/2(Γ0T ) ≤ C
(
∥m∥C1+α,(1+α)/2(Γ0T ) + ∥F(ρ0)∥C1+α,(1+α)/2(Γ0T )

)
, (3.4)

where C only depends on σ, g(j), ϕ(j).

The proof of Lemma 3.1 is straight forward with tedious calculations. We omit the

detail. The main difficulty is to prove Lemma 3.2, which is left in Sections 4–5. The proof

of Theorem 2.2 can be done by Schuader fixed point theorem, the reader can be referred to

paper [11]. We shall skip the proof here.

§4. Model Problem

In order to study the invertibility of F ′(ρ0) and prove Lemma 3.2, we will solve the

equation: {
−DF(ρ0)δρ = m+ F(ρ0) ≡ m in Γ0T ,
δρ
∣∣
t=0

= 0

for any m ∈ C
◦
1+α,(1+α)/2(Γ0T ), where δρ is unknown.

Using partition of unity (localization), freezing the coefficient at t = 0, neglecting the

lower order terms and using the continuity methods (see [4, Theorem 5.2]), we only need to

consider the simplest model problem as follows (see [10, 11]):

∂tW
(j) − α(j)∇2

zW
(j) = 0 in IR2

j × (0,∞), (4.1)

W (j)
∣∣
t=0

= 0, (4.2)

∂z2W
(1) = α(2)∂z2W

(2) on {z2 = 0} × (0,∞), (4.3)

W (1) −W (2) = −σ∂2
z1δρ+ βδρ on {z2 = 0} × (0,∞), (4.4)

∂tδρ+ ∂z2W
(1) = G on {z2 = 0} × (0,∞), (4.5)

where G ∈ C
◦
1+α,(1+α)/2 on {z2 = 0} × (0,∞) is a known compactly supported function,

β = (∂nϕ
(2)(p) − ∂nϕ

(1)(p)) > 0 for any p ∈ Γ0, R
2
j = {(z1, z2) : (−1)jz2 > 0}. We take

the Fourier transform with respect to z1 and the Laplace transform with respect to t in

(4.1)–(4.5) and then solve the resulting problem (4.1)–(4.5) on the half line. We obtain

δ̃ρ = G̃/g(S, ξ),

where G(S, ξ) = S + (σξ2 + β)br1r2(r1 + br2)
−1, r1(s, ξ) = (S + ξ2)1/2, r2(s, ξ) = (S +

b2ξ2)1/2, S = a + iξ0, a > 0, (ξ0, ξ) ∈ R2, b =
√
α(2) > 1, f̃ denotes the Fourier-Laplace

transform of the function f in the variable z1 and t respectively.

We now proceed to investigate the kernel Uσ,β(z1, t) of the symbol G−1(S, ξ), i.e., of the

fundamental solution

Uσ,β(z1, t) = (2πi · 2π)−1
∫ a+i∞

a−i∞
eStds

∫
IR1

eiz1ξ
dξ

G(S, ξ)
, a ≥ 0.
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§5. Estimates of the Kernels of the Model Problems

To estimate the kernels of the noncoercive model problems in this section we apply a very

useful generalization of Mikhlin’s theorem to Hölder spaces.

The following theorem can be found in [10].

Theorem 5.1. Suppose that K(x, t), x ∈ IRm, t ∈ IR, vanishes at t = 0 and its Fourier-

Laplace transform Ǩ(S, ξ) satisfies the conditions

M
(k)
j,h [Ǩ] ≡

∫ ∞

0

dτ0

τ
3/2
0

· · ·
∫ ∞

0

dτm

τ
3/2
m

×
∥∥△ξ0(τ0) · · ·△ξm(τm)

[
ξ
νj

j ϕ̌
(
ξhk, Shk0

)
Ǩ(ξ, S)

]∥∥
L2(IRm+1)

≤ C1h
l−νjkj ,

and

M
(k)
0,h [Ǩ] ≡

∫ ∞

0

dτ0

τ
3/2
0

· · ·
∫ ∞

0

dτm

τ
3/2
m

×
∥∥△ξ0(τ0) · · ·△ξm(τm)

[
Sν0 ϕ̌

(
ξhk, Shk0

)
Ǩ(ξ, S)

]∥∥
L2(IRm+1)

≤ C1h
l−ν0k0

for sufficiently large νj , j = 0, 1, · · · , n− 1, where ξ = (ξ1, · · · , ξm) and S = a+ iξ0, a ≥ 0.

Then the convolution u = K ∗ f satisfies∑
j=0

J
[
h−r

∣∣∥△mj

j (−hkj )u∥
∣∣
(a)

]
≤ C3

m∑
j=0

J
[
h−r+l

∣∣∥△mj

j (−hkj )f∥
∣∣
(a)

]
,

where
∣∣∥v∥∣∣

(a)
=

∣∣∥ve−at∥
∣∣, u = 0, f = 0 for t < 0, △m0

0 (−hk0) is the finite difference of

order m0 in the variable t with step size hk0 ,△mj

j (−hkj ) are finite differences of order mj

in the variable xj with step size hkj , ∥v∥p = ∥v;Lp(IR
m × IR)∥,

∣∣∥ · ∥
∣∣ is any monotonic,

transitionally semi-invariant norm defined on functions in IRm+1, and v = 0 for all t < 0.

Here k0 = 2, k1 = · · · km = 1, the νj are positive integers, mjkj > r > 0, and mjkj >

r − l > 0.

ϕ(x, t) =
n−1∏
j=1

ϕ(xj)ϕ(t),

where

ϕ(z) =
N∑

k=1

(−1)k+1N !

k!(N − k)!
· 1
k
ζ
( z
k

)
.

Here ζ ∈ C∞
0 ((0, 1)),

∫ 1

0
ζ(z)dz = 1, ζ ≥ 0.

Semi-invariance is connected with the validity of the estimate∣∣ ∥u(x, t− h)∥
∣∣
(a)

≤
∣∣ ∥u(x, t)∥ ∣∣, ∀h ≥ 0, a ≥ 0.

This latter is valid, for example, for the norms
∣∣∥ · ∥

∣∣ = ∥ · ∥p and the Hölder norms. For

a > 0 we have∫ ∞

h

dt

∫
|u(x, t− h)|pe−a(t−h)pdx ≤

∫ ∞

h

dt

∫
|u(x, t− h)|pdx = ∥u∥pp.
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Below we denote by J a “functional of maximum type”, i.e., a monotonically dimensionless

norm defined on functions of positive argument. In the case where
∣∣∥ · ∥∣∣ = ∥ · ∥p and

I[·] = IQ [·] =
(∫ ∞

0

∥ · ∥Qp
dh

h

)1/Q

, p,Q > 1,

the expression
m∑
j=1

I
Q

[
h−lj△kj

j (h)f
]
+ ∥f∥p

is a norm in the Besov space Bl
p,Q(IR

m
x ). If p = Q = 1, this norm becomes the Hölder norm.

First, it is easy to prove the following lemmas.

Lemma 5.1. For ϕ(x, t), we have∣∣Φ̌(ξ, S)∣∣ ≤ C(N)

(1 + |ξ|N )(1 + |S|N )
, for any positive integer N.

Lemma 5.2.

Re[r1r2(r1 + br2)
−1] ≥ C1(|S|+ ξ2)1/2 ≥ C ′

1

∣∣Im[r1r2(r1 + br2)
−1]

∣∣.
Lemma 5.3. For any symbol r(S, ξ), if r(S, ξ) satisfies Rer ≥ C1|Imr|, then

|S1 + r(S, ξ)| ≥ C2(|S1|+ |r|), ∀ReS1 ≥ 0, ReS ≥ 0, ξ ∈ IR1.

Proof. See [12].

We shall now show that for the symbol G(S, ξ) the following lemma holds.

Lemma 5.4. Suppose σ, β > 0. Then the symbol G(S, ξ) satisfies

M
(k)
j,h [αG

−1] ≤ Ch1−νjkj , j = 0, 1, (5.1)

if the νj are sufficiently large.

Proof. To shorten our computation we assume that a = 0. By a change of variables in

the integrals it is easy to show that M
(k)
j,h [G−1] ≤ h1−νjkjMj(h), where

M1(h) =

∫ ∞

0

dτ0

τ
3/2
0

∫ ∞

0

dτ1

τ
3/2
1

×
∥∥△ξ0(τ0)△ξ(τ1)× [ξν1 ϕ̌(S, ξ)G−1(S, ξ;h)]

∥∥
L2(IR2)

,

M0(h) =

∫ ∞

0

dτ0

τ
3/2
0

∫ ∞

0

dτ1

τ
3/2
1

×
∥∥△ξ0(τ0)△ξ(τ1)× [Sν0 ϕ̌(S, ξ)G−1(S, ξ;h)]

∥∥
L2(IR2)

.

Here G(S, ξ;h) = h−1S + (β + σh−2ξ2)r(S, ξ), where r(S, ξ) = r1r2(r1 + br2)
−1.

The estimates below make use of the ideas and methods of the estimates of [10], which

are very closely related to Hólder spaces.

We proceed to the proof. We set

△ξ(τ1)[G−1ξν1 ϕ̌] =
{
(ξ + τ1)

ν1 ϕ̌(S, ξ + τ1)×
[
h−1S + (1 + h−2(ξ + τ1)

2)r(S, ξ + τ1)
]−1

−(ξ)ν1 ϕ̌(S, ξ)×
[
h−1S + (1 + h−2(ξ + τ1)

2)r(S, ξ)
]−1

}
+ (ξ)ν1 ϕ̌(S, ξ)

{[
h−1S + (1 + h−2(ξ + τ1)

2)r(S, ξ)
]−1

−
[
h−1S + (1 + h−2ξ2)r(S, ξ)

]−1
}

≡ △′
1[ξ

ν1 ϕ̌G−1] +△′′
1 [ξ

ν1 ϕ̌G−1].
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In the case (5.2) ξν1 is replaced by Sν0 . The definition of the operators △′
ξ0

and △′′
ξ0

is the

same as above.

It is obvious that

M1(h) =

∫ ∞

0

dτ0

τ
3/2
0

∫ ∞

0

dτ1

τ
3/2
1

×
∥∥(△′

0 +△′′
0)(△′

1 +△′′
1)[ξ

ν1 ϕ̌(S, ξ)G−1(S, ξ;h)]
∥∥
L2(IR2)

≤
∫ ∞

0

dτ0

τ
3/2
0

∫ ∞

0

dτ1

τ
3/2
1

∥∥△′
0△′

1[ξ
ν1 ϕ̌(S, ξ)G−1(S, ξ;h)]

∥∥
L2(IR2)

+

∫ ∞

0

dτ0

τ
3/2
0

∫ ∞

0

dτ1

τ
3/2
1

∥△′
0△′′

1 [·]∥L2(IR2) +

∫ ∞

0

dτ0

τ
3/2
0

∫ ∞

0

dτ1

τ
3/2
1

∥△′′
0△′

1[·]∥L2(IR2)

+

∫ ∞

0

dτ0

τ
3/2
0

∫ ∞

0

dτ1

τ
3/2
1

∥△′′
0△′′

1 [·]∥L2(IR2)

≡ (I)+(II)+(III)+(IV).

We first consider the integral (I). It is obvious that

(I) =

∫ ∞

0

dτ0

τ
3/2
0

∫ ∞

0

dτ1

τ
3/2
1

×
∥∥△′

0△′
1[ξ

ν1 ϕ̌(S, ξ)G−1(S, ξ;h)]
∥∥
L2(IR2)

=

∫ Q0(h)

0

dτ0

τ
3/2
0

∫ Q1(h)

0

dτ1

τ
3/2
1

∥·∥L2(IR2) +

∫ Q0(h)

0

dτ0

τ
3/2
0

∫ ∞

Q1(h)

dτ1

τ
3/2
1

∥·∥L2(IR2)

+

∫ ∞

Q0(h)

dτ0

τ
3/2
0

∫ Q1(h)

0

dτ1

τ
3/2
1

∥·∥L2(IR2) +

∫ ∞

Q0(h)

dτ0

τ
3/2
0

∫ ∞

Q1(h)

dτ1

τ
3/2
1

∥·∥L2(IR2)

≡ I1,1 + I1,2 + I1,3 + I1,4,

where the functions Qj(h) are defined below. For the integral I1,1, we have

I1,1 =

∫ Q0(h)

0

dτ0

τ
3/2
0

∫ Q1(h)

0

dτ1

τ
3/2
1

∥·∥L2(IR2)

≤
∫ Q0(h)

0

dτ0

τ
3/2
0

∫ Q1(h)

0

dτ1

τ
3/2
1

∥·∥αLq(IR2) ∥·∥
1−α
Lp(IR2) , (5.3)

where α/q + (1 − α)/p = 1
2 , ∀α ∈

(
0, 1

2

)
, 1 < q < 2. We estimate the finite differences

over ξ0, ξ in the norms ∥·∥Lq
∥·∥Lp

in terms of the corresponding derivatives. After simple

computations we obtain

∥·∥αLq(IR2) ∥·∥
1−α
Lp(IR2) ≤ const. (τ0τ1)×

∥∥D′
ξ0D

′
ξ[ξ

ν1 ϕ̌G−1(S, ξ;h)]
∥∥α
Lq(IR2)

×
∥∥D′

ξ0D
′
ξ[ξ

ν1 ϕ̌G−1(S, ξ;h)]
∥∥1−α

Lp(IR2)
. (5.4)

We also have

|D′
1[ξ

ν1 ϕ̌(S, ξ)G−1(S, ξ;h)]|

≤ C1

[∣∣∣ ∂
∂ξ

(
ξν1 ϕ̌(S, ξ)

) ∣∣∣|G|−1 + |ξν1 ϕ̌(S, ξ)| |r|−1|G|−1
]
, (5.5)

|D′
0[ξ

ν1 ϕ̌(S, ξ)G−1(S, ξ;h)]|

≤ C0

[∣∣∣ ∂

∂S

(
ξν1 ϕ̌(S, ξ)

) ∣∣∣|G|−1 + |ξν1 ϕ̌(S, ξ)| |r|−2|G|−1
]
, (5.6)
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|D′
0D

′
1[ξ

ν1 ϕ̌(S, ξ)G−1(S, ξ;h)]|

≤ C2

[∣∣∣ ∂

∂S

(
ξν1 ϕ̌(S, ξ)

) ∣∣∣|G|−1 + |ξν1 ϕ̌(S, ξ)| |r|−2|G|−1
]
. (5.7)

It is not hard to see that

M1,1 =

∥∥∥∥|G|−1

∣∣∣∣ ∂

∂S

(
ξν1 ϕ̌(S, ξ)

)∣∣∣∣∥∥∥∥q
Lq

≤
∥∥|G|−1|ξ|ν1 |S||ϕ̌(S, ξ)|

∥∥q
Lq

≤
∥∥|ξ|ν1−1|S||ϕ̌(S, ξ)|

∥∥q
Lq

(by |G| ≥ |r(S, ξ)| ≥ |ξ|)

≤ const.

∫
|ξ|(ν1−1)q(1 + |ξ|N )−1dξ

∫
|S|q

1 + |S|N
dS

≤ C3, (5.8)

if (ν1 − 1)q > −1, N − (ν1 − 1)q > 1 and N − q > 1.

M1,2 =
∥∥|ξ|ν1 ϕ̌(S, ξ)||r|−2|G|−1

∥∥q
Lq

≤
∥∥|ξ|ν1−3|ϕ̌(S, ξ)|

∥∥q
Lq

≤ const.

∫
|ξ|ν1−3(1 + |ξ|N )−1dξ

∫
(1 + |S|N )−1dS

≤ C4, (5.9)

if ν1 − 3 > −1, N − (ν1 − 3) > 1 and N > 1.

Similarly, we have

M1,3 =

∥∥∥∥|G|−1

∣∣∣∣ ∂

∂S
(ξν1 ϕ̌(S, ξ))

∣∣∣∣∥∥∥∥p
Lp

≤ const., (5.10)

M1,4 =
∥∥|ξ|ν1 |ϕ̌(S, ξ)||r|−2G|−1

∥∥p
Lp

≤ const. (5.11)

We set Q0(h) = Q1(h) = 1. Thus, from (5.3)–(5.11), we obtain

I1,1 ≤ C5

∫ 1

0

dτ0

τ
1/2
0

∫ 1

0

dτ1

τ
1/2
1

≤ C6. (5.12)

For the integral I1,2, we estimate the finite differences over ξ0, ξ in the norm ∥ · ∥Lq and over

ξ0 in the norm ∥ · ∥Lp in terms of corresponding derivatives. After simple computations we

obtain

∥·∥αLq
∥·∥1−α

Lp
≤ const. (τ0τ

α
1 )×

∥∥D′
ξ0D

′
ξ[ξ

ν1 ϕ̌G−1(S, ξ;h)]
∥∥α
Lq

×
∥∥D′

ξ0 [ξ
ν1 ϕ̌G−1(S, ξ;h)]

∥∥1−α

Lp
. (5.13)

Noticing (5.6)–(5.9) and (5.13), we have

I1,2 ≤ C7

∫ 1

0

dτ0

τ
1/2
0

∫ ∞

1

τ
− 3

2+α
1 ≤ C5. (5.14)

The integral I1,3 is similar to I1,2, so we have I1,3 ≤ C9. For the integral I1,4, noticing that

∥·∥αLq
∥·∥1−α

Lp
≤ const. (τα0 τ

α
1 )×

∥∥D′
ξ0D

′
ξ[ξ

ν1 ϕ̌G−1(S, ξ;h)]
∥∥α
Lq

×
∥∥ξν1 ϕ̌G−1(S, ξ;h)

∥∥1−α

Lp
,

and (5.7)–(5.9) and

M1,5 = ∥ξν1 ϕ̌G−1(S, ξ;h)∥pLp
≤ const., (5.15)
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we obtain

I1,4 ≤ const.

∫ ∞

1

τ
− 3

2+α
0 dτ0

∫ ∞

1

τ
− 3

2+α
1 dτ1 ≤ C10.

Hence, we have

(I) = I1,1 + I1,2 + I1,3 + I1,4 ≤ const.

Next, we will study the integral (IV):

(IV) =

∫ ∞

0

dτ0

τ
3/2
0

·
∫ ∞

0

dτ1

τ
3/2
1

×
∥∥△′′

0△′′
1 [ξ

ν1 ϕ̌(S, ξ)G−1(S, ξ;h)]
∥∥
L2(IR2)

=

∫ Q0(h)

0

dτ0

τ
3/2
0

·
∫ Q1(h)

0

dτ1

τ
3/2
1

∥·∥L2(IR2) +

∫ Q0(h)

0

dτ0

τ
3/2
0

∫ ∞

Q1(h)

dτ1

τ
3/2
1

∥·∥L2(IR2)

+

∫ ∞

Q0(h)

dτ0

τ
3/2
0

∫ Q1(h)

0

dτ1

τ
3/2
1

∥·∥L2(IR2) +

∫ ∞

Q0(h)

dτ0

τ
3/2
0

∫ ∞

Q1(h)

dτ1

τ
3/2
1

∥·∥L2(IR2)

≡ I4,1 + I4,2 + I4,3 + I4,4.

Noticing that

△′
1[ξ

ν1 ϕ̌(S, ξ)G−1(S, ξ;h)]

=
{
[h−1S + (1 + h−2(ξ + τ1)

2)r(S, ξ)]−1 −[h−1S + (1 + h−2ξ2)r(S, ξ)]−1
}
ξν1 ϕ̌(S, ξ)

=

{
[h−1S + (1 + h−2η2)r(S, ξ)]−1

∣∣∣ξ+τ1

η=ξ

}
ξν1 ϕ̌(S, ξ)

△
= F (S, ξ; η)

∣∣∣ξ+τ1

η=ξ
· ξν1 ϕ̌(S, ξ)

= F ′
η(S, ξ; ξ + λ1)τ1 · ξν1 ϕ̌(S, ξ), 0 < λ1 < τ1

= −[h−1S + (1 + h−2(ξ + λ1)
2)r(S, ξ)]−2 · 2h−2r(S, ξ)(ξ + λ1)ξ

ν1 ϕ̌(S, ξ) · τ1,

we have

D′′
ξ [ξ

ν1 ϕ̌(S, ξ)G−1]

= −[h−1S + (1 + h−2(ξ + λ1)
2)r(S, ξ)]−2 · 2h−2r(S, ξ)(ξ + λ1)ξ

ν1 ϕ̌(S, ξ).
(5.17)

Similarly, we have

D′′
ξ0 [ξ

ν1 ϕ̌(S, ξ)G−1] = −[h−1(S + iλ0) + (1 + h−2ξ2)r(S, ξ)]−2

· h−1iξν1 ϕ̌(S, ξ), 0 < λ0 < τ0, (5.18)

D′′
ξ0D

′′
ξ [ξ

ν1 ϕ̌(S, ξ)G−1(S, ξ;h)] = [h−1(S + iλ0) + (1 + h−2(ξ + λ1)
2)r(S, ξ)]−3

· 4h−3ir(S, ξ)(ξ + λ1)ξ
ν1 ϕ̌(S, ξ). (5.19)

So, we have

M4,1 = ∥D′′
ξ0D

′′
ξ [ξ

ν1 ϕ̌(S, ξ)G−1(S, ξ;h)]∥qLq

≤ const.

∫
|ξ|ν1q

1 + |ξ|N
dξ

·
∫ ∞

−∞

|ξ + λ1|q(h−3|r|)q

|h−1(S + iλ0) + (1 + h−2(ξ + λ1)2)r(S, ξ)|3q · (1 + |S|N )
dS
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≤ const.

∫
|ξ|ν1q

1 + |ξ|N
dξ

·
∫ ∞

−∞

|ξ + λ1|qh−3q

|h−1(S+iλ0)+(1+h−2(ξ+λ1)2)r(S, ξ)|2q ·(1+|S|N )
dS

(by Lemma 5.3)

≤ const.

∫
|ξ|ν1q

1 + |ξ|N
dξ ·

∫ ∞

−∞

h−3q|ξ̂|q

(1 + h−2|ξ̂|2)q|ξ|q · (h−1|Ŝ|+ |ξ|)q
dŜ

(where Ŝ = S + iλ0, ξ̂ = ξ + λ1, 0 < λ0 < τ0, 0 < λ1 < τ1)

≤ const.

∫
h−3q+1|ξ̂|q

(1 + h−2|ξ̂|2)q
dξ̂ ≤ const. h−2q+2. (5.20)

So, we have (let Q0(h) = Q1(h) = h)

I4,1 =

∫ h

0

dτ0

τ
3/2
0

∫ h

0

dτ1

τ
3/2
1

∥·∥L2(IR2)

≤ const.

∫ h

0

dτ0

τ
3/2
0

∫ h

0

dτ1

τ
3/2
1

(τ0τ1)×
∥∥D′′

ξ0D
′′
ξ [ξ

ν1 ϕ̌G−1]
∥∥α
Lq

×
∥∥D′′

ξ0D
′′
ξ [ξ

ν1 ϕ̌G−1]
∥∥1−α

Lp

≤ const.

∫ h

0

dτ0

τ
1/2
0

∫ h

0

dτ1

τ
1/2
1

· hα(−2q+2)/q+(1−α)(−2p+2)/p by (5.20)

≤ const.

∫ h

0

dτ0

τ
1/2
0

∫ h

0

dτ1

τ
1/2
1

· h−1 ≤ const. (5.21)

The integrals I4,2, I4,3, I4,4 can be estimated in the same way as above. Thus, we have

(IV) ≤ const.

In the same way as above, we also obtain

(II), (III) ≤ const.

Here we take Q0(h) = 1, Q1(h) = h and Q0(h) = h, Q1(h) = 1 for the integrals (II) and

(III) respectively.

Finally, we have

M1(h) = (I)+(II)+(III)+(IV) ≤ const.

The estimate about M0(h) is the same as above. It has thus been proved that (5.1) holds

for a = 0. Since the constant in Lemma 5.3 does not depend on Re S ≥ 0, (5.6) holds for

any a ≥ 0 with a constant not depending on a. Lemma 5.4 is proved.

Lemma 5.5. The symbol G1 = SG−1(S, ξ) satisfies

M
(k)
j,h [G1] ≤ const. h−νjkj , j = 0, 1, (5.22)

if the νj are sufficiently large.

The proof proceeds in the same way as the proof of Lemma 5.4. In this case

G1(S, ξ;h) = h−1S[h−1S + (β + h−2ξ2)r(S, ξ)]−1.

It is easy to prove the following
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Lemma 5.6.

M
(k)
j,h [r(S, ξ)

−1] ≤ const. h1−νjkj , (5.23)

M
(k)
j,h [(r1 + br2)

−1(S, ξ)] ≤ const. h1−νjkj , j = 0, 1, (5.24)

if the νj are sufficiently large.

Noticing that

σξ2δρ̃ = sδρ · r(S, ξ)−1δρ̃− G̃ · r(S, ξ)−1

and Theorem 5.1, Lemmas 5.4–5.6, we have

Theorem 5.2. Suppose β > 0, σ > 0. For any compactly supported Φ̌, Ǧ ∈ C
◦
1+α,(1+α)/2

(IR1
z1 × (0,∞)), there exists a unique solution W (j) ∈ C

◦
2+α,(2+α)/2(IR2

j × (0,∞)), j = 1, 2,

δρ ∈ Ĉ
◦
4+α,(4+α)/2(IR1

z1 × (0,∞)) of problem (7.21)–(7.25). Moreover,

2∑
j=1

∥W (j)∥C2+α,(2+α)/2(IR2
j×(0,∞)) + ∥δρ∥Ĉ4+α,(4+α)/2(IR1

z1
×(0,∞))

≤ C
[
∥Φ∥C1+α,(1+α)/2(IR1

z1
×(0,∞)) + ∥G∥C1+α,(1+α)/2(IR1

z1
×(0,∞))

]
Finally, we remove the technical condition β > 0 by Schauder fixed point theorem, the

reader can be referred to paper [11].
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