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Abstract

For the initial-boundary value problem about a type of parabolic Monge-Ampére equation
of the form (IBVP): {−Dtu + (detD2

xu)
1/n = f(x, t), (x, t) ∈ Q = Ω × (0, T ], u(x, t) =

ϕ(x, t) (x, t) ∈ ∂pQ}, where Ω is a bounded convex domain in Rn, the result in [4] by Ivochkina
and Ladyzheskaya is improved in the sense that, under assumptions that the data of the problem
possess lower regularity and satisfy lower order compatibility conditions than those in [4], the
existence of classical solution to (IBVP) is still established (see Theorem 1.1 below). This can

not be realized by only using the method in [4]. The main additional effort the authors have
done is a kind of nonlinear perturbation.
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§1. Introduction

In a recent paper by Ivochkina and Ladyzhenskaya[4], they discussed the initial-boundary

value problem for a type of parabolic Monge-Ampére equation:{
Pu := −Dtu+ (detD2

xu)
1/n = f(x, t), (x, t) ∈ Q = Ω× (0, T ],

u(x, t) = ϕ(x, t), (x, t) ∈ ∂pQ,
(1.1)

where Ω is a bounded convex domain in Rn, Dtu = ∂u
∂t , D

2
xu is the Hessian of the function

u(x, t), i.e., D2
xu = (uij) = ( ∂2u

∂xi∂xj
), i, j = 1, 2, · · · , n, ∂pQ denotes the parabolic boundary

of Q. As a solution of (1.1), u(x, t) should be a strictly convex function in x ∈ Ω for any

fixed t ∈ [0, T ], so the differential equation in (1.1) is a non-uniformly parabolic equation.

Under the structure conditions that either
min
Q

f + min
(x,t)∈∂pQ

Dtϕ(x, t)−
1

2
ad2 ≡ ν1 > 0,

d is the radius of the minimal ball containing Ω,

a = max{0;max
Q

Dtf},

(1.2)
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or 
min
∂pQ

(Dtϕ+ f) ≡ ν̃1 > 0,

f(x, t) is a concave function in x ∈ Ω for any fixed t ∈ [0, T ],

(detD2
xϕ(x, 0))

1/n is a concave function in x ∈ Ω,

(1.2’)

as well as

Pϕ(x, t) = f(x, t), ∀x ∈ Ω t = 0, (1.3)

they essentially established the following existence result of solution with global regularity

in [4]:

If Ω is a bounded and strictly convex domain in Rn, ∂Ω ∈ C4, f(x, t) ∈ C2,1(Q), ϕ(x, t)

∈ C4,2(Q), (D2
xϕ(x, 0)) > 0 on Ω; f and ϕ satisfy the compatibility conditions up to the

first order, and moreover either both (1.2) and (1.3) or both (1.2’) and (1.3) are valid, then

problem (1.1) has a unique solution u(x, t) ∈ C2+α,1+α
2 (Q), ∀α ∈ (0, 1).

As mentioned by Ivochkina and Ladyzhenskaya in [4], our early work [6] studied another

kind of parabolic Monge-Ampére equation, i.e.,{
−DtudetD

2
xu = f(x, t), (x, t) ∈ Q = Ω× (0, T ],

u(x, t) = ϕ(x, t), (x, t) ∈ ∂pQ,
(1.1’)

where u(x, t) is strictly “convex-monotone” i.e., strictly convex in x and strictly decreasing

in t on Q. And, as can be seen, the results in both [6] and [4] have one thing in common:

under higher regularity and compatibility assumptions they obtained solutions of higher

regularity; but limited by the method used there (which is a kind of “linear perturbation”),

the higher regularity assumptions can not be relaxed in those papers, even at the expense

of only lower (or even only lower and interior) regularity of the solutions is required.

By further extending the idea and techniques used in [8], which so relaxed the regularity

and compatibility conditions of the data in [6] that the existence of classical solution with

interior regularity was still obtained, we improve their result in [4] mentiened above.

Besides f(x, t) being only required to be Lipschitz continuous, the condition (1.3), which

is a little stronger than the first order compatibility condition, can also be relaxed. When

(1.2) holds, we replace (1.3) with something like the “one-side first order compatibility

condition” as follows

f(x, 0)− [−Dtϕ(x, 0) + (det(D2
xϕ(x, 0)))

1
n ] ≤ 0, ∀x ∈ ∂Ω. (1.4)

When (1.2’) is valid, there is not any kind of compatibility conditions required, but, to

replace (1.3), we need other restrictions on ϕ(x, t), i.e.{
Dtϕ(x, t) is increasing in t near 0 for x ∈ ∂Ω,

−Dtϕ(x, 0) is concave in x ∈ Ω.
(1.4’)

The main result in this note is the following

Theorem 1.1. Assume that Ω is a bounded and strictly convex domain in Rn, ∂Ω ∈
C2, f(x, t) ∈ C0+1,0+1(Q) (i.e., f(x, t) is Lipschitz continuous with respect to x and t),

ϕ(x, t) ∈ C2,1(Q), and (D2
xϕ(x, 0)) > 0. If, moreover, either conditions both (1.2) and (1.4),

or conditions both (1.2’) and (1.4’), are valid, then the problem (1.1) has a unique solution

u(x, t) which is Lipschitz continuous on Q and belongs to C
2+α,1+α

2

loc (Q).
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Remark. Here and in the sequel the notation of the subscript loc means locally in the

parabolic sense, e.g. f(x, t) ∈ C
2+α,1+α

2

loc (Q) means f(x, t) ∈ C2+α,1+α
2 (D) for any domain

D with D ⊂ Q, which is also denoted by D ⊂⊂ Q (note Q = Ω× (0, T ]).

Theorem 1.1 will be proved by an approach consisting of establishing the uniqueness,

existence and C
2+α,1+α

2

loc (Q)-regularity of the viscosity solution to (1.1), which is, of course,

also a classical solution to (1.1).

In §2 we show the uniqueness and existence of the viscosity solution to (1.1). This

viscosity solution is specially constructed as the limit of certain approximation solutions,

their properties are also studied there.

The regularity is established via nonlinear perturbation introduced by Caffarelli in [1]

and [2]. To realize the procedure one needs both the existence of the solution to the “frozen

problem” and suitable interior estimates of its higher order derivatives. These are given in

§3.
The regularity result is stated in §4.
Those approximation solutions in §2 are of global regularity. Because we assume that

neither f, ϕ, ∂Ω are smooth enough, nor the first order compatibility condition is satisfied,

in order to use the result in [4] (more precisely, what we use is the approach to establish the

result) to obtain the existence of such approximation solutions, we need, after smoothing f ,

ϕ, ∂Ω and so on, to modify the value of the smoothed f(x, t) in a neighborhood of the base

of the smoothed cylindrical domain, so that the compatibility conditions up to the first order

be satisfied. Of course, the range where the smoothed f(x, t) is modified must be getting

smaller and smaller and eventually tending to an empty set. Obviously this requirement

certainly brings some trouble to the task of establishing uniform (independent of the range

of modification) estimate of the derivatives with respect to t of the approximation solutions,

which is of crucial importance in our approach. We confront with the same kind of difficulties

in dealing with the “frozen problem” as can be seen in §3, where we show how to overcome

these difficulties.

Owing to the form of the equation in (1.1) treated here, which is different from the

corresponding parabolic Monge-Ampère equations in [8], in proving the existence of approx-

imation solutions or of the solutions to the frozen problem, in the present case we need

to verify the necessary condition of preventing them from blow up, i.e. “the sum of the

derivative of the solution with respect to t and the function on the right hand side of the

equation must be strictly positive”, which is showed in §5.
By the way, comparing the result here with an early one on the existence of solutions

in C
2+α,1+α/2
loc (Q) to (1.1’) in [5], one can see that f(x, t) needs to be in C2,1(Q) in [5] but

only needs to be Lipschitz continuous on Q in [8] and in this note. Actually, in [5] the

author did not give the proof (even the precise formulation) of a theorem of the existence

of solutions with global regularity, as it was needed to get his conclusion, so the problem

of how to deal with less regularity of f(x, t) and the lack of compatibility conditions as we

do in this note and in [8] were ignored. Mainly the interior estimate of second order spatial

derivatives (like Theorem 3.5 in this note) and some lower order estimates for the solutions

to (1.1’) are obtained in [5]. Moreover, as can be seen in [8] and in this note, to realize
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the nonlinear perturbation, we have more and crucial work to do. Of course, owing to the

special structure of the equation in (1.1’), there is no problem of “preventing the solution

from blow up” in [5] to be treated, but we need to treat such problem for (1.1).

§2. The Special Viscosity Solution

Assumptions.

(A1) Ω is a bounded and strictly convex domain ⊂ Rn with C2 boundary, i.e. there

is a strictly convex function Ψ(x) ∈ C2(Rn) such that Ω = {x ∈ Rn|Ψ(x) < 0} with

∂Ω = {x ∈ Rn|Ψ(x) = 0} and that |DxΨ(x)| ̸= 0, ∀ x ∈ ∂Ω.

(A2) f(x, t) ∈ C0+1,0+1(Q).

(A3) ϕ(x, t) ∈ C2,1(Q) with (D2
xϕ(x, 0)) > 0, ∀x ∈ Ω. (Hence, by (A1), one may assume

that ϕ(x, t) is strictly convex in x for any fixed t ∈ [0, T ].)

(A4) Either (1.2) and (1.4), or (1.2’) and (1.4’), are valid.

Convention.

We will say that “a constant C is under control” or “a controllable constant C”, if the

constant C depends only on the date in (A1)— (A4), e.g. the C2 norm of ∂Ω, the Lipschitz

constant of f(x, t), the C2,1 norm of ϕ, bounds of the eigenvalues of (D2
xϕ(x, t)) as well as

n—the dimension of Rn, etc.

Definition. We call u(x, t) a viscosity subsolution (supersolution) of the equation

Pu(x, t) = f(x, t) in Q, (2.1)

if u(x, t) ∈ C(Q) is convex in x and there exists a constant C > 0 such that u(x, t)− Ct is

strictly decreasing in t. Moreover for any ψ ∈ C2,1(Q), whenever

u(x, t)− ψ(x, t) ≤ (≥)u(x0, t0)− ψ(x0, t0), ∀ (x, t) ∈ Q ∩ {t ≤ t0},

we must have

Pψ(x0, t0) ≥ (≤)f(x0, t0)

(for supersolution, we also require that (Dijψ(x0, t0)) > 0 in matrix sense). If u(x, t) is both

a viscosity subsolution and supersolution of (2.1), then we call u(x, t) a viscosity solution of

(2.1). By a viscosity solution u(x, t) to the problem (1.1) we mean that Pu = f in Q in the

sense of viscosity solution with u(x, t) = ϕ(x, t) holding point wise everywhere on ∂pQ.

As a standard consequence of this definition we have:

Let uk(x, t), u(x, t), fk(x, t) and f(x, t) be continuous functions on Q. Assume that

uk(x, t) and fk(x, t) uniformly converge to u(x, t) and f(x, t) on Q respectively. If there

exist constants Ck > 0 such that uk(x, t)− Ckt is strictly decreasing in t with Ck uniformly

bounded, then, in the sense of viscosity solution, “Puk = fk in Q” implies “Pu = f in Q”.

For the special viscosity solution and its approximations we have

Theorem 2.1. If (A1)—(A4) hold, then the problem (1.1) has a unique viscosity solution

u(x, t) ∈ C(Q). Moreover there exists an approximation sequence {uk(x, t)}∞k=1 ⊂ C∞(Q)∩
C2+α,1+α

2 (Q) such that

sup
Q

|uk(x, t)− u(x, t)| → 0 as k → ∞
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and that 

|uk(x, t)| ≤M0, ∀ (x, t) ∈ Q,

|Dtuk(x, t)| ≤MT , ∀ (x, t) ∈ Q,

|Dxuk(x, t)| ≤M1, ∀ (x, t) ∈ Q,

Dtuk + fk(x, t) ≥
1

2
ν1 > 0, ∀ (x, t) ∈ Q

(2.2)

as well as that 
Puk(x, t) = fk(x, t),

sup
Q

|fk(x, t)| ≤ sup
Q

|f(x, t)|+ 1,

sup
Q

|f(x, t)|+ sup
Q

| −Dtϕ+ (detD2
xϕ)

1/n| ≤M2,

(2.3)

where the constants M0, MT , M1 and M2 are all under control.

The uniqueness can be obtained in the same way as in Proposition 2.3 in [9]. And the

proof of existence can be realized by almost the same approximation procedure as in [8],

with the fk(x, t) constructed by the procedure stated in the opening part of §5, i.e. set

ϵ = ϵk > 0 small enough in (5.6) or (5.6’). But, to prove the existence of the approximation

solutions is different from [8] in directly using the existence theorem of classical solution in

[6]. In the present case one can not use directly the corresponding result in [4] mentioned in

Section 1 of this note since the required structure conditions may not be satisfied. What we

have to do is to follow the approach for deriving this theorem in [4] to establish the existence

again. In so doing there are some points that we need to deal with carefully. For instance,

in proving

|Dtuk(x, t)| ≤MT , ∀ (x, t) ∈ Q,

there is a little difference from [8], which can be seen from, and can be treated by the method

in the proof of Proposition 3.4 below; moreover, for establishing the fact that

Dtuk + fk(x, t) ≥
1

2
ν1 > 0, ∀ (x, t) ∈ Q,

we give a derivation in Lemma 5.1 and Lemma 5.1’ in §5. The rest part of the proof for the

existence of approximation solution is omitted here.

Then obviously we have

Corollary 2.1. Let u(x, t) and uk(x, t) be those from Theorem 2.1. Then, for any

constant C > MT +M2 with M2 from (2.3), the functions

vk(x, t;C) ≡ uk(x, t)− Ct (2.4)

and

v(x, t;C) ≡ u(x, t)− Ct (2.5)

are strictly “convex–monotone”, i.e., strictly convex in x and strictly decreasing in t on Q

with

Pvk(x, t;C) = fk(x, t) + C in Q, (2.6){
−MT − C ≤ Dtvk(x, t;C) ≤MT − C < −M2 < 0, ∀ k ∈ N,

Dtvk(x, t;C) + fk(x, t) + C ≥ ν/2 > 0, ∀ k ∈ N,
(2.7)
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Pv(x, t;C) = f(x, t) + C in Q. (2.8)

It is easily seen that the regularity of the viscosity solution u(x, t) follows from the same

regularity of v(x, t;C) given by (2.5).

§3. Auxiliary Results for Regularity

In this section some auxiliary results for establishing the regularity of v(x, t;C) given by

(2.5) are formulated, most of which can be derived in similar ways as in [8] except one fact

(Proposition 3.4 below).

Theorem 3.1 below tells us that, for any fixed point (x0, t0) ∈ D′ with D′ ⊂⊂ Q, one can

find a sequence of domains DH with “desirable” boundaries, which eventually shrink to this

point. Theorems 3.2 and 3.6 are corresponding to Theorem 3 in [2], which guarantee the

existence of solutions to the frozen problems and the “desirable” interior estimates for the

derivatives of them.

Since the proof of Theorem 3.1 in [8] is only based on the “convex–monotone” property,

by Corollary 2.1 we have

Theorem 3.1. Assume that (A1)—(A4) hold. If u(x, t) is the viscosity solution to (1.1)

obtained from Theorem 2.1, v(x, t;C) is given by (2.5), then for every domain D′ ⊂⊂ Q

there exists a constant H0 > 0 possessing the following property: for (x0, t0) ∈ D′ and

p = Dxv(x0, t0;C) which is the only one among all p ∈ Rn that satisfies

p · (x− x0) + v(x0, t0;C) ≤ v(x, t0;C), ∀ x ∈ Ω,

if we set , for v(x, t;C) given by (2.5),

vH ≡ vH(x, t;C) ≡ v(x, t;C)− p · (x− x0)− v(x0, t0;C)−H,

DH ≡ {(x, t) ∈ Q | vH(x, t;C) < 0, t ≤ t0},
(3.1)

then we have

dist{DH , ∂pQ} > 0, ∀ H ∈ (0,H0]. (3.2)

Moreover, ∀ η > 0, ∃ H(η) > 0 such that, whenever ∀ H ≤ H(η),

diamDH ≤ η, ∀ (x0, t0) ∈ D′. (3.3)

Now we are in a position to formulate the frozen problem and establish the existence of

the smooth solution to it, thus building up a step stone to do nonlinear perturbation.

Theorem 3.2. Under the conditions and notations of Theorem 3.1, there exists a con-

trollable constant C > MT +M2 such that the problem{
PwH(x, t;C) = f(x0, t0) + C in DH ,

wH(x, t;C) = 0 on ∂pDH

(3.4)

has a unique solution wH(x, t;C) ∈ C∞(DH) ∩ C(DH), and there exists a controllable

constant C1 > 0 such that

0 < C−1
1 ≤ −DtwH(x, t;C) ≤ C1 in DH , (3.5)

|DxwH(x, t;C)| ≤ C1 in DH . (3.6)
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To prove this theorem we use twofold approximations again as in [8]. For vk(x, t;C) given

by (2.4) we set
vk,H ≡ vk,H(x, t;C)

≡ vk(x, t;C)−Dxvk(x0, t0;C) · (x− x0)− vk(x0, t0;C)−H,

Dk,H ≡ {(x, t) ∈ Q | vk,H(x, t;C) < 0, t ≤ t0}
(3.7)

and {
Dk,H;l = Dk,H ∩ {t > tk,o + l−1} for sufficient large l ∈ N,

tk,o = inf{t | (x, t) ∈ Dk,H}
(3.8)

and consider problems {
Pũ(x, t) = f̃(x, t) in G,

ũ(x, t) = g(x, t) on ∂pG,
(3.9)

where, in case of G = Dk,H , we set{
f̃(x, t) = f(x0, t0) + C,

g(x, t) = 0,
(3.10)

but in order to satisfy the compatibility conditions up to the first order, in case ofG = Dk,H;l,

we set

f̃(x, t) = f(x0, t0) + C

− h
( t− tk,o − l−1

l−1

)
{f(x0, t0) + C − Pvk,H(x, tk,o + l−1;C)},

g(x, t) = 0(= vk,H(x, t;C)) in ∂pDk,H;l ∩ {t > tk,o + l−1},
g(x, t) = vk,H(x, tk,o;C) on ∂pDk,H;l ∩ {t = tk,o + l−1},

(3.11)

where 
h(s) ∈ C∞(R1) with 0 ≤ h(s) ≤ 1,

h(s) ≡ 1, ∀s ≤ 1

4
, h(s) ≡ 0, ∀s ≥ 1

2
,∣∣∣ d

ds
h(s)

∣∣∣ ≤ 8.

Now we go further along a line as in [8].

The first step is to get a simple lemma:

Lemma 3.1. Let Dk,H and Dk,H;l be given by (3.7) and (3.8) respectively, G = Dk,H or

Dk,H;l. If ũ(x, t) ∈ C2,1(G) ∩C(G) satisfies (3.9) with f̃(x, t) and g(x, t) given by (3.10) or

(3.11) respectively, then there is a controllable constant M > 0 such that

0 ≥ ũ(x, t) ≥ −M on G.

The second step is to prove the key result in this note:

Proposition 3.1. Under the conditions of Lemma 3.1, assume further that ũ(x, t) ∈
C4,2(G) ∩ C1,1(G). Then we have

f̃(x, t) +Dtũ(x, t) ≥
1

4
ν1, ∀ (x, t) ∈ Dk,H;l, (3.12)
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where the constant ν1 comes from (1.2). Moreover, there exists such a controllable constant

C > MT +M2 that one can find a positive constant C1 under control such that

0 < C−1
1 ≤ −Dtũ(x, t) ≤ C1, ∀ (x, t) ∈ G, (3.13)

|Dxũ(x, t)| ≤ C1, ∀ (x, t) ∈ G. (3.14)

Proof. Noticing the facts that f ∈ C0+1,0+1(Q) and fk → f in C(Q) with their first

order derivatives uniformly bounded, as well as the second inequality in (2.7), one can easily

see that, for k large enough, the conditions (5.9) and (5.10) of Lemma 5.2 in § 5 are all

satisfied. Then by that lemma (or repeating its proof) we can obtain (3.12).

(3.14) can be proved easily (in the same way as in [8]), so we only prove (3.13) here.

Case 1. G = Dk,H .

By definition ũ(x, t) satisfies{
Pũ(x, t) = f(x0, t0) + C in Dk,H ,

ũ(x, t) = 0 on ∂pDk,H .

We thus have
−Dt(Dtũ(x, t)) +Θ(x, t)ũij(x, t)Dij(Dtũ(x, t)) = 0 in Dk,H ,

(ũij(x, t)) ≡ (Dij ũ(x, t))
−1,

Θ(x, t) ≡ 1

n
det

1
n (Di,j ũ(x, t)).

By maximum principle we have

inf
∂pDk,H

(Dtũ(x, t)) ≤ Dtũ(x, t) ≤ sup
∂pDk,H

(Dtũ(x, t)), ∀ (x, t) ∈ Dk,H .

To obtain a bound of Dtũ(x, t) on ∂pDk,H , we take Kvk,H(x, t;C) as a barrier with K > 0

being a constant to be determined. Noting (3.7) and (2.6), we have

P[Kvk,H(x, t;C)] = −KDtvk,H +Kdet
1
n (Dijvk,H)

= K[fk(x, t) + C].

Then, by (2.3), we have{
P[Kvk,H(x, t : C)] > f(x0, t0) + C = Pũ(x, t) in Dk,H

for K = 3, C ≥ 4{sup |f |+ 1},
and 

P[Kvk,H(x, t;C)] < f(x0, t0) + C = Pũ(x, t) in Dk,H

for K =
1

2
, C ≥ 4[sup |f |+ 1],

as well as

vk,H(x, t;C) = ũ(x, t) = 0 on ∂pDk,H .

Therefore we have 
1

2
Dtvk,H(x, t;C) ≥ Dtũ(x, t),

Dtũ(x, t) ≥ 3Dtvk,H(x, t;C),

for C ≥ 4[sup |f |+ 1], ∀ (x, t) ∈ ∂pDk,H ,
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which shows that (3.13) is true for any C > MT + 4M2 in case G = Dk.

Case 2. G = Dk,H;l.

We divide G into three parts:

G1 = Dk,H;l ∩
{
t ≤ tk,o + l−1 +

1

4
l−1

}
,

G2 = Dk,H;l \ (G1 ∪G3),

G3 = Dk,H;l ∩
{
t > tk,o + l−1 +

1

2
l−1

}
,

and consider the problem in each of them separately.

Firstly note that when (x, t) ∈ G1 we have

f̃(x, t) = f(x, tk,o + l−1) + C,

Dtf̃(x, t) ≡ 0.

So by the same reasoning as in Case 1 we have

inf
∂pG1

Dtũ(x, t) ≤ Dtũ(x, t) ≤ sup
∂pG1

Dtũ(x, t), ∀ (x, t) ∈ G1. (3.15)

To estimate the extreme sides we use barrier again and, as in Case 1, we get
1

2
Dtvk,H(x, t;C) ≥ Dtũ(x, t) ≥ 3Dtvk,H(x, t;C)

for C ≥ 4[sup |f |+ 1], ∀ (x, t) ∈ ∂pG1 ∩ {t > tk,o + l−1}
(3.16)

and then, by the compatibility condition of the first order, we have{
Dtũ(x, tk,o + l−1) = Dtvk,H(x, tk,o + l−1;C),

∀(x, tk,o + l−1) ∈ ∂pG1 ∩ {t = tk,o + l−1}.
(3.17)

Therefore, from (3.15)—(3.17) we have
1

2
sup
∂pG1

Dtvk,H(x, t;C) ≥ Dtũ(x, t) ≥ 3 inf
∂pG1

Dtvk,H(x, t;C)

for C ≥ 4[sup |f |+ 1], ∀ (x, t) ∈ G1.

(3.18)

Then from (3.7) and (2.7) we conclude − 1

2
(C −MT ) ≥ Dtũ(x, t) ≥ −3(C +MT )

for C ≥ 4[sup |f |+ 1], ∀(x, t) ∈ G1,
(3.19)

which means that (3.13) is true for any (x, t) ∈ G1.

Secondly note that when (x, t) ∈ G2 we have

f̃(x, t) = f(x0, t0) + C

− h
( t− tk,o − l−1

l−1

)
{f(x0, t0) + C − Pvk,H(x, tk,o + l−1;C)}.

By definitions of h(s) and vk,H as well as (2.6) and (2.3) we have

|[t− tk,o − l−1]Dtf̃(x, t)| ≤ 8(2 sup |f |+ 1), ∀ (x, t) ∈ G2. (3.20)

Denote

L ≡ −Dt +Θ(x, t)ũij(x, t)Dij ,

(ũij(x, t)) ≡ (Dij ũ(x, t))
−1,

Θ(x, t) ≡ 1

n
det

1
n (Di,j ũ(x, t)).
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Then from (3.9) and (3.11) we have

Lũ(x, t) = −Dt(Dtũ(x, t)) +Θ(x, t)ũij(x, t)Dij(Dtũ(x, t))

= Dtf̃(x, t), ∀ (x, t) ∈ G2.

Set 
U(x, t) = [t− tk,o − l−1]K exp{Dtũ(x, t)},

L̃U(x, t) ≡ L(x, t)−
∑
i

Θ(x, t)(
∑
i

ũij(x, t)DiDtũ(x, t))DjU(x, t)

with K being a constant to be determined. Then we have

L̃U(x, t) = −K(t− tk,o − l−1)K−1 exp{Dtũ(x, t)}
− (t− tk,o − l−1)K exp{Dtũ(x, t)}Dt(Dtũ(x, t))

+ (t− tk,o − l−1)K exp{Dtũ(x, t)}Θ(x, t)ũij(x, t)Dij(Dtũ(x, t))

= (t− tk,o − l−1)K−1 exp{Dtũ(x, t)}[−K + (t− tk,o − l−1)Dtf̃(x, t)].

Hence by (3.20) we have{
L̃U(x, t) ≤ (t− tk,o − l−1)K−1 exp{Dtũ(x, t)}[−K + 8(2 sup |f |+ 1)] ≤ 0

for K = K0 ≡ 8(sup |f |+ 1), ∀ (x, t) ∈ G2

and {
L̃U(x, t) ≥ (t− tk,o − l−1)K−1 exp{Dtũ(x, t)}[−K − 8(2 sup |f |+ 1)] ≥ 0

for K = −K0 ≡ −8(sup |f |+ 1), ∀ (x, t) ∈ G2.

By maximum principle we thus have
[t− tk,o − l−1]K0eDtũ(x,t) ≥ inf

∂pG2

[t− tk,o − l−1]K0eDtũ(x,t),

[t− tk,o − l−1]−K0eDtũ(x,t) ≤ sup
∂pG2

[t− tk,o − l−1]−K0eDtũ(x,t),

K0 = 8(sup |f |+ 1), ∀ (x, t) ∈ G2.

(3.21)

Note that

1

4l
≤ (t− tk,o − l−1) ≤ 1

2l
, ∀ (x, t) ∈ G2, (3.22)

so we have, from (3.21) and (3.22), that

( 1

2l

)K0

eDtũ(x,t) ≥
( 1

4l

)K0

exp{ inf
∂pD2

Dtũ(x, t)},( 1

2l

)−K0

eDtũ(x,t) ≤
( 1

4l

)−K0

exp{ sup
∂pD2

Dtũ(x, t)},

K0 = 8(sup |f |+ 1), ∀ (x, t) ∈ G2.

Hence it holds that 
Dtũ(x, t) ≥ −K1 + inf

∂pG2

Dtũ(x, t),

Dtũ(x, t) ≤ K1 + sup
∂pG2

Dtũ(x, t),

K1 = 16(sup |f |+ 1), ∀ (x, t) ∈ G2.

(3.23)
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From (3.19) we have
inf

∂pG2∩{t=tk,o+l−1+ 1
4 l

−1}
Dtũ(x, t) ≥ −3(C +MT ),

sup
∂pG2∩{t=tk,o+l−1+ 1

4 l
−1}

Dtũ(x, t) ≤ −1

2
(C −MT ),

for C ≥ 4[sup |f |+ 1].

(3.24)

And a barrier argument as used for G1 gives
inf

∂pG2∩{t>tk,o+l−1+ 1
4 l

−1}
Dtũ(x, t) ≥ −3(C +MT ),

sup
∂pG2∩{t>tk,o+l−1+ 1

4 l
−1}

Dtũ(x, t) ≤ −1

2
(C −MT ),

for C ≥ 4[sup |f |+ 1].

(3.25)

From (3.23)—(3.25) we then have
K1 −

1

2
(C −MT ) ≥ Dtũ(x, t) ≥ −K1 − 3(C +MT ), ,

K1 = 16(sup |f |+ 1) ∀ (x, t) ∈ G2,

for, C ≥ 4[sup |f |+ 1].

So we may choose, e.g., {
C =MT + 32(sup |f |+ 1) + 1,

C1 = 120[sup |f |+ 1] + 8MT .
(3.26)

Then we have

−C1 ≤ Dtũ(x, t) ≤ −C1
−1 < 0, ∀ (x, t) ∈ G2, (3.27)

which means that (3.13) is true for any (x, t) ∈ G2.

Finally note that when (x, t) ∈ G3 we have

f̃(x, t) ≡ f(x0, t0) + C, Dtf̃(x, t) ≡ 0,

so by the same reasoning as for G1, we have

inf
∂pG3

Dtũ(x, t) ≤ Dtũ(x, t) ≤ sup
∂pG3

Dtũ(x, t), ∀ (x, t) ∈ G3 (3.28)

and 
1

2
Dtvk,H(x, t;C) ≥ Dtũ(x, t) ≥ 3Dtvk,H(x, t;C),

∀ (x, t) ∈ ∂pG3 ∩ {t > tk,o + l−1 +
1

2
l−1}

for C ≥ 4[sup |f |+ 1],

(3.29)

as well as 
Dtũ(x, t) = Dtũ(x, tk,o + l−1 +

1

2
l−1),

∀ (x, t) ∈ ∂pG3 ∩ {t = tk,o + l−1 +
1

2
l−1}.

(3.30)

From (3.28)—(3.30) and (3.27) we conclude that (3.13) is true for any (x, t) ∈ G3, the

combination of which with (3.19) and (3.27) shows that (3.13) is true in the case G = Dk,H;l

with C and C1 determined by (3.26). And the proof of Proposition 3.1 is thus completed.
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Having established the above Proposition we can prove or derive the following two theo-

rems in the same ways as in [8].

Theorem 3.3. Let DH , Dk,H and Dk,H;l be given by (3.1), (3.7) and (3.8) respectively.

Assume that w(x, t) ∈ C∞(G) ∩ C(G) with its first order derivatives bounded in G for

G = DH or Dk,H , and w(x, t) ∈ C4,2(G) ∩ C2,1(G) for G = Dk,H;l, as well as that w(x, t)

is the solution of (3.4) or w(x, t) = ũ(x, t) is the solution of (3.9) with f̃(x, t) and g(x, t)

given by (3.10) and (3.11). Then for any G1 ⊂⊂ G (in the conventional parabolic sense) it

holds that

sup
G1

|D2
xw(x, t)| ≤

C2diamxG

distx{G1, ∂pG} · dist2t{G1, ∂pG}
(3.31)

where 
diamxG = sup{|x1 − x2| | (x1, t), (x2, t) ∈ G},
distx{G1, ∂pG} = inf{|x1 − x2| | (x1, t) ∈ G1, (x2, t) ∈ ∂pG},
distt{G1, ∂pG} = inf{|t1 − t2| | (x, t1) ∈ G1, (x, t2) ∈ ∂pG},

C2 = C2(n, T, sup |w|, sup |Dxw|, inf |Dtw|−1, sup |f̃ |, sup |Dxf̃ |, sup |D2
xf̃ |).

Note that, for frozen problem (3.4) or (3.9) with f̃ given by (3.10), the right hand side

of the equation is a constant, so the constant C2 depends only on the bounds of f and is

independent of the derivatives of f .

Theorem 3.4. Under the conditions and notations of Theorem 3.3, for any domain

G2 ⊂⊂ G1 (in the conventional parabolic sense), there exist constant C3 > 0 and β ∈ (0, 1)

depending only on the data from (A1)—(A4) as well as dist(G2, ∂pG1) such that

|w(x, t)|
C2+β,1+ 1

2
β(G2)

≤ C3. (3.32)

Note that, for G = DH or G = Dk,H , what Theorem 3.4 gives is just the “desirable”

interior estimates for the higher order derivatives of the solution to the frozen problems.

The last step is the proof of Theorem 3.2 itself, which can be realized by using Lemma

3.1, Proposition 3.14, Theorems 3.3 and 3.4 in the same way as in the proof of Lemma 3.1 of

[8]. About this procedure we should add the following crucial remark, which was also used

implicitly there.

Remark 3.1. Note that the defining functions Φk(x, t) ≡ vk,H(x, t;C) of Dk,H in (3.7),

as well as in Lemma 3.1 of [8], are strictly convex-monotone and smooth in a neighborhood

of Dk,H . So it follows easily that, as in the beginning part of the proof of Proposition 1.1

in [9], each of the Legendre transformations

Lk : (x, t) ∈ Dk,H → (p = DxΦk(x, t), h = DxΦk(x, t) · x− Φk(x, t))

is an injection. Therefore, because at the lowest point (xk,0, tk,0) of ∂pDk,H we have DxΦ =

0, and Φk(x, t) = 0 everywhere on ∂pDk,H , we conclude that, for all large l ∈N,

DxΦk(x, t) ̸= 0 everywhere on the lateral part of ∂pDk,H .

This property of Dk,H;l just meets the needs of the method of continuity in employing the

known result about linear equation (see Theorem 7 on page 65 in [3]).

Remark 3.2. If f(x0, t0) in (3.10) is replaced by fk(x0, t0), then (3.9) becomes the

frozen problem related to vk,H . From above one can see that, for these frozen problems,
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the existence of solutions and the kind of “desirable” interior estimates for the derivatives

of solutions are all valid, which are uniform for k.

§4. Regularity

We establish the regularity of the function v(x, t;C) given by (2.5) with C fixed by (3.26),

from which the regularity of the viscosity solution u(x, t) obtained from Theorem 2.1 follows

at once.

The regularity result of the note is the following

Theorem 4.1. If (A1)—(A4) hold, then the viscosity solution u(x, t) to problem (1.1)

belongs to C
2+α,1+α

2

loc (Q), α ∈ (0, 1).

To prove this theorem, by using the results of [6] as in [8], it is enough to establish

the locally uniform bounds of the second order derivatives (or the second order deference

quotient) with respect to x for the approximation solutions. But, since the derivation of

this kind of bounds depends only on the existence of solutions to the frozen problems and

on the “desirable” interior estimates of these solutions, in view of Remark 3.2, one can use

the same procedure to derive this kind of bounds for v or for vk. And this can be realized

by the same procedure as in §4 of [8], so we omit it.

§5. Appendix

In this section we show the strict positiveness of the sum of the derivative of the solutions

with respect to t and the function on the right hand side of the equation. Lemma 5.1 and

Lemma 5.1’ deal with the case of the approximation problem, the case of frozen problem is

dealt with in Lemma 5.2.

In order to use the result like those in [4] to construct approximation solutions, we need to

make the data of the problem smooth and satisfy the compatibility conditions. To this end,

we extend the data to the outside of Ω× [0, T ] and then modify them suitably to make them

not only smooth enough but also satisfy certain inequalities. Precisely speaking, suppose,

in doing so, f, ϕ,Ω and [0, T ] become g, ψ,Γ and (t̆, T ] respectively with
Q = Ω× [0, T ] ⊂ Γ× (t̆, T ] =: K,

ψ(x, t) is strictly convex in x,

Γ is a strictly convex domain,

(5.1)

then the following inequalities are satisfied : When it is supposed that the conditions (1.2)

and (1.4) hold, we have

min
K

g + min
(x,t)∈∂pK

Dtψ(x, t)−
1

2
ād̄2 ≥ ν1/2 > 0,

d̄ is the radius of the minimal ball containing Γ,

ā = max{0;max
K

Dtg},

min
Γ

(detD2
xψ(x, t̆))

1/n ≥ ˜̃ν1

(5.2)
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and {
g(x, t)− [−Dtψ(x, t̆) + (det(D2

xψ(x, t̆)))
1
n ] < 0

for (x, t) near ∂Γ× {t = t̆};
(5.3)

and if (1.2’) and (1.4’) hold, we have

min
∂pK

(Dtψ + g) ≥ ν̃1/2 > 0,

g(x, t) is a concave function in x ∈ Γ for any fixed t ∈ [t̆, T ],

(detD2
xψ(x, t̆))

1/n is a concave function in x ∈ Γ,

min
Γ

(detD2
xψ(x, t̆))

1/n ≥ ˜̃ν1

(5.2’)

and {
−Dtψ(x, t) is decreasing in t near t̆ for x ∈ Γ,

−Dtψ(x, t̆) is concave in x ∈ Γ.
(5.3’)

In the case when either (1.4) or (1.4’) holds (hence either (5.3) or (5.3’) is valid), we need

further modification of the data. It is easy to see that we can construct cutoff functions η(s)

and ζ(x) such that they not only satisfy the following conditions
η(s) ∈ C∞(R1) with 0 ≤ η(s) ≤ 1, η′(s) ≤ 0,

η(s) ≡ 1 for s ≤ 1

4
; η(s) ≡ 0 for s ≥ 1

2

(5.4)

and {
ζ(x) ∈ C∞(Rn), 0 ≤ ζ(x) ≤ 1,

ζ(x) ≡ 1 for x near ∂Γ; ζ(x) ≡ 0 for x a little far from ∂Γ
(5.5)

but also possess the following properties: when (5.3) holds we have, for small ϵ > 0,
− η

( t− t̆

ϵ

)
ζ(x){g(x, t)− [−Dtψ(x, t̆) + (det(D2

xψ(x, t̆)))
1
n ]} ≥ 0,

− 1

ϵ
η′
( t− t̆

ϵ

)
ζ(x){g(x, t)− [−Dtψ(x, t̆) + (det(D2

xψ(x, t̆)))
1
n ]} ≤ 0,

∀(x, t) ∈ K;

(5.3-1)

when (5.3’) holds we then have
η
( t− t̆

ϵ

)
{Dtψ(x, t)−Dtψ(x, t̆) + (det(D2

xψ(x, t̆)))
1/n} ≥ 0,

∀ (x, t) ∈ ∂Γ× [t̆, T ],

−Dtψ(x, t̆) is concave in x ∈ Γ.

(5.3’-1)

Now if we set  f̃(x, t) = g(x, t)− η
( t− t̆

ϵ

)
ζ(x){g(x, t)

− [−Dtψ(x, t̆) + (det(D2
xψ(x, t̆)))

1
n ]}

(5.6)

or

f̃(x, t) = g(x, t)− η
( t− t̆

ϵ

)
{g(x, t)− [−Dtψ(x, t̆) + (det(D2

xψ(x, t̆)))
1
n ]} (5.6’)

(Note that the notation f̃ in this section is different from the same one in §3),
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then the problem {
Pu := −Dtu+ (detD2

xu)
1
n = f̃(x, t), (x, t) ∈ K,

u(x, t) = ψ(x, t) (x, t) ∈ ∂pK
(5.7)

obviously satisfies the compatibility conditions up to the first order.

In the case when both (1.2) and (1.4) (hence (5.2) and (5.3-1)) hold, we need to show

Lemma 5.1. Let Γ be a strictly convex domain in Rn, K = Γ×(t̆, T ]. If u(x, t) ∈ C2,1(K)

is the solution to the problem (5.7) with f̃(x, t) defined in (5.6), and g, ψ, ∂Γ are all smooth,

(5.2), (5.3-1) are valid, then it holds that

Dtu+ f̃(x, t) ≥ ν1
2
, ∀ (x, t) ∈ K (5.8)

with ν1 from (5.2).

And in the case when (1.2’) and (1.4’) are satisfied (hence (5.2’) and (5.3’-1) hold), we do

not need to do further modification. Based on them we can prove the “strictly positiveness”,

i.e.,

Lemma 5.1’. Under the assumptions of Lemma 5.1 with (5.3-1) and (5.2) replaced by

(5.3’-1) and (5.2’) as well as f̃(x, t) defined in (5.6’), it holds that

Dtu+ f̃(x, t) ≥ min
{ ν̃1

2
,
˜̃ν1
2

}
(5.8’)

with ν̃1, ˜̃ν1 from (5.2’) respectively .

Finally we consider an analogy of the frozen problems discussed before, which can still

be written in the form as in (5.7) with f̃(x, t) defined by (5.6’), but with the g(x, t) =const.

in it, and moreover with the structure conditions being both{
inf
K
g(x, t) + inf

∂pK
Dtψ ≥ ν > 0,

g(x, t) ≡ const.
(5.9)

and  |g(x, t)− [−Dtψ(x, t̆) + (det(D2
xψ(x, t̆)))

1
n ]| ≤ µ, ∀x ∈ Γ

with 0 < µ ≤ ν

2(1 + ||η′||L∞)
.

(5.10)

The motivation of doing this is to illustrate the method of proving (3.12) of Proposition 3.1.

We have

Lemma 5.2. Under the assumptions of Lemma 5.1’ with (5.2’) and (5.3’-1) replaced by

(5.9) and (5.10), it holds that

Dtu+ f̃(x, t) ≥ ν

2
(5.11)

with ν from (5.9).

Proof of Lemmas 5.1, 5.1’and 5.2. Let us consider the linear parabolic operator,

which is the linearization of P around u, acting on v, and is given by

Lu(v) = −Dtv + Fij(D
2
xu)Dijv, (5.12)

where Fij(D
2
xu) =

∂(det(uij))
1/n

∂uij
satisfying the inequality

trace(Fij(D
2
xu)) ≡

n∑
i=1

Fii(D
2
xu) ≥ 1. (5.13)
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Firstly we prove Lemma 5.2.

We divide the domain K into three parts:

K1 = K ∩ {t− t̆ ≤ ϵ/4},
K2 = K ∩ {t̆+ ϵ/4 < t ≤ t̆+ ϵ/2},
K3 = K \ (K1 ∪K2).

On the domain K1, we have

Lu(Dtu) = Dtf̃(x, t) ≡ 0.

Then, by comparison theorem, it holds that

Dtu(x, t) ≥ min
∂pK1

Dtψ, ∀ (x, t) ∈ K1. (5.14)

Hence, for (x, t) ∈ K1, we have, by (5.9) and (5.10),

f̃(x, t) +Dtu = [−Dtψ(x, t̆) + (det(D2
xψ(x, t̆)))

1/n]− g(x, t) + g(x, t) +Dtu

≥ −µ+ g(x, t) + min
∂pK

Dtψ

≥ −µ+ inf
K
g(x, t) + min

∂pK
Dtψ

≥ ν/2 for µ ≤ ν/2.

(5.15)

On the domain K2, let

v = Dtu+ b(t− t0), with t0 = t̆+ ϵ/4, b = µ||η′||L∞/ϵ.

Then we have

Lu(v) ≤ Dtf̃(x, t)− b ≤ 0 for (x, t) ∈ K2.

By comparison, it follows that

Dtu+ b(t− t0) ≥ min
∂pK2

Dtu ∀ (x, t) ∈ K2.

Hence for (x, t) ∈ K2 we have, in view of (5.14),

f̃(x, t) +Dtu(x, t) ≥ f̃(x, t) + min
∂pK

Dtψ − bϵ/4

≥ g(x, t)− µ+min
∂pK

Dtψ − µ||η′||L∞/4

≥ 1

2
ν forµ ≤ ν

2(1 + ||η′||L∞)
.

(5.16)

On the domain K3, we have

Lu(Dtu) = Dtf̃(x, t) = Dtg(x, t) = 0 for (x, t) ∈ K3.

By comparison, it holds that

Dtu(x, t) ≥ min
∂pK3

Dtu, ∀ (x, t) ∈ K3.

Hence, for (x, t) ∈ K3, we have

f̃(x, t) +Dtu(x, t) ≥ f̃(x, t) + min
∂pK3

Dtu = g(x, t) + min
∂pK3

Dtu. (5.17)

And combining this with (5.16) we get

f̃(x, t) +Dtu(x, t) ≥ g(x, t) + min
∂pK2

Dtψ ≥ ν/2. (5.18)
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Thus Lemma 5.2 is proved.

Next we prove Lemma 5.1, which is much simple.

From (5.6) and (5.3-1) we have

Dtf̃(x, t) =
[
1− η

( t− t̆

ϵ

)
ζ(x)

]
Dtg(x, t)

− 1

ϵ
η′
( t− t̆

ϵ

)
ζ(x){g(x, t)− [−Dtψ(x, t̆) + (det(D2

xψ(x, t̆)))
1/n}

≤ (1− ηζ)Dtg(x, t),

therefore, with the constant ā from (5.2),

Dtf̃(x, t)− ā ≤ (1− ηζ)Dtg(x, t)− ā ≤ 0 in K.

Hence for

v = Dtu− 1

2
ā(x− x0)

2

we obtain, in virtue of (5.13),

Lu(v) ≤ Dtf̃(x, t)− ā ≤ 0 in K.

By comparison, it holds that

Dtu− 1

2
ā(x− x0)

2 ≥ min
∂pK

Dtψ − 1

2
ād̄2.

Noticing the definition of f̃(x, t), (5.3-1) and (5.2), we thus have

f̃(x, t) +Dtu ≥ f̃(x, t) +Dtu− 1

2
ā(x− x0)

2

≥ f̃(x, t) + min
∂pK

Dtψ − 1

2
ād̄2

≥ g(x, t) + min
∂pK

Dtψ − 1

2
ād̄2

≥ ν1/2 for (x, t) ∈ K.

Thus Lemma 5.1 is proved.

Finally let us go to prove Lemma 5.1’, which is also simple.

From

Lu(Dtu+ f̃(x, t)) = Dtf̃ −Dtf̃ + (1− η)FijDijg

+ ηFijDij{−Dtψ(x, t̆) + (det(D2
xψ(x, t̆)))

1/n}

≤ ηFijDij{−Dtψ(x, t̆) + (det(D2
xψ(x, t̆)))

1/n} ≤ 0 in K,

where we used the concaveness assumption, then by comparison we have

Dtu(x, t) + f̃(x, t) ≥ min
∂pK

{Dtu+ f̃}. (5.19)

When (x, t) ∈ ∂Γ× [t̆, T ], from (5.2’) and (5.3’-1) we have

Dtu(x, t) + f̃ = Dtu(x, t) + g(x, t)− η
( t− t̆

ϵ

)
{g(x, t)

− [−Dtψ(x, t̆) + (det(D2
xψ(x, t̆)))

1/n]}

≥ (1− η)ν̃1/2 + η(det(D2
xψ(x, t̆)))

1/n

≥ min{ν̃1, ˜̃ν1}/2.
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When (x, t) ∈ Γ× {t = t̆}, from (5.7) and (5.2’), we have

Dtu(x, t̆) + f̃(x, t̆) = (det(D2
xu(x, t)))

1/n|t=t̆

= (det(D2
xψ(x, t̆)))

1/n ≥ ˜̃ν1.

Combining the above two inequalities with (5.19), we complete the proof of Lemma 5.2.
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