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ITERATION OF FIXED POINTS ON HYPERSPACES
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Abstract

Let X be a compact, convex subset of a Banach space E and CC(X) be the collection of

all non-empty compact, coonvex subset of X equipped with the Hausdorff metric h. Suppose
K is a compact, convex subset of CC(X) and T : (K, h) → (K, h) is a nonexpansive mapping.
Then for any A0 ∈ K, the sequence {An} defined by An+1 = (An + TAn)/2 converges to a
fixed point of T. The special case that K consists of singletons only yields results previously

obtained by H. Schaefer, M. Edelstein and S. Ishikawa respectively.
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§1. Introduction

Suppose X is a compact convex subset of a Banach space E and 2X is the collection of

all non-empty compact, subset of X equipped with Hausdorff metric h. It is well-known

that (2X , h) is compact. Let CC(X) be the collection of all non-empty compact, convex

subsets of X and CS(X) the collection of all non-empty compact, star-shaped subsets of X

respectively. We shall deduce that both (CC(X), h) and (CS(X), h) are compact subsets

of (2X , h). If the underlying Banach space is of finite dimension, the former is Blaschke’s

Convergence Theorem[1] and the latter is Valentine’s Conjecture[7]. On the other hand,

suppose T : X → X is a nonexpansive mapping, it has been proved by Ishikawa[4] that for

any initial x0 in X the sequence {xn}, where

xn = (xn−1 + Txn−1)/2 for n = 1, 2, 3, · · · ,

converges to a fixed point of T . If the underlying Banach space E is assumed to be uni-

formly convex or strictly convex, Ishikawa’s result has been previously proved by Schaefer[5]

and Edelstein[2] respectively. We shall prove that Ishikawa’s result can be extended to

(CC(X), h). Also, we call attention to the readers that the structure of the hyperspaces can

be very different from the underlying set X since for X = [0, 1], the clsoed unit interval, it

has been proved by Schori and West[6] that (2[0,1], h) is homeomorphic to the Hilbert cube.
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§2. Basic Definitions and Notations

Let (M, d) be a metric space, and CB(M) be the collection of all non-empty closed,

bounded subsets of M . If A is a subset of M and ε > 0, let N(A; ε) = {x ∈ M : d(x, a) <

ε for some a ∈ A}. Suppose A,B ∈ CB(X). The Hausdorff metric h induced by d is defined

as

h(A,B) = inf{ε > 0 : A ⊂ N(B; ε) and B ⊂ N(A; ε)}.

Equivalently,

h(A,B) = max{sup
x∈A

d(x,B), sup
x∈B

d(x,A)},

where d(x,A) = inf
a∈A

d(x, a). Suppose now E is a Banach space. A subset S ⊆ E is said to

be star-shaped if and only if there exists an element p ∈ S such that tp + (1 − t)x ∈ S for

t ∈ [0, 1] and x ∈ S; such an element p is called a star-point of S.

§3. Main Resuults

We shall begin with the following lemma which has been noted in [3], and we shall

reproduce it for the sake of completenees.

Lemma 3.1. Suppose (M,d) is a metric space, A,An ∈ CB(M) for n = 1, 2, 3, · · · . If
h(An, A) → 0 as n → ∞, then A = {a ∈ M : a = lim

k→∞
ank

, ank
∈ Ank

and {Ank
} is a

subsequence of An}.
Proof. Let a ∈ A. Since h(An, A) → 0 as n → ∞, we may choose n1 < n2 < · · · such

that n ≥ nk implies h(An, A) < 1/k and hence h(Ank
, A) < 1/k. Thus for a ∈ A, there exists

ank
∈ Ank

such taht d(ank
, a) < 1/k. Consequently, lim

k→∞
ank

= a. On the other hand, let

x = lim
k→∞

ank
, where ank

∈ Ank
. Supoose r = d(x,A) > 0. Since h(An, A) → 0, we also have

h(Ank
, A) → 0. Thus there exists some k such that d(ank

, x) < r/2 and h(Ank
, A) < r/2.

Hence there exists a ∈ A with d(ank
, a) < r/2. Therefore

d(a, x) ≤ d(a, ank
) + d(ank

, x) < r/2 + r/2 = r,

which implies that d(x,A) < r. That is a comtradiction and the proof is complete.

Theorem 3.1. Let X be a compact, convex subset of a Banach space E. Then (CC(X), h)

⊆ (CS(X), h) and both are compact subsets of (2X , h).

Proof. We shall establish that (CS(X), h) is sequentially compact. For that purpose, let

{Sn} ⊆ (CS(X), h) ⊆ (2X , h). Since (2X , h) is compact, Sn has a convergent subsequence

and by relabelling if necessary, we may assume Sn → S ∈ 2X . It remains to show that

S is star-shaped. Since each Sn is star-shaped, each Sn contains a star-point, say xn.

Compactness of X implies that xn has a convergent subsequence {xn} such taht xni → x ∈
X. Lemma 3.1 implies that x ∈ S. We claim that x is a star-point for S. For that purpose,

let y ∈ S and t ∈ [0, 1]. Since y ∈ S = lim
i→∞

Sni , again Lemma 3.1 implies the existence of

yni(j)
∈ Sni(j)

such that lim
j→∞

yni(j)
= y. That each xni(j)

is a star-point of Sni(j)
now yields

txni(j)
+ (1− t)yni(j)

∈ Sni(j)
.

Also continuity of vector addition and scalar multiplication implies

txni(j)
+ (1− t)yni(j)

→ tx+ (1− t)y.
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Thus Lemma 3.1 implies that tx+(1− t)y ∈ S and consequently (CS(X), h) is sequentially

compact. In the case of CC(X), let An ∈ CC(X) and An → A ∈ 2X . That A is convex can

be proved by observing that every x ∈ A is a star-point of A as in the previous case and the

proof is complete.

Remark. If the underlying Banach space E is finite dimensional, Theorem 3.1 yields

Blaschke’s Convergence Theorem as well as a solution to Valentine’s Conjecture which has

been noted by T. Hu[3]. Also, we remark that since the intersection of star-shaped sets is

not necessarily star-shaped, the usual techniques for treating convex sets can hardly carry

over to star-shaped sets.

Next, we shall establish the following results which, together with Theorem 3.1, motivate

the formulation of Theorem 3.2 and they are also the basic tools for its proof.

Lemma 3.2. Let E be a Banach space. Suppose A,B,C,D are compact, convex subsets

of E. Then we have the following:

(a) αA+ βB is a compact, convex subset of E.

(b) A is convex if and only if A =
n∑

i=1

αiA, where αi ≥ 0,
n∑

i=1

αi = 1.

(c) h(αA,αB) = |α|h(A,B).

(d) h(A+ C,B +D) ≤ h(A,B) + h(C,D).

(e) h(A+ C,B + C) = h(A,B).

Proof. The results (a), (b), (c), (d) are either well-known or easily verifiable and are

thus omitted. To prove (e), first, observe that

h(A+ C,B + C) ≤ h(A,B) + h(C,C) = h(A,B).

To establish the reverse inequality, we let h(A + C,B + C) = r and a0 ∈ A. Claim that

there exists b0 ∈ B such that ∥a0 − b0∥ ≤ r. For that purpose fixing n and choosing c0 ∈ C,

we have a0 + c0 ∈ A+ C ⊆ N(B + C; r + 1/n). Thus there exists b1 ∈ B, c1 ∈ C with

∥(a0 + c0)− (b1 + c1)∥ < r + 1/n.

Similarly, there exists b2 ∈ B, c2 ∈ C with

∥(a0 + c1)− (b2 + c2)∥ < r + 1/n.

Inductively, we get bn ∈ B, cn ∈ C with

∥(a0 + cn−1)− (bn + cn)∥ < r + 1/n.

Summing up the inequalities, we obtain

∥na0 − (b1 + b2 + · · ·+ bn) + (c0 − cn)∥ < nr + 1,

or

∥a0 − (b1 + b2 + · · ·+ bn)/n∥ < r + (1 + δ(C))/n,

where δ(C) = diam(C). Putting b̄n = (b1 + b2 + · · ·+ bn)/n ∈ B, we get

∥a0 − b̄n∥ < r + (1 + δ(C))/n.

B compact implies {b̄n} has convergent subsequence b̄nj , with b̄nj → b0. Comsequently

∥a0 − b0∥ = lim
j→∞

∥a0 − bnj∥ ≤ r
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and the claim is proved. Similarly, for any b0 ∈ B, there exists a0 ∈ A such that ∥a0−b0∥ ≤ r.

Thus h(A,B) ≤ r = h(A+ C,B + C) and the proof is complete.

Now, observe that CC(X) has “convexity” structure since for any A,B ∈ CC(X), we

have αA+ (1− α)B ∈ CC(X) by Lemma 3.2. Also suppose

X = {x̄ = {x} : x ∈ X}.

We have (X,h) ⊆ (CC(X), h) and (X,h) is isometric to (X, ∥ ∥). Thus, it is natural to

ask if Ishikawas’s result is extendable to compact, convex subsets of CC(X). We shall prove

that is true in the following theorem.

Theorem 3.2. Let X be a non-empty, compact, convex subset of a Banach space and K
a nonempty compact convex subset of CC(X). Suppose T : (K, h) → (K, h) is nonexpansive.

Then for any A0 ∈ K, the sequence defined by

An = (An−1 + TAn−1)/2 for n = 1, 2, 3, · · · ,

converges to a fixed point of T.

Proof. For simplicity, the results of Lemma 3.2 shall be applied extensively without

explicitly mentioning them. First, note that

h(An+1, An) = h((An + TAn)/2, (An +An)/2)) = h(TAn, An)/2,

and similarly

h(An+1, TAn) = h((An + TAn)/2, (TAn + TAn)/2) = h(An, TAn)/2.

Thus we have

h(An, TAn) = 2h(An, An+1) = 2h(TAn, An+1) for n = 0, 1, 2, · · · . (3.1)

Now

h(An+1, TAn+1) ≤ h((An+1 + TAn) + h(TAn + TAn+1)

≤ h(An, TAn)/2 + h(An, An+1)

= h(An, TAn)/2 + h(An, TAn)/2

= h(An, TAn)

by (3.1) and nonexpansiveness of T . Thus {h(An, TAn)}∞n=1 is a decreasing sequence of

non-negative numbers and hence lim
n→∞

h(An, TAn) exists. Suppose

lim
n→∞

(An, TAn) = 2r.

Then for ε > 0 there exists N > 0 such that n ≥ N implies

2r ≤ h(An, TAn) ≤ 2(r + ε)

and (3.1) yields r ≤ h(An, An+1) ≤ r + ε. To simplify notation, put Bk = AN+k for

k = 0, 1, 2. · · · Hence we have 2r ≤ h(Bk, TBk) ≤ 2(r + ε) and

r ≤ h(Bk, Bk+1) ≤ r + ε for k = 0, 1, 2, · · · .

Next, we claim that

h(Bk, TBk+n) ≥ (n+ 2)(r + ε)− 2n+1ε for k = 0, 1, 2, · · · , and for n = 1, 2, · · · . (3.2)

Note

h(Bk+1, C) = h((Bk + TBk)/2, (C + C)/2) ≤ h(Bk, C)/2 + h(TBk, C)/2
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which implies

h(Bk, C) ≥ 2h(Bk+1, C)− h(TBk, C) for any C ∈ K. (3.3)

We shall now prove our claim by induction on n. For n = 1, we have

h(Bk, TBk+1) ≥ 2h(Bk+1, TBk+1)− h(TBk, TBk+1) ≥ 2(2r)− h(Bk, Bk+1)

≥ 4r − (r + ε) = 3r − ε for all k = 0, 1, 2, · · ·

by applying (3.3), (3.1) and nonexpansiveness of T . Suppose

h(Bk, TBk+n) ≥ (n+ 2)(r + ε)− 2n+1ε for all k = 0, 1, 2, · · · .

Then

h(Bk, TBk+n+1) ≥ 2h(Bk+1, TBk+n+1)− h(TBk, TBk+n+1)

≥ 2h(Bk+1, Bk+n+1)− h(Bk, Bk+n+1)

≥ 2h(Bk+1, TBk+n+1)−
n∑

i=0

h(Bk+i, Bk+i+1)

≥ 2{(n+ 2)(r + ε)− 2n+1ε} − (n+ 1)(r + ε)

= (n+ 3)(r + ε)− 2n+2ε

by applying (3.3), nonexpansiveness of T , triangular inequality and induction hypothesis

successively. Now that (3.2) is proved, we shall deduce that r = 0. Assuming the contrary,

we have r > 0. Putting ε = r/2n+1 we get

h(B0, TBn) ≥ (n+ 2)(r + r/2n+1)− 2n+1(r/2n+1)

≥ (n+ 2)r − r = (n+ 1)r.

That is a contradiction to compactness of K. Thus

lim
n→∞

h(An, TAn) = 0.

K compact implies {An} has a convergent subsequence {Ank
} with Ank

→ A∞ ∈ K. Then

h(A∞, TA∞) ≤ h(A∞, Ank
) + h(Ank

, TAnk
) + h(TAnk

, TA∞)

≤ 2h(A∞, Ank
) + h(Ank

, TAnk
) → 0 as k → ∞

and hence A∞ = TA∞. Also

h(An+1, A∞) = h((An + TAn)/2, (A∞ +A∞)/2)

≤ h(An, A∞)/2 + h(TAn, TA∞)/2

≤ h(An, A∞)

and thus lim
n→∞

h(An, A∞) exists. But

lim
k→∞

h(Ank
, A∞) = 0

and consequently

lim
n→∞

h(An, A∞) = 0

and the proof is complete.

Remark. The special case that K = X in Theorem 3.2 yields Ishikawa’s result. As

noted in the introduction, the structure of hyperspaces can be rather complicated; however
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the mapping [x, y] → ((y+ x)/2, (y− x)/2) is affine isometry of CC([0, 1]) onto a triangular

region in (R2, ∥ ∥1) as noted by T. Hu[3] and consequently, this affine embedding provides

many interesting and non-trivial examples of our results in this paper. For instance, there

are infinitely many distinct compact convex K ⊆ CC(X) other than the two special cases

K = X and K = CC(X).
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