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Abstract

Consider the scalar nonlinear delay differential equation

d

dt
[x(t)− f(t, x(t− τ))] + g(t, x(t− δ)) = 0, t ≥ t0,

where τ, δ ∈ (0,∞), f, g ∈ C([t0,∞) × RI ,RI ) and xg(t, x) ≥ 0 for t ≥ t0, x ∈ RI . The author
obtains sufficient conditions for the zero solution of this equation to be uniformly stable as well
as asymptotically stable.
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§1. Introduction

Consider the following neutral delay differential equation

d

dt
[x(t)− f(t, x(t− τ))] + g(t, x(t− δ)) = 0, t ≥ t0, (1.1)

where τ, δ ∈ (0,∞), f, g ∈ C([t0,∞)×RI ,RI ) and xg(t, x) ≥ 0, for t ≥ t0, x ∈ RI .

When f(t, x) ≡ 0 and g(t, x) = Q(t)x, Equation (1.1) reduces to the nonneutral equation

dx(t)

dt
+ g(t, x(t− δ)) = 0, (1.2)

whose stability of the zero solution has been extensively investigated in the literature (see

for example [1, 2, 4–12]). The best result known to us is obtained in [10] (see also [8]), which

says that if there is H > 0 such that 0 ≤ xg(t, x) ≤ Q(t)x2 for t ≥ t0, |x| < H and∫ t+δ

t

Q(s)ds ≤ 3

2
, t ≥ t0, (1.3)

then the zero solution of Equation (1.2) is uniformly stable. In addition, if

sup
t≥t0

∫ t+δ

t

Q(s)ds <
3

2
and inf

t≥t0

∫ t+δ

t

Q(s)ds > 0, (1.4)

then the zero solution of Equation (1.2) is asymptotically stable.
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It was also pointed in [10] that the upper bound 3
2 in (1.3) is the best possible for Equation

(1.2). For several other related results on the stability of Equation (1.2), we may refer to

[2, 4, 5, 6, 7] for the linear case g(t, x) = Q(t)x. Recently, conditions (1.3) and (1.4) have

been developed to equations with unbounded delays, one can refer to [1, 10]. In [6], the

asymptotic behavior of all solutions of the linear equation

d

dt
[x(t)− px(t− τ)] +Q(t)x(t− δ) = 0, t ≥ t0 (1.5)

was studied when Q(t) is eventually positive. In this case, it was shown that if∫ ∞

t0

Q(s) ds = ∞ (1.6)

and

2|p|+ lim sup
t→∞

∫ t

t−δ

Q(s) ds < 1, (1.7)

then every solution of Equation (1.5) tends to zero as t → ∞.

When δ = 0, g(t, x) = g(x) and f(t, x) = px, the stability of Equation (1.1) has been

investigated in [3]. It was proved in [3, p.300] that if |p| < 1
2 and xg(x) > 0 for x ̸= 0, |g(x)| →

∞ as |x| → ∞, then the zero solution of Equation (1.1) is uniformly asymptotically stable

and every solution tends to zero as t → ∞. Our purpose in this paper is to develop conditions

(1.3) and (1.4) to Equation (1.1) of neutral type. The main results in this paper are the

following two theorems, which are brand-new to the present time.

Theorem 1.1. Assume that there are p ∈ [0, 1) and H > 0 such that

|f(t, x)| ≤ p|x| and xg(t, x) ≤ Q(t)x2, t ≥ t0, |x| < H (1.8)

and that

2p(2− p) +

∫ t+δ

t

Q(s) ds ≤ 3

2
, t ≥ t0. (1.9)

Then the zero solution of Equation (1.1) is uniformly stable.

Theorem 1.2. Assume that (1.6) and (1.8) hold and that

λ = 2p(2− p) + sup
t≥t0

∫ t+δ

t

Q(s) ds <
3

2
. (1.10)

Then the zero solution of Equation (1.1) is asymptotically stable.

We should note that (1.9) becomes (1.3), and (1.10) becomes the first condition (1.4)

when p = 0, while in this case the second condition of (1.4) is much improved by (1.6). In

the meantime, by Theorem 1.2 we see that if (1.6) holds and

2|p|(2− |p|) + lim sup
t→∞

∫ t+δ

t

Q(s) ds <
3

2
, (1.11)

then every solution of Equation (1.5) tends to zero as t → ∞.

Clearly, (1.11) is an improvement on (1.7).

Finally, we shall apply the above theorems to the following neutral delay logistic equation

ẋ(t) = rx(t)
[
1− x(t− τ) + ρẋ(t− τ)

K

]
, (1.12)

where r,K, τ ∈ (0,∞) and ρ ∈ RI . This equation was first introduced and investigated in

[12] (see also [13]).
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§2. Proofs of Main Results

In this section, one will prove Theorems 1.1 and 1.2 listed in the above section. The

method we will use is not the usual Liapunov functional (or function) method.

Proof of Theorem 1.1. Let ρ = max{τ, δ},m = min{τ, δ}. Then both ρ and m are

positive constants. Now choose a positive integer l such that lm ≥ 2δ. For any ε ∈ (0,H),

define η = (1−p)ε/(1+p)(2p+ 5
2 )

l. We will prove that for any t̄ ≥ t0, ϕ ∈ C([t̄−ρ, t̄], (−η, η))

implies

|x(t; t̄, ϕ)| < ε, t ≥ t̄, (2.1)

where x(t; t̄, ϕ) denotes the solution of Equation (1.1) satisfying the initial condition x(s; t̄, ϕ)

= ϕ(s) for s ∈ [t̄ − ρ, t̄]. For the convenience, in the sequel we denote x(t) = x(t; t̄, ϕ) and

always set

z(t) = x(t) − f(t, x(t− τ)). (2.2)

Denote ρ1 = (2p+ 5
2 )η, ρi = (2p+ 5

2 )ρi−1, i = 2, · · · , l. Then ρi = (2p+ 5
2 )

iη, i = 1, · · · , l.
Clearly, η < ρ1 < ρ2 < · · · < ρl < ε. We will first prove that

|x(t)| < ρi, t ∈ [t̄+ (i− 1)m, t̄+ im], i = 1, 2, · · · , l. (2.3)

In fact, for t ∈ [t̄, t̄+m], we have by (1.1)

|x(t)| =
∣∣∣f(t, x(t− τ)) + x(t̄)− f(t̄, x(t̄− τ))−

∫ t

t̄

g(s, x(s− δ))ds
∣∣∣

≤ p|x(t− τ)|+ |x(t̄)|+ p|x(t− τ)|+
∫ t

t̄

Q(s)|x(s− δ)|ds

≤ η
[
2p+ 1 +

∫ t

t̄

Q(s)ds
]

< η[2p+ 1 +
3

2
] = ρ1,

which shows that (2.3) holds when i = 1, and so

|x(t)| < ρ1, for t ∈ [t̄− ρ, t̄+m],

which follows similarly by repeating the above arguments

|x(t)| < [2p+
5

2
]ρ1 = ρ2, for t ∈ [t̄+m, t̄+ 2m].

Thus, by the induction we may prove that (2.3) holds. Next, we return to the proof of (2.1).

By way of contradiction, we assume that (2.1) is not true. Then by (2.3) there must be some

T > t̄ + lm such that |x(T )| = ε and |x(t)| < ε for t̄ ≤ t < T. Without loss of generality,

we may suppose x(T ) = ε. Thus, we have

z(T ) = x(T )− f(T, x(T − τ)) ≥ (1− p)ε > 0. (2.4)

Again since

z(t̄+ lm) = x(t̄+ lm)− f(t̄+ lm, x(t̄+ lm− τ)) < ρl(1 + p) = (1− p)ε ≤ z(T ),

it follows by (2.4) that there exists ξ ∈ (t̄ + lm, T ] such that z(ξ) = max
t̄+lm≤t≤T

z(t) and

z(ξ) > z(t) for t̄+ lm ≤ t < ξ. By (1.9), we see that 2p < 1, and so

x(ξ) = z(ξ) + f(ξ, x(ξ − τ)) ≥ z(T )− pε ≥ (1− 2p)ε > 0.
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Next we prove x(ξ − δ) ≤ 0. Otherwise, x(ξ − δ) > 0. Thus, there is a left neighbor of ξ − δ

which is denoted by (ξ−δ−h, ξ−δ) for some h > 0, such that x(t) > 0 for t ∈ (ξ−δ−h, ξ−δ),

which shows that x(t− δ) > 0 for t ∈ (ξ − h, ξ), and therefore by (1.1) we know that z(t) is

not increasing on (ξ − h, ξ). This contradicts the definition of ξ and so x(ξ − δ) ≤ 0. Hence

there exists T0 ∈ [ξ − δ, ξ) such that x(T0) = 0. From (1.1) and (1.8), we have

ż(t) ≤ Q(t)ε, t̄ ≤ t ≤ T. (2.5)

Since t ∈ [T0, ξ] implies t− δ ≤ T0, we have by integrating (2.5) from t− δ to T0,

z(T0)− z(t− δ) ≤ ε

∫ T0

t−δ

Q(s) ds.

That is,

−x(t− δ) ≤ −f(t− δ, x(t− δ − τ)) + f(T0, x(T0 − τ)) + ε

∫ T0

t−δ

Q(s)ds

≤ ε
[
2p+

∫ T0

t−δ

Q(s)ds
]
, T0 ≤ t ≤ ξ

and so

−g(t, x(t− δ)) ≤ εQ(t)
[
2p+

∫ T0

t−δ

Q(s)ds
]
, T0 ≤ t ≤ ξ.

Substituting this into (1.1), we obtain

ż(t) ≤ εQ(t)
[
2p+

∫ T0

t−δ

Q(s)ds
]
, T0 ≤ t ≤ ξ. (2.6)

Since ξ − T0 ≤ δ, we have by (1.9)

2p(2− p) +

∫ ξ

T0

Q(s)ds ≤ 3

2
. (2.7)

The proof will be complete if we can conclude that

(z(T ) ≤)z(ξ) < (1− p)ε, (2.8)

which is due to the contradiction to (2.4). There are two possible cases.

Case 1. 2p+
∫ ξ

T0
Q(s)ds ≤ 1.

In this case, we have by integrating (2.6) from T0 to ξ,

z(ξ) ≤ z(T0) + ε

∫ ξ

T0

Q(t)
[
2p+

∫ T0

t−δ

Q(s)ds
]
dt

= −f(T0, x(T0 − τ)) + ε

∫ ξ

T0

Q(t)
[
2p+

∫ t

t−δ

Q(s)ds−
∫ t

T0

Q(s)ds
]
dt

≤ pε+ ε

∫ ξ

T0

Q(t)
[3
2
− 2p(1− p)−

∫ t

T0

Q(s)ds
]
dt

= ε
[
p+ (

3

2
− 2p(1− p))

∫ ξ

T0

Q(t)dt− 1

2

(∫ ξ

T0

Q(t)dt
)2]

.

Noting that the function p+( 32 − 2p(1− p))x− 1
2x

2 is increasing on x ∈ (0, 1− 2p), we have

z(ξ) ≤ ε[p+ (
3

2
− 2p(1− p))(1− 2p)− 1

2
(1− 2p)2] < (1− p)ε.

Case 2. 2p+
∫ ξ

T0
Q(s)ds > 1.
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Since 2p < 1, there is T1 ∈ (T0, ξ) such that 2p +
∫ ξ

T1
Q(s)ds = 1. Integrating first (2.5)

from T0 to T1 and then (2.6) from T1 to ξ, we have

z(ξ) ≤ z(T0) + ε

∫ T1

T0

Q(t)dt+ ε

∫ ξ

T1

Q(t)
[
2p+

∫ T0

t−δ

Q(s)ds
]
dt

< pε+ ε

∫ ξ

T1

Q(t)dt

∫ T1

T0

Q(s)ds2pε

∫ T1

T0

Q(s)ds+ ε

∫ ξ

T1

Q(t)
[
2p+

∫ T0

t−δ

Q(s)ds
]
dt

= ε
[
p+ 2p(1− 2p) + 2p

∫ T1

T0

Q(s)ds+

∫ ξ

T1

Q(t)

∫ T1

t−δ

Q(s)dsdt
]

≤ ε
[
(3− 4p)p+ 2p

(
− 1 + 2p+

∫ ξ

T0

Q(s)ds
)

+

∫ ξ

T1

Q(t)
(3
2
− 2p(2− p)−

∫ t

T1

Q(s)ds
)
dt
]

≤ ε
[
p+ 2p

(3
2
− 2p(2− p)

)
+
(3
2
− 2p(2− p)

)
(1− 2p)− 1

2
(1− 2p)2

]
= (1− p)ε.

And therefore, the proof is complete.

Proof of Theorem 1.2. In view of Theorem 1.1, the zero solution of Equation (1.1)

is uniformly stable. Therefore, for any t̄ ≥ t0, there exists an η > 0 such that ϕ ∈ C([t̄ −
ρ, t̄], (−η, η)) implies

|x(t)| = |x(t; t̄, ϕ)| < 1

2
H, t ≥ t̄.

It suffices to prove that

lim
t→∞

x(t) = 0.

Let z(t) be defined by (2.2). Now we consider the following two possible cases.

Case 1. x(t) itself is nonoscillatory. We may assume that x(t) is eventually positive.

The case when x(t) is eventually negative is similar and will be omitted. Choose T ≥ t0 + ρ

such that x(t− ρ) > 0 for t ≥ T. Then

ż(t) = −g(t, x(t− δ)) ≤ 0, for t ≥ T,

which means that z(t) is nonincreasing on t ∈ [T,∞) and so the limit

β = lim
t→∞

z(t)

exists and is finite. Set

x1 = lim sup
t→∞

x(t) and x2 = lim inf
t→∞

x(t).

Then it is easy to see by (1.6) that x2 = 0. Using (1.8), we have

x(t) ≥ z(t)− px(t− τ), for t ≥ T.

It follows that

0 = lim inf
t→∞

x(t) ≥ β − p lim sup
t→∞

x(t− τ) = β − px1

and so β ≤ px1. Similarly, we have

x1 = lim sup
t→∞

x(t) ≤ β + p lim sup
t→∞

x(t− τ) = β + px1,
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which yields

x1 ≤ β

1− p
≤ px1

1− p
.

By virtue of (1.10), we have p < 1
2 and so p

1−p < 1. Therefore, we have x1 = 0. This proves

Case 1.

Case 2. x(t) itself is oscillatory in the sense that it has arbitrarily large zeros. For this

case, set

µ = lim sup
t→∞

|x(t)|.

Then 0 ≤ µ ≤ H
2 . The proof will be finished when we prove µ = 0. Suppose µ > 0. Then for

any ϵ ∈ (0, (1− 2|p|)µ), there is t1 ≥ t0 + ρ such that |x(t)| < µ+ ϵ, t ≥ t1 − ρ. Let z(t) be

defined by (1.11). Then

|z(t)| ≥ |x(t)| − |f(t, x(t− τ))| ≥ |x(t)| − p(µ+ ϵ), t ≥ t1,

which yields

M = lim sup
t→∞

|z(t)| ≥ (1− p)µ (2.9)

since ϵ > 0 is arbitrary. Note that ż(t) is oscillatory, there is an increasing sequence {un}
such that un ≥ t1+ τ +2δ, un → ∞, |z(un)| → M as n → ∞, |z(un)| > (1− p)(µ− ϵ) and un

is left local maximum of |z(t)|. We may assume z(un) > 0. The case when z(un) < 0 is

similar and the proof will be omitted. Thus

x(un) = z(un) + f(un, x(un − τ)) > (1− p)(µ− ϵ)− p(µ+ ϵ) = (1− 2p)µ− ϵ > 0.

It is also easy to see that x(un− δ) ≤ 0 in view of the way of the definition of un. Therefore,

there exists ξn ∈ [un − δ, un) such that x(ξn) = 0. Set

θ = max
{
(1− 2p)

(
λ− 1

2

)
+ 4p2(1− p),

1

2
(1− 2p)2 + p, λ− 1

2
− p

}
.

We will prove

z(un) ≤ θ(µ+ ϵ). (2.10)

From (1.1) and the fact |x(t)| < µ+ ϵ, t ≥ t1 − ρ, we have

ż(t) ≤ Q(t)(µ+ ϵ), t ≥ t1. (2.11)

Since t ∈ [ξn, un] implies t− δ ∈ [t1, ξn], integrate (2.11) from t− δ to ξn to get

z(ξn)− z(t− δ) ≤ (µ+ ϵ)

∫ ξn

t−δ

Q(s)ds.

Furthermore, we have

−x(t− δ) ≤
[
2p+

∫ ξn

t−δ

Q(s)ds
]
(µ+ ϵ), t ∈ [ξn, un].

This yields by (1.1) and (1.8),

ż(t) ≤ Q(t)
[
2p+

∫ ξn

t−δ

Q(s)ds
]
(µ+ ϵ), t ∈ [ξn, un]. (2.12)

There are two possibilities as follows.

Subcase 1. 2p+
∫ un

ξn
Q(s)ds ≤ 1.
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Then integrating (2.12) from ξn to un, we get

z(un) ≤ z(ξn) + (µ+ ϵ)

∫ un

ξn

Q(t)
[
2p+

∫ ξn

t−δ

Q(s)ds
]
dt

= −f(ξn, x(ξn − τ)) + (µ+ ϵ)

∫ un

ξn

Q(t)
[
2p+

∫ t

t−δ

Q(s)ds−
∫ t

ξn

Q(s)ds
]
dt

≤ (µ+ ϵ)
[
p+

∫ un

ξn

Q(t)
(
λ− 2p(1− p)−

∫ t

ξn

Q(s)ds
)
dt
]

= (µ+ ϵ)
[
p+ (λ− 2p(1− p))

∫ un

ξn

Q(t)dt− 1

2

(∫ un

ξn

Q(t)dt
)2]

≤ (µ+ ϵ)
[
p+max{λ− 2p(1− p), 1− 2p}

∫ un

ξn

Q(t)dt− 1

2

(∫ un

ξn

Q(t)dt
)2]

.

Noting that the function in w : p + max{λ − 2p(1 − p), 1 − 2p}w − 1
2w

2 is increasing on

w ∈ [0, 1− 2p], we have

z(un) ≤ (µ+ ϵ)
[
p+max{λ− 2p(1− p), 1− 2p}(1− 2p)− 1

2
(1− 2p)2

]
≤ θ(µ+ ϵ).

Subcase 2. 2p+
∫ un

ξn
Q(s)ds > 1.

Since 2p < 1, there is Tn ∈ (ξn, un) such that

2p+

∫ un

Tn

Q(s)ds = 1.

Integrating first (2.11) from ξn to Tn, and then (2.12) from Tn to un, we have

z(un) ≤ z(ξn) + (µ+ ϵ)

∫ Tn

ξn

Q(s)ds+ (µ+ ϵ)

∫ un

Tn

Q(t)
[
2p+

∫ ξn

t−δ

Q(s)ds
]
dt

≤ (µ+ ϵ)
[
p+ 2p

∫ Tn

ξn

Q(s)ds+

∫ un

Tn

Q(t)dt

∫ Tn

ξn

Q(s)ds

+

∫ un

Tn

Q(t)
(
2p+

∫ ξn

t−δ

Q(s)ds
)
dt
]

= (µ+ ϵ)
[
(3− 4p)p+ 2p

∫ Tn

ξn

Q(s)ds+

∫ un

Tn

Q(t)

∫ Tn

t−δ

Q(s)dsdt
]

≤ (µ+ ϵ)
[
(3− 4p)p+ 2p

(∫ un

ξn

Q(s)ds− 1 + 2p
)

+

∫ un

Tn

Q(t)
(
λ− 2p(2− p)−

∫ t

Tn

Q(s)ds
)
dt
]

≤ (µ+ ϵ)[(3− 4p)p+ 2p(λ− 1− 2p(1− p))

+ (λ− 2p(2− p))

∫ un

Tn

Q(t)dt− 1

2

(∫ un

Tn

Q(t)dt
)2

]

= (µ+ ϵ)[(3− 4p)p+ 2p(λ− 1− 2p(1− p)) + (λ− 2p(2− p))(1− 2p)− 1

2
(1− 2p)2]

= (µ+ ϵ)[(1− 2p)(λ− 1

2
) + 2p(λ− 1)]

= (µ+ ϵ)(λ− 1

2
− p) ≤ θ(µ+ ϵ).

This has proved (2.10). Letting n → ∞ in (2.10) and noting the arbitrariness of ϵ, we have
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M ≤ θµ, which combining with (2.9) yields θ ≥ 1− p, that is,

max
{
(1− 2p)

(
λ− 1

2

)
+ 4p2(1− p),

1

2
(1− 2p)2 + p, λ− 1

2
− p

}
≥ 1− p,

which is impossible since λ < 3
2 and 2p < 1. Therefore, µ = 0, and so the proof is complete.

Finally, let us study the asymptotic stability of the positive equilibrium K of Equation

(1.12). For a given initial function ϕ ∈ C1([−τ, 0], [0,∞)) with ϕ(0) > 0, we may easily prove

that Equation (1.12) has a unique solution x(t) defined on [−τ,∞) which satisfies x(t) = ϕ(t)

for −τ ≤ t ≤ 0. By the change of variable y(t) = ln x(t)
K , Equation (1.12) becomes

d

dt
[y(t) + rρ(ey(t−τ) − 1)] + r(ey(t−τ) − 1) = 0. (2.13)

By virtue of Theorem 1.2, one can prove that if

2r|ρ|(2− r|ρ|) + rτ <
3

2
,

then the zero solution of Equation (2.13) is asymptotically stable, i.e., the positive equili-

bruim K of Equation (1.12) is asymptotically stable.
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