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Abstract

Two conjectures in the qualitative theory of quadratic differential systems are proved under
certain conditions.
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Ye Yanqian[1] have investigated limit cycle (LC) bifurcation of the quadratic differential

system

ẋ = −y + lx2 +mxy + ny2 , P (x, y), ẏ = x(1 + ax+ by) , Q(x, y), (1)

under the conditions: mb ̸= 0, a < 0, b+ 2l > 0, n+ l < 0, n = 1. He proposes the

following

Conjecture 1. Under the condition

(n+ b)(n+ l)2 − a2(n+ b+ 2l) = 0, (2)

when m ̸= m∗ = a(b+ 2l)/(n+ l) > 0, the system (1) has no LC around O.

With the help of Dulac function, we will prove this conjecture when m < 0.

Take a Dulac function

B(x, y) = Lα
+L

β
−(1 + by)

γ
b , (3)

where

α =
−am(m+ σ)

2σ[am− (n+ b)(n+ l)]
+

m

σ
, β =

am(m− σ)

2σ[am− (n+ b)(n+ l)]
− m

σ
,

γ = − (n+ b)(n+ l)W1

a[am− (n+ b)(n+ l)]
, W1 = m(n+ l)− a(b+ 2l),

L+ = (m+ σ)(ny − 1)− 2n(n+ b)x, L− = (m− σ)(ny − 1)− 2n(n+ b)x,

σ =
√
m2 + 4n(n+ b).
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Then we have
∂(BP )

∂x
+

∂(BQ)

∂y

= −2n(n+ b)Lα−1
+ Lβ−1

− (1 + by)
γ
b {2n(n+ b)(α+ β)(xy − lx3 −mx2y − nxy2)

+ [α(m− σ) + β(m+ σ)](1− ny)(y − lx2 −mxy − ny2)

+ n[α(m+ σ) + β(m− σ)](x2 + ax3 + bx2y)

− 2n(α+ β)[x(1− ny) + ax2(1− ny) + bxy(1− ny)]

− 2[n(n+ b)(b+ 2l)x3 +mn(n+ b)x2y +m(b+ 2l)x2(1− ny)

+m2xy(1− ny)− (b+ 2l)x(1− ny)2 −my(1− ny)2]

− 2γ[n(n+ b)x3 +mx2(1− ny)− x(1− ny)2]}+ aγx2Lα
+L

β
−(1 + by)

γ
b −1

= −2n(n+ b)Lα−1
+ Lβ−1

− (1 + by)
γ
b {y(1− ny)2[α(m− σ) + β(m+ σ) + 2m]

− m

n
x(1− ny)[α(m− σ) + β(m+ σ) + 2m]

+ x2[−2m(n+ b)(α+ β + 1) + α(n+ b)(m+ σ) + β(n+ b)(m− σ)]

− 2x(1− ny)2[n(α+ β)− (b+ 2l + γ)]

+ x2(1− ny)[2m(n+ b)(α+ β)− 2an(α+ β) + 2m(n− l)

− b[α(m+ σ) + β(m− σ)]− 2mγ]

+ x3[−2nl(n+ b)(α+ β)− 2n(n+ b)(b+ 2l) + an[α(m+ σ) + β(m− σ)]

− 2γn(n+ b)]}+ γax2Lα
+L

β
−(1 + by)

γ
b −1

= − 4n(n+ b)W1

am− (n+ b)(n+ l)
x2{am(1− ny) + (n+ b)(n+ l)[n(n+ b)x2

+mx(1− ny)− (1− ny)2](1 + by)−1}Lα−1
+ Lβ−1

− (1 + by)
γ
b . (4)

Under the conditions in [1], L+ and L− are either invariant straight lines or tangents of

the two separatrices at the saddle N(0, 1
n ); in the latter case, trajectories intersect L+(L−)

all from one side to the other side. Since 1 + by = 0 is a straight line with the same

property, and O(0, 0) locates in the triangular domain Ω constructed by the lines L+ =

0, L− = 0 and 1 + by = 0 ( see Fig.1 ), if system (1) has closed orbit or singular closed

orbit around O, it must locate in Ω. When W1 = 0, O is a center; when W1 ̸= 0, since

n(n+ b)x2 +mx(1− ny)− (1− ny)2 < 0 in Ω, am · (n+ b)(n+ l) < 0, (4) does not change

its sign in Ω, and ∂(BP )
∂x + ∂(BQ)

∂y ̸≡ 0 in any subdomain of Ω. We know from the Dulac

theorem that system (1) has no closed orbit or singular closed orbit for m ≤ 0.

Fig.1 Fig.2
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Similarly, if in (1) we have n+ l > 0 and m > 0, then the same conclusion holds.

Remark 1. If we let

α =
(b+ 2l)

2nσ
(σ +m) +

m

σ
, β =

(b+ 2l)

2nσ
(σ −m)− m

σ
, γ = 0,

in the Dulac function B(x, y) defined by (3), then the divergence of (1) is

∂(BP )

∂x
+

∂(BQ)

∂y
= −4n(n+ b){x[am(n+ b+ 2l)

− (n+ b)(n+ l)(b+ 2l)] + (1− ny)W1}x2Lα−1
+ Lβ−1

− . (5)

If the condition (2) holds, we have

∂(BP )

∂x
+

∂(BQ)

∂y
= −4n(n+ b)W1[

(n+ b)(n+ l)

a
x+ 1− ny]x2Lα−1

+ Lβ−1
− . (6)

Similar to the above proof, when m ≤ −a(b+2l)
n+l , since the slope of the line L′ , (n+b)(n+l)

a x+

1 − ny = 0 is less than that of L+ = 0, (6) does not change its sign in the domain under

the line L+ = 0 and L− = 0 (see Fig.2), and the conjecture in [1] is correct. Since a(b +

2l)/(n + l) > 0, the previous condition m ≤ 0 is better. Even though, making use of (6),

under certain conditions, we can prove a concentrated distribution theorem of LCs of the

system (1) as follows.

Theorem. When W1 ̸= 0, limit cycles can not co-exist both around O and any other

focus of (1).

For, otherwise, there would be three contact points on the line L′.

Ye Yanqian[2,3] have investigated the LC bifurcation of the system

ẋ = −y + δx+ lx2 + ny2 , P (x, y), ẏ = x(1 + ax− y) , Q(x, y), (7)

under the conditions: −1 < l < 0, n + l − 1 > 0, a ≤ 0, and −1 ≤ l < 0, n + l > 0, n > 1,

a ≤ 0, respectively. He proposes the following

Conjecture 2. Under the conditions

−l < na2 < (n− 1)(n+ l)2, a2 − 4(n− 1)(1− l) > 0, (8)

the system (7) can not simultaneously have limit cycles around O and S1, respectively
[3].

We now will prove this conjecture. Use the Dulac fuction

B(x, y) = (1− y)2l−1, (9)

∂(BP )

∂x
+

∂(BQ)

∂y
= (1− y)2l−2[δ(1− y)− (2l − 1)ax2]. (10)

Since y − 1 = 0 is a straight line having the same property as 1 + by = 0 in Fig.1, LCs

of (7) must locate in the domain y > 1 or y < 1. The x coordinate of the critical points

Si(xi, yi) (i = 1, 2, x1 < x2) on 1 + ax− y = 0 satisfy

(na2 + l)x2 + (δ + 2na− a)x+ n− 1 = 0. (11)

If the system (7) has four finite critical points, δ must satisfy

δ > a(1− 2n) + 2
√
(na2 + l)(n− 1) > 0, (12)

or

δ < a(1− 2n)− 2
√
(na2 + l)(n− 1) > 0. (13)
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When δ satisfies (12), S1 and S2 both locate in the domain y > 1, making use of (10),

we know that (7) has no LC around S1. If δ satisfies (13), S1 and S2 both locate in

the domain y < 1. (7) has no LC around O or S1 as δ ≤ 0, by (10). Therefore, when

δ > a(1− 2n) + 2
√
(na2 + l)(n− 1) or δ ≤ 0, the conjecture is correct.

As for the case 0 < δ < a(1 − 2n) − 2
√
(na2 + l)(n− 1), since the y coordinate of any

critical point P(1, y, 0) of (7) at infinity satisfies

f(y) , ny3 + (1 + l)y − a = 0, (14)

and f ′(y) = 3ny2 + 1 + l > 0, (7) has a unique stable node P (1, y0, 0)(y0 < 0, λ1 =

−l − ny20 < 0, λ2 = −1 − l − 3ny20 < 0) at infinity. Let L , y − kx − 1
n = 0, and

k , k(δ) =
−δ−

√
δ2+4(1− 1

n )

2 be the slope of the tangent of the separatrice at N(0, 1
n ). Then

dL

dt

∣∣∣∣
(7)

= ẏ − kẋ = −[nk3 + (1 + l)k − a]x2. (15)

Since dk
dδ < 0 as δ > 0, k(0) = −

√
1− 1

n < 0, we have k(δ) < 0 for all δ > 0, f ′
δ =

[3nk2 + 1 + l]kδ < 0. Note that

f(k(0)) = −[(n+ l)

√
1− 1

n
+ a]. (16)

Since na2 < (n− 1)(n+ l)2, we have (n+ l)
√
1− 1

n + a > 0, i.e., f(k(0)) < 0, hence,

f(k(δ)) = nk3 + (1 + l)k − a < 0 as δ > 0.

Furthermore, L = 0 is a straight line without contact, and k < y0 < 0 for all δ > 0. When

δ = 0, O is a stable weak focus, S1 is a stable strong critical point, and the system (7) has

no limit cycle (see [4, Theorem 15.1]). In this case we have Fig.3. From the Fig.4 in [3], for

0 < δ ≪ 1, when div(7) = 0 locates on the left of S1, since O is an unstable focus, S1 is a

stable critical point, we can obtain the phase- portrait Fig.4. When S1 locates on the right

of div(7) = 0, S1 is always a strong critical point, LC can not be generated from S1. Since

the line div(7) = 0 moves rightward with the increase of δ, when div(7) = 0 locates on the

left of S1, div|S2
< 0. Since S1 is a stable critical point, two separatrices passing through

S2 can not form a separatrix loop around S1. Therefore, when div(7) = 0 locates on the

left of S1, (7) has no limit cycle around S1 (here we have not considered the semi-stable LC

which suddenly appears).

Fig.3 Fig.4 Fig.5
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When div(7) = 0 passes through S1 (see Fig.5), δ satisfies

δ = δ1 , (1− 2l)
a(1− 2n)−

√
a2 − 4(1− l)(n− 1)

2(na2 + 1− l)
, (17)

and when the intersection point of L and div(7) = 0 locates on the x-axis, δ must satisfy

δ = δ2 , (1− 2l)√
n(n− 2l)

. (18)

Now, we want to prove δ2 < δ1, that is, when δ increases from 0, div(7) = 0 moves rightward,

it first passes through M as δ = δ2, and then passes through S1 as δ = δ1. Since LC around

O locates on the left of B, and M locates on the right of B, they have disappeared as δ = δ2.

So, if δ2 < δ1, then (7) has no LC around O as δ = δ1.

Propersition 1. For −1 ≤ l ≤ − 1
4 , δ2 < δ1 if and only if

n2(n− 1)2a4 + n(n− 1)2[2− n− 2n(n− 1)(n− 2l)]a2

+ [n(n− 2l)(n− 1)2 + (n− 1)(1− l)]2 > 0. (19)

Proof. The formula (19) is equivalent to

n2(n− 1)2a4 − (1− 2n+ 2n2)[n(n− 2l)(n− 1)2 + (n− 1)(1− l)]a2

+ [n(n− 2l)(n− 1)2 + (n− 1)(1− l)]2 > −(1− l)(n− 1)(1− 2n)2a2,

that is

a2(1−2n)2[a2−4(1−l)(n−1)] < [2n(n−2l)(n−1)2+2(n−1)(1−l)−a2(1−2n+2n2)]2. (20)

From the condition (8), we have 4n(1− l) < (n+ l)2 < n(n+ l), i.e., n > 4− 5l. So, when

−1 ≤ l ≤ − 1
4 ,

2n(n− 2l)(n− 1)2 + 2(n− 1)(1− l)− a2(1− 2n+ 2n2)

> 2n(n− 2l)(n− 1)2 + 2(n− 1)(1− l)− (1− 1

n
)(n+ l)2(1− 2n+ 2n2)

= 2n(n− 1)(−4nl − n+ 2l − l2) + 2(n− 1)(1− l) + (1− 1

n
)(2n− 1)(n+ l)2 > 0.

Hence, (20) is equivalent to

1√
n(n− 2l)

<
2(n− 1)

a(1− 2n) +
√

a2 − 4(1− l)(n− 1)
,

i.e., δ2 < δ1. This completes the proof of Propersition 1.

Obviously, (19) is equivalent to

a2 < [n− 2 + 2n(n− 1)(n− 2l)−
√
D]/2n , R, (21)

or

a2 > [n− 2 + 2n(n− 1)(n− 2l) +
√
D]/2n, (22)

where D = −(4−n−2l)(n−2l)(1−2n)2 > 0. By straight calculation, we have the following

Propersition 2. For −1 ≤ l ≤ − 1
4 ,

(n− 1)(n+ l)2 < [n− 2 + 2n(n− 1)(n− 2l)−
√
D]/2n. (23)

We know from (8) and (21) that for −1 ≤ l ≤ − 1
4 , (19) is correct, that is, δ2 < δ1, hence,

when div(7) = 0 passing through S1, the LC around O has disappeared. Therefore, for

−1 ≤ l ≤ − 1
4 , δ ≥ δ1, (7) can not simultaneously have LCs around O and S1, respectively.
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When −1
4 < l < 0, if the intersection point of div(7) = 0 and L locates on P (x, y) = 0,

δ(= δ3) satisfies

δ23 =
E −

√
E2 + 4(n− 1)(1− l)(1− 2l)2

2n(l − 1)
, (24)

where E = n+n2+5l− l2−4nl−2. We do not know if δ3 < δ1 generally, but for l = −0.20,

−0.10 and −0.05, we have the following numerical results respectively:

n 6 10 20 30 50 100

a -5.294 -9.297 -19.298 -29.299 -49.299 -99.299
δ1 0.2340 0.13754 0.06915 0.04625 0.02784 0.01396
δ3 0.19261 0.12377 0.06557 0.04466 0.02725 0.01359

n 6 10 20 30 50 100
a -5.392 -9.391 -19.396 -29.397 -49.398 -99.399
δ1 0.19364 0.11651 0.05895 0.03951 0.02382 0.01195
δ3 0.16887 0.10779 0.05669 0.03849 0.02345 0.01168

n 6 10 20 30 50 100
a -5.431 -9.439 -19.444 -29.446 -49.447 -99.449
δ1 0.18225 0.10616 0.06044 0.03616 0.02181 0.01095
δ3 0.15662 0.09956 0.05215 0.03536 0.02153 0.01089

where n, a and l satisfy the condition (8) and 0 < a+ (n+ l)
√
1− 1

n < 0.001. Since

δ′1a = − 2(n− 1)(1− 2l)

[a(1− 2n) +
√

a2 − 4(1− l)(n− 1)]2

[
1− 2n+

a√
a2 − 4(1− l)(n− 1)

]
> 0, (25)

4n(n− 1)(1− l) > −l as 4− n− 5l < 0, hence we know from the selection of a that for all

a satisfying 4(n− 1)(1− l) < a2 < (1− 1
n )(n+ l)2, δ3 < δ1 as l = −0.20, −0.10 and −0.05.

Since the LC around O locates on the left of B, when div(7) = 0 passes through S1, (7)

has no LC around O. By the above numerical results, we can affirm that for −1
4 < l < 0,

when div(7) = 0 passes through S1, (7) has no LC around O. Furthermore, (7) can not

simultaneously have LCs around O and S1, respectively.

Remark 2. The problem whether or not semi-stable LC can appear suddenly around S1

as δ increases from 0 to a(1− 2n)− 2
√
(na2 + l)(n− 1) will be considered in a forthcoming

paper.
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