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Abstract

New family of integrable symplectic maps are reduced from the Toda hierarchy via constraint
for a higher flow of the hierarchy in terms of square eigenfunctions. Their integrability and Lax
representation are deduced systematically from the discrete zero-curvature representation of
the Toda hierarchy. Also a discrete zero-curvature representation for the Toda hierarchy with

sources is presented.

Keywords Integrable symplectic map, Discrete zero-curvature representation,

Lax representation, Higher-order constraint

1991 MR Subject Classification 58F05, 58F07

Chinese Library Classification O19

§1. Introduction

In recent years some methods to obtain integrable symplectic maps (ISM) have been de-

veloped. An attempt to introduce a general procedure to construct ISMs from the stationary

flows of discrete integrable systems (DIS) (nonlinear differential-difference equations) was

made in [1]. Discrete versions of some classical integrable systems were investigated based

on factorization of matrix polynomials[2]. In the last few years an approach has been devel-

oped to reduce finite-dimensional integrable Hamiltonian systems from soliton equations via

the constraints relating potential and eigenfunctions (see, for example, [3–9]). Obviously,

this approach can be applied to get ISMs from DISs. In this approach, we suppose that

the hierarchy of DISs is associated with a discrete spectral problem and possesses hamilton-

ian structure. Then we consider the system consisting of N copies of the spectral problem

and of (higher-order) constraint relating the variational derivatives of Hamiltonian functions

and square eigenfunctions. This system is invariant under all flows in the hierarchy, so is

expected to give rise to an ISM.

The main problem in this approach is how to construct integrals of motion and Lax

representation for the symplectic maps, and to show their integrability. In [10], explicit

constraint was considered and integrability of the map was shown by following the Moser’s

method. It seems to be difficult to apply the method in [10] to higher-order constraint. In

this paper, we derive new ISMs from Toda hierarchy under higher-order constraints, present
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a general method for constructing integrals of motion and Lax representation, and showing

integrability of these maps by using the zero-curvature representation of Toda hierarchy.

The advantage of our method is to deduce properties of ISM directly from that of DIS. This

method is also different from that in [9].

§2. Discrete Zero-Curvature Description of the Toda Hierarchy

We now briefly describe a discrete zero-curvature representation for the Toda hierarchy

as presented in [11]. Consider the following discrete isospectral problem,

Eψ = Uψ, U = U(u, λ) =

(
0 1
−v λ− w

)
, ψ = (ψ1, ψ2)

t, (2.1)

where u = (w, v)t, w = w(n, t) and v = v(n, t) depend on integers n ∈ Z and t ∈ R, λ is the

spectral parameter, shift operator E and difference operator D are defined as

(Ef)(n) = f(n+ 1), (Df)(n) = (E − 1)f(n), f (k) = E(k)f, n ∈ Z. (2.2)

We proceed first to solve the stationary discrete zero-curvature equation[11]

(EΓ)U − UΓ = 0. (2.3)

The substitution of

Γ =

(
a b
c −a

)
=

∞∑
i=0

Γiλ
−i =

∞∑
i=0

(
ai bi
ci −ai

)
λ−i (2.4)

into (2.3) gives

ci = −vb(1)i , b
(1)
i+1 = wb

(1)
i − (a

(1)
i + ai), (2.5a)

a
(1)
i+1 − ai+1 = w(a

(1)
i − ai) + vbi − v(1)b

(2)
i . (2.5b)

The first coefficients are given as follows:

a0 =
1

2
, b0 = 0, b1 = −1. (2.6a)

a1 = 0, a2 = v, a3 = v(w + w(−1)), (2.6b)

b2 = −w(−1), b3 = −(v(−1) + v + w(−1)2), · · · . (2.6c)

Let us denote

Vm = (Γλm)+ +△m ≡
m∑
i=0

Γiλ
m−i +△m, △m =

(
bm+1 0
0 0

)
, (2.7)

in the auxiliary linear problem

ψtm = Vmψ, m = 1, 2, · · · . (2.8)

The compatibility condition of (2.1) and (2.8) gives rise to a discrete hierarchy of zero-

curvature equations (assuming λtm = 0)

Utm = (EVm)U − UVm, m = 1, 2, · · · . (2.9)

It describes the Toda hierarchy

wtm = −a(1)m+1 + am+1, vtm = v(b
(1)
m+1 − bm+1), (2.10)
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which can be written as the following Hamiltonian equation[11]

utm =

(
w

v

)
tm

= JKm+1 = J
δHm+1

δu
, m = 1, 2, · · · , (2.11)

where δ
δu = ( δ

δw ,
δ
δv )

t stands for the discrete variational derivative defined as

δf

δv
=

∑
k∈Z

E(−k) ∂f

∂v(k)
.

and

Km =
δHm

δu
=

(
−b(1)m
am

v

)
, J =

(
0 (1− E)v

v(E(−1) − 1) 0

)
, Hm = −bm+1

m
. (2.12)

It is known[12] that equations (2.11) have the bi-hamiltonian formulation

GKi−1 = JKi, i = 1, 2, · · · , (2.13)

G =

(
vE(−1) − v(1)E w(1− E)v
v(E(−1) − 1)w v(E(−1) − E)v

)
.

Let us define V in terms of Γ by Γ = V U . Then it is deduced from (2.3) that

DΓ = [U, V ], Γ(1) = UV, (2.14)

D(a2 + bc) =
1

2
D(TrΓ2) =

1

2
(Tr(UV )2 − Tr(V U)2) = 0, (2.15)

where Tr means trace of a matrix. In the same way given by [13], we get from (2.8)

Γtm = [Vm,Γ], (2.16)

which yields

2
d

dtm
(a2 + bc) =

d

dtm
TrΓ2 =

d

dtm
Tr[Vm,Γ

2] = 0. (2.17)

The adjoint equations of (2.1) and (2.8) read, respectively

E(−1)ϕ = ϕU, ϕ = (ϕ1, ϕ2), (2.18)

E(−1)ϕtm = −(E(−1)ϕ)Vm. (2.19)

It can be found by a direct calculation that

δλ

δu
=

( δλ
δw
δλ
δv

)
= −

(
ψ2ϕ2
ψ1ϕ2

)
, G

δλ

δu
= λJ

δλ

δu
. (2.20)

§3. New Integrable Symplectic Maps

We consider for N distinct λj , j=1, . . . ,N, the following system of equations consisting

of replicas of (2.1) and (2.18) as well as of the constraint for variational derivatives for

conserved quantities Hk0 (for a fixed k0) and eigenvalue λj

Eψ1j = ψ2j , Eψ2j = −vψ1j + (λj − w)ψ2j , j = 1, · · · , N, (3.1a)

E(−1)ϕ1j = −vϕ2j , E(−1)ϕ2j = ϕ1j + (λj − w)ϕ2j , j = 1, · · · , N, (3.1b)

δHk0

δu
−

N∑
j=1

δλj
δu

= 0. (3.1c)
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We shall denote the inner product in RN by ⟨· , ·⟩ and shall use the following notations

Ψi = (ψi1, . . . , ψiN )t, Φi = (ϕi1, . . . , ϕiN )t, i = 1, 2, Λ = diag(λ1, . . . , λN ).

By substituting (2.20) into (3.1), we get

EΨ1 = Ψ2, EΨ2 = −vΨ1 + (Λ− w)Ψ2, (3.2a)

E(−1)Φ1 = −vΦ2, E(−1)Φ2 = Φ1 + (Λ− w)Φ2, (3.2b)

δHk0

δw
= −⟨Ψ2,Φ2⟩,

δHk0

δv
= −⟨Ψ1,Φ2⟩, (3.2c)

which are discrete Euler-Lagrange equations[1]:

δL
δΦi

= 0,
δL
δΨi

= 0, i = 1, 2,
δL
δw

= 0,
δL
δv

= 0, (3.3a)

L = ⟨Ψ(1)
1 ,Φ1⟩+ ⟨Ψ(1)

2 ,Φ2⟩ − ⟨Ψ2,Φ1⟩+ v⟨Ψ1,Φ2⟩
− ⟨ΛΨ2,Φ2⟩+ w⟨Ψ2,Φ2⟩+Hk0 . (3.3b)

As argued in [4-8], the system (3.2) is invariant with respect to the action of all flows

of the Toda hierarchy. So (3.2) is expected to give an integrable symplectic map (ISM).

Following the procedure in [1], we can introduce canonical coordinates (q, p) for (3.2):

q = (q1, · · · , qN1)
t, p = (p1, · · · , pN1)

t, (3.4a)

and define Poisson bracket for any pair of functions f, g and any (q, p) as follows:

{f, g}q,p =

N1∑
j=1

( ∂f
∂pj

∂g

∂qj
− ∂f

∂qj

∂g

∂pj

)
, (3.4b)

such that (3.2) can be cast in canonical form of a symplectic map:

Eqi = fi(q(n), p(n)), Epi = gi(q(n), p(n)), i = 1, · · · , N1, (3.5)

where fi, gi satisfy

{fi, fj} = {gi, gj} = 0, {fi, gj} = δi,j . (3.6)

Now we present the first two symplectic maps obtained from (3.2) as examples.

(1) For k0 = 2, (3.2c) reads

K2 =

(
−b(1)2

a2

v

)
=

(
w

1

)
=

(
−⟨Ψ2,Φ2⟩
−⟨Ψ1,Φ2⟩

)
, (3.7a)

which together with (3.2a,b) leads to

v = ⟨Ψ1, Φ̃1⟩, w = −⟨Ψ2,Φ2⟩ =
1

⟨Ψ1, Φ̃1⟩
⟨Ψ2, Φ̃1⟩. (3.7b)

Throughout this paper, we denote Φ̃i = Φ
(−1)
i , i = 1, 2. By substitution of (3.7b), (3.2a,b)

can be rewritten as

EΨ1 = Ψ2, EΨ2 = −⟨Ψ1, Φ̃1⟩Ψ1 +
(
Λ− 1

⟨Ψ1, Φ̃1⟩
⟨Ψ2, Φ̃1⟩

)
Ψ2, (3.8a)

EΦ̃1 =
1

⟨Ψ1, Φ̃1⟩

(
Λ− 1

⟨Ψ1, Φ̃1⟩
⟨Ψ2, Φ̃1⟩

)
Φ̃1 + Φ̃2, EΦ̃2 = − 1

⟨Ψ1, Φ̃1⟩
Φ̃1. (3.8b)
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For (3.8) the canonical coordinates (q, p) are defined as follows:

q = (q1, · · · , q2N )t ≡ (ψ11, · · · , ψ1N , ψ21, · · · , ψ2N )t, N1 = 2N,

p = (p1, · · · , p2N )t ≡ (ϕ̃11, · · · , ϕ̃1N , ϕ̃21, · · · , ϕ̃2N )t. (3.9)

It is easy to verify that (3.6) for (3.8) holds, so (3.8) defines a symplectic map. From (3.8b),

we have ⟨Ψ1,Φ2⟩ = ⟨Ψ1, EΦ̃2⟩ = −1, so ⟨Ψ1,Φ2⟩ = −1 in (3.7a) is not really a constraint.

(2) For k0 = 3, it is found from (3.2c) that

K3 =

(
−b(1)3

a3

v

)
=

(
v + v(1) + w2

w + w(−1)

)
=

(
−⟨Ψ2,Φ2⟩
−⟨Ψ1,Φ2⟩

)
. (3.10)

Then the system (3.2) with (3.2c) given by (3.10) can be rewritten in the canonical form:

EΨ1 = Ψ2, EΨ2 = −vΨ1 +
(
Λ + w̃ − 1

v
⟨Ψ1, Φ̃1⟩

)
Ψ2, (3.11a)

Ev = −v − w̃2 +
2

v
w̃⟨Ψ1, Φ̃1⟩ −

1

v2
⟨Ψ1, Φ̃1⟩2 +

1

v
⟨Ψ2, Φ̃1⟩, (3.11b)

EΦ̃1 =
1

v

(
Λ + w̃ − 1

v
⟨Ψ1, Φ̃1⟩

)
Φ̃1 + Φ̃2, EΦ̃2 = −1

v
Φ̃1, (3.11c)

Ew̃ = −w̃ +
1

v
⟨Ψ1, Φ̃1⟩, (3.11d)

where w̃ = w(−1). For (3.11) the canonical coordinates (q, p) are defined as follows:

q = (q1, · · · , q2N+1)
t ≡ (ψ11, · · · , ψ1N , ψ21, · · · , ψ2N , v)

t, N1 = 2N + 1,

p = (p1, · · · , p2N+1)
t ≡ (ϕ̃11, · · · , ϕ̃1N , ϕ̃21, · · · , ϕ̃2N , w̃)t. (3.12)

It is easy to verify that (3.6) for (3.11) holds, so (3.11) defines a symplectic map.

We now use (3.11) (k0 = 3) as an example to illustrate how the integrability of the

symplectic map can be deduced from that of the Toda hierarchy (2.11).

Lemma 3.1. Under (3.11), let us define

ãi = ai, b̃i = bi, c̃i = ci, i = 0, 1, 2, (3.13a)

ãi =
1

2
(⟨Λi−3Ψ1, Φ̃1⟩ − ⟨Λi−3Ψ2, Φ̃2⟩), i = 3, 4, · · · , (3.13b)

b̃i = ⟨Λi−3Ψ1, Φ̃2⟩, c̃i = ⟨Λi−3Ψ2, Φ̃1⟩, i = 3, 4, · · · , (3.13c)

Γ̃ =

(
ã b̃
c̃ −ã

)
=

∞∑
i=0

Γ̃iλ
−i =

∞∑
i=0

(
ãi b̃i
c̃i −ãi

)
λ−i.

Then under (3.11) Γ̃ satisfies (2.3), and

D(ã2 + b̃c̃) = 0. (3.14)

Proof. Notice that the kernal of J is {K0,K1}, i.e., J(αK0 +βK1) = 0. By using (2.13)

and (2.20), we find from (3.10)

K4 = J−1GK3 = J−1G

(
−⟨Ψ2,Φ2⟩
−⟨Ψ1,Φ2⟩

)
=

(
−⟨ΛΨ2,Φ2⟩
−⟨ΛΨ1,Φ2⟩

)
+ h3K1 + α4K0,

K5 = J−1GK4 =

(
−⟨Λ2Ψ2,Φ2⟩
−⟨Λ2Ψ1,Φ2⟩

)
+ h3K2 + (α4 + h4)K1 + α5K0,
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and in general, we have

Kk =
k−3∑
i=0

(αi + hi)

(
−⟨Λk−i−3Ψ2,Φ2⟩
−⟨Λk−i−3Ψ1,Φ2⟩

)
+ (αk−2 + hk−2)K2

+ (αk−1 + hk−1)K1 + αkK0, k = 3, 4, · · · ,

where hi, αi are some undetermined constants and α0 = 1, α1 = α2 = α3 = 0, h0 = h1 =

h2 = 0. This formula together with (2.12) and (3.11) yields

bk =

k−3∑
i=0

(αi + hi)⟨Λk−i−3Ψ1, Φ̃2⟩+ (αk−2 + hk−2)b2 + (αk−1 + hk−1)b1 + αkb0,
(3.15a)

ak =
k−3∑
i=0

(αi + hi)⟨Λk−i−3Ψ1, Φ̃1⟩+ (αk−2 + hk−2)a2 + (αk−1 + hk−1)a1 + αka0.
(3.15b)

Since ak, bk have to satisfy (2.5), by inserting (3.15) for k and k+1 into (2.5), and by using

(3.11), we find

hk =
k−3∑
i=0

(αi + hi)[⟨Λk−i−3Ψ1, Φ̃1⟩+ ⟨Λk−i−3Ψ2, Φ̃2⟩].

Notice that a0 = 1
2 , the above formular and (3.15b) give rise to

ak =
1

2

k−3∑
i=0

(αi + hi)(⟨Λk−i−3Ψ1, Φ̃1⟩ − ⟨Λk−i−3Ψ2, Φ̃2⟩)

+ (αk−2 + hk−2)a2 + (αk−1 + hk−1)a1 + (αk + hk)a0. (3.16)

Equations (3.15a), (3.16), (2.5a) and (3.11) lead to the definition (3.13). The above pro-

cedure guarantees that (3.13) under (3.11) satisfies (2.5). Then (2.15) yields (3.14). This

completes the proof.

Set

ã2 + b̃c̃ =

∞∑
i=0

Fkλ
−k, Fk =

k∑
i=0

(ãiãk−i + b̃ic̃k−i). (3.17)

Then substituting (3.13) into (3.17), we obtain

F0 =
1

4
, F1 = F2 = 0, F3 = −1

2
(⟨Ψ1, Φ̃1⟩+ ⟨Ψ2, Φ̃2⟩), (3.18a)

F4 =
1

2
(⟨ΛΨ1, Φ̃1⟩ − ⟨ΛΨ2, Φ̃2⟩)− ⟨Ψ2, Φ̃1⟩

− w̃⟨Ψ1, Φ̃1⟩+ v⟨Ψ1, Φ̃2⟩+ v2 + vw̃2, (3.18b)

Fk =
1

2
(⟨Λk−3Ψ1, Φ̃1⟩ − ⟨Λk−3Ψ2, Φ̃2⟩)− ⟨Λk−4Ψ2, Φ̃1⟩+ v⟨Λk−4Ψ1, Φ̃2⟩

+ v⟨Λk−5Ψ1, Φ̃1⟩ − v⟨Λk−5Ψ2, Φ̃2⟩ − w̃⟨Λk−5Ψ2, Φ̃1⟩ − vw̃⟨Λk−5Ψ1, Φ̃2⟩

+ ⟨Ψ1, Φ̃1⟩⟨Λk−5Ψ1, Φ̃2⟩+
k−6∑
i=0

[
⟨ΛiΨ1, Φ̃2⟩⟨Λk−i−6Ψ2, Φ̃1⟩

+
1

4
⟨ΛiΨ1, Φ̃1⟩⟨Λk−i−6Ψ1, Φ̃1⟩+

1

4
⟨ΛiΨ2, Φ̃2⟩⟨Λk−i−6Ψ2, Φ̃2⟩

− 1

2
⟨ΛiΨ1, Φ̃1⟩⟨Λk−i−6Ψ2, Φ̃2⟩

]
, k = 5, 6, · · · . (3.18c)
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Equation (3.14) implies that Fk are integrals of motion for the symplectic map (3.11). In

order to prove involutivity of Fk, we consider the equations following from (2.8), (2.19) and

(2.10)

Ψ1,tm =
m∑

k=0

(akΛ
m−kΨ1 + bkΛ

m−kΨ2) + bm+1Ψ1, (3.19a)

Ψ2,tm =

m∑
k=0

(ckΛ
m−kΨ1 − akΛ

m−kΨ2), (3.19b)

vtm = v(b
(1)
m+1 − bm+1), (3.19c)

Φ̃1,tm = −
m∑

k=0

(akΛ
m−kΦ̃1 + ckΛ

m−kΦ̃2)− bm+1Φ̃1, (3.19d)

Φ̃2,tm = −
m∑

k=0

(bkΛ
m−kΦ̃1 − akΛ

m−kΦ̃2), (3.19e)

w̃tm = a
(−1)
m+1 − am+1. (3.19f)

By using (3.13) and (3.18), it is easy to verify by a straightforword calculation that equa-

tion (3.19) with ak, bk, ck replaced by ãk, b̃k, c̃k becomes a finite-dimensional Hamiltonian

system (FDHS), i.e.,

Psii,tm =
∂Fm+3

∂Φ̃i

, Φ̃i,tm = −∂Fm+3

∂Ψi
, i = 1, 2, (3.20a)

vtm =
∂Fm+3

∂w̃
, w̃tm = −∂Fm+3

∂v
. (3.20b)

According to (2.17), one gets

d

dtm
(ã2 + b̃c̃) = 0,

d

dtm
Fk = 0, k,m = 0, 1, · · · , (3.21)

which implies that the Fk are also integrals of motion for FDHS (3.20). The Poisson bracket

for (3.20) are the same as (3.4b). So immediately from (3.20) and (3.21) we have

{Fk, Fm+3} = − d

dtm
Fk = 0, k,m = 0, 1, · · · , (3.22)

which means that integrals of motion Fk are in involution with respect to (3.4b).

Notice that we assume all λj to be distinct to have the Vandermonde determinant of

λ1, · · · , λN different from zero. For a specific N , it can be verified that

∂(F3, F4, · · · , F2N+3)

∂(ϕ̃11, · · · , ϕ̃1N , ϕ̃21, · · · , ϕ̃2N , w̃)
̸= 0, (3.23)

so gradFk, k = 3, · · · , 2N + 3, are linear independent. Thus we have

Proposition 3.1. The Fk given by (3.18) are functionally independent integrals of mo-

tion in involution for (3.11), and the symplectic map (3.11) is completely integrable in the

Liouville sense[14].

Similarly, we obtain the integrals of motion for (3.8) as follows:

F0 =
1

4
, F1 = 0, F2 = −1

2
(⟨Ψ1, Φ̃1⟩+ ⟨Ψ2, Φ̃2⟩), (3.24a)

F3 =
1

2
(⟨ΛΨ1, Φ̃1⟩ − ⟨ΛΨ2, Φ̃2⟩)− ⟨Ψ2, Φ̃1⟩+ ⟨Ψ1, Φ̃1⟩⟨Ψ1, Φ̃2⟩, (3.24b)
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Fk =
1

2
(⟨Λk−2Ψ1, Φ̃1⟩ − ⟨Λk−2Ψ2, Φ̃2⟩)− ⟨Λk−3Ψ2, Φ̃1⟩

+ ⟨Ψ1, Φ̃1⟩⟨Λk−3Ψ1, Φ̃2⟩+
k−4∑
i=0

[
⟨ΛiΨ1, Φ̃2⟩⟨Λk−i−4Ψ2, Φ̃1⟩

+
1

4
⟨ΛiΨ1, Φ̃1⟩⟨Λk−i−4Ψ1, Φ̃1⟩+

1

4
⟨ΛiΨ2, Φ̃2⟩⟨Λk−i−4Ψ2, Φ̃2⟩

− 1

2
⟨ΛiΨ1, Φ̃1⟩⟨Λk−i−4Ψ2, Φ̃2⟩

]
, k = 4, 5, · · · , (3.24c)

and conclude that the map (3.8) is an ISM.

Finally, for the system (3.2), we define

ãi = ai, b̃i = bi, c̃i = ci, i = 0, · · · , k0 − 1, (3.25a)

ãi =
1

2
(⟨Λi−k0Ψ1, Φ̃1⟩ − ⟨Λi−k0Ψ2, Φ̃2⟩), i = k0, k0 + 1, · · · , (3.25b)

b̃i = ⟨Λi−k0Ψ1, Φ̃2⟩, c̃i = ⟨Λi−k0Ψ2, Φ̃1⟩, i = k0, k0 + 1, · · · .
(3.25c)

Then under (3.2) ãi, b̃i, c̃i satisfy (2.5), so integrals of motion Fk for (3.2) can be calculated

from (3.17) and (3.25). Integrals of motion for (3.5) can be obtained by expressing the Fk

in terms of (q, p). Similarly, we consider the time evolution equations for q and p which

can be constructed out from (3.19), and show that the Fk are in involution. So (3.5) is an

integrable symplectic map.

§4. The Lax Representation and Toda Hierarchy with Source

By following the method in [6], we will show here how the Lax representation for (3.2) can

be deduced from the stationary zero-curvature equation (2.3). By using (3.25), we obtain

λk0−1
∞∑

i=k0

b̃iλ
−i = λ−1

∞∑
i=k0

⟨Λi−k0Ψ1, Φ̃2⟩λ−i+k0

= λ−1
∞∑
i=0

N∑
j=1

λij
λi
ψ1j ϕ̃2j =

N∑
j=1

ψ1j ϕ̃2j
λ− λj

, (4.1a)

λk0−1
∞∑

i=k0

ãiλ
−i =

1

2

N∑
j=1

ψ1j ϕ̃1j − ψ2j ϕ̃2j
λ− λj

, λk0−1
∞∑

i=k0

c̃iλ
−i =

N∑
j=1

ψ2j ϕ̃1j
λ− λj

. (4.1b)

According to (2.7), set

Mk0 ≡ λk0−1Γ̃ = (λk0−1Γ̃)+ +N0 = V k0−1 +N0, (4.2a)

where

V k0−1 =

k0−1∑
i=0

(
ai bi
ci −ai

)
λk0−1−i = Vk0−1 −△k0−1, (4.2b)

N0 =
N∑
j=1

1

λ− λj

(
1
2 (ψ1j ϕ̃1j − ψ2j ϕ̃2j) ψ1j ϕ̃2j

ψ2j ϕ̃1j − 1
2 (ψ1j ϕ̃1j − ψ2j ϕ̃2j)

)
. (4.2c)

Since Γ̃ satisfies (2.3), Mk0 satisfies (2.3), too. So we have
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Proposition 4.1. By substituting the expression Mk0 for λk0−1Γ̃, the stationary zero-

curvature equation (2.3) reduces to the Lax representation for (3.2):

(EMk0)U − UMk0 = 0, (4.3)

with the linear problem equations given by

Eψ = U(u, λ)ψ, Mk0ψ = µψ. (4.4)

Proof. Comparing (2.3) with (2.9) and (2.11) (taking m = k0 − 1), one finds

(EVk0−1)U − UVk0−1 =

(
0 0

−v(E(−1) − 1)
δHk0

δw (E − 1)v
δHk0

δv

)
. (4.5a)

Using (2.7), one finds

−(E△k0−1)U + U△k0−1 =

(
0 −b(1)k0

−vbk0 0

)
. (4.5b)

It is easy to calculate the matrix elements of ((EN0)U −UN0) ≡ Q0 = (Qij). For instance,

we get

Q12 =
N∑
j=1

1

λ− λj

[1
2
(ψ

(1)
1j ϕ1j − ψ

(1)
2j ϕ2j) + (λ− w)ψ2jϕ2j +

1

2
ψ1j ϕ̃1j −

1

2
ψ2j ϕ̃2j

]

= ⟨Ψ2,Φ2⟩+
1

2

N∑
j=1

1

λ− λj
[ψ

(1)
1j ϕ1j − ψ

(1)
2j ϕ2j + 2(λj − w)ψ2jϕ2j + ψ1j ϕ̃1j − ψ2j ϕ̃2j ].

Then it is easy to see that the coefficients at 1
λ−λj

in (4.3) which are just given by that in

Q0 are satisfied by (3.2a,b) and the remaining terms in Q0 together with (4.5a,b) give rise

to (3.2c). This completes the proof.

In order to get the Lax representation for the symplectic map (3.5), we need to express

Mk0 and U in terms of p and q.

For instance, for k0 = 3, the Lax representation for (3.11) is given by (4.3) (k0 = 3) with

M3 = V 2 +N0 where

V 2 =

( 1
2λ

2 + v −λ− w̃

vλ− vw̃ + ⟨Ψ1, Φ̃1⟩ − 1
2λ

2 − v

)
,

U =

(
0 1
−v λ+ w̃ − 1

v ⟨Ψ1, Φ̃1⟩

)
.

For k0 = 2, the Lax representation for (3.8) is given by (4.3) (k0 = 2) withM2 = V 1+N0

where

V 1 =

( 1
2λ −1

⟨Ψ1, Φ̃1⟩ − 1
2λ

)
, U =

(
0 1

−⟨Ψ1, Φ̃1⟩ λ− 1

⟨Ψ1,Φ̃1⟩
⟨Ψ2, Φ̃1⟩

)
.

Now we consider the Toda hierarchy with sources defined by

EΨ1 = Ψ2, EΨ2 = −vΨ1 + (Λ− w)Ψ2, (4.6a)

E(−1)Φ1 = −vΦ2, E(−1)Φ2 = Φ1 + (Λ− w)Φ2, (4.6b)(
w

v

)
tm

= J
δHm+1

δu
+ J

(
⟨Ψ2,Φ2⟩
⟨Ψ1,Φ2⟩

)
. (4.6c)

As a consequence of Proposition 4.1, noting (4.5a) for k0 = m+ 1, we have immediately
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Proposition 4.2. The Toda hierarchy with sources (4.6) admits the following discrete

zero-curvature representation

Utm = (EMm+1)U − UMm+1, (4.7)

with the linear problem equations given by

Eψ = U(u, λ)ψ, ψtm =Mm+1ψ, (4.8)

where

Mm+1 =
m∑
i=0

(
ai bi
ci −ai

)
λm−i +N0.
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