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Abstract

A useful reduction is presented to determine the finiteness of ∆–good module category F(∆)
of a quasi–hereditary algebra. As an application of the reduction, the F(∆)–finiteness of quasi–

hereditary M–twisted double incidence algebras of posets is discussed. In particular, a complete
classification of F(∆)-finite M–twisted double incidence algebras is given in case the posets are
linearly ordered.
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§0. Introduction

Quasi–hereditary algebras are introduced by Cline, Parshall and Scott in [2] in order

to study highest weight categories in representation theory of semisimple Lie algebras and

algebraic groups. Many important algebras such as hereditary algebras, Schur algebras and

algebras to blocks of the category O in [1] are typical examples of quasi–hereditary algebras.

They can be defined recursively in terms of the existence of a particular idempotent ideal

and appear quite common.

0.1 For each given quasi–hereditary algebra A, there is a partial order (Λ,≤) on the set

of simple modules, and one studies the standard modules

∆ = {∆(λ) |λ ∈ Λ}.

Of particular interest is the ∆-good module category F(∆) of all modules which have a ∆-

filtration. As a notable example, considering the Schur algebra in [9], then the category F(∆)

becomes just the category consisting of all modules which have a Weyl module filtration and

is investigated by many authors. Recently, C. M. Ringel proved that F(∆) has almost split

sequences[15].

One of the interesting questions on F(∆) is when it is finite (i.e., there are only finitely

many pairwise non-isomorphic indecomposable modules in F(∆)). If it is the case, the

endomorphism ring of the direct sum of non–isomorphic indecomposable objects in F(∆)

Manuscript received June 12, 1995. Revised May 3, 1996.

∗Department of Mathematics, Beijing Normal University, Beijing 100875, China.

∗∗Project supported by the Young Teachers Foundation of the State Education Commission

and the National Natural Science Foundation of China.



468 CHIN. ANN. OF MATH. Vol.18 Ser.B

is again quasi-hereditary as shown in [4]. The purpose of this paper is to provide a useful

reduction to reduce the question from the given quasi-hereditary algebra to a smaller one by

means of vectorspace categories. The advantage of this method is that one can use the well–

developed theory of vectorspace categories to handle the question, there a lot of beautiful

results such as Kleiner’s criterion can serve as a tool.

In the first section we establish a reduction to decide whether F(∆) is finite and give

some necessary conditions. Then we apply these results to the quasi-hereditary algebras

defined in [7] and determine when F(∆) is finite. The last section, as an explanation of

our method, offers a complete classification of F(∆)-finite quasi-hereditary algebras A(X,M)

with X a linearly ordered set.

0.2 Now let us recall some definitions and fix notation. Let A be a finite dimensional

algebra over an algebraically closed field k. We will consider (almost in all cases finitely

generated left) A–modules, maps between A–modules will be written on the right side of

the argument, thus the composition of maps f : M1 −→ M2 and g : M2 −→ M3 will be

denoted by fg. The category of all finitely generated A–modules will be denoted by A–mod.

Given a class Θ of A–modules, we denote by F(Θ) the class of all A–modules which have a

Θ–filtration, that is, a filtration

0 = Mt ⊂ Mt−1 ⊂ · · · ⊂ M1 ⊂ M0 = M

such that each factor Mi−1/Mi is isomorphic to one object in Θ for 1 ≤ i ≤ t. The modules

in F(Θ) are called Θ-good modules, and the category F(Θ) is called the Θ-good module

category.

Let ∧ be a finite poset in bijective correspondence with the isomorphism classes of simple

A–modules. For each λ ∈ ∧, let E(λ) be a simple module in the isomorphism class cor-

responding to λ and P (λ) (or PA(λ)) a projective cover of E(λ) and denote by ∆(λ) the

maximal factor module of P (λ) with composition factors of the form E(µ), µ ≤ λ. Dually,

let Q(λ) (or QA(λ)) be an injective hull of E(λ) and denote by ∇(λ) the maximal submodule

of Q(λ) with the composition factors of the form E(µ), µ ≤ λ. Let ∆ (respectively, ∇) be

the full subcategory consisting of all ∆(λ), λ ∈ ∧ (respectively, all ∇(λ), λ ∈ ∧). We call

modules in ∆ standard modules and ones in ∇ costandard modules.

The algebra A is said to be quasi–hereditary with respect to (∧, ≤) if for each λ ∈ ∧ we

have

(i) EndA(∆(λ)) ∼= k;

(ii) P (λ) ∈ F(∆), and moreover, P (λ) has a ∆–filtration with factors ∆(µ) for µ ≥ λ in

which ∆(λ) occurs exactly once.

For a quasi–hereditary algebra A with respect to a poset ∧ we call the elements in ∧
weights and ∧ the weight poset of A. By (A, ∧) we denote a quasi–hereditary algebra A

with the weight poset ∧.
If a quasi–hereditary algebra has a duality δ which fixes simple modules, we call it a

BGG–algebra (see [2, 11]).

For a quasi-hereditary algebra A, if the ∆-module category F(∆) of A is finite we say

that the algebra A is F(∆)–finite.

Definition 0.1.[17] Let K be a Krull–Schmidt k–category and | · | : K −→ k–mod an
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additive functor. The pair (K, | · |) is called a vectorspace category. We denote by Ǔ(K, | · |),
called subspace category of (K, | · |), the category of all triples

V = (V0, Vω, γV : Vω → |V0|),

where Vω ∈ k − mod, V0 ∈ K and γV is a k–linear map. A morphism from V → V ′ by

definition is a pair (f0, fω), where

f0 : V0 → V ′0 and fω : Vω → V ′ω

are morphisms in K and in k-mod respectively, such that fωγV ′ = γV |f0|.
For a module M ∈ A–mod, we denote by add(M) the full additive subcategory of A–mod

consisting of all finite direct sums of direct summands of M . An additive k-category K is

called finite provided there are only finitely many pairwise non-isomorphic indecomposable

objects in K.

§1. Criteria for the Finiteness of F(∆)

In the representation theory one of the main questions is when an algebra is representation

finite, i.e. there are only finitely many isoclasses (=isomorphism classes) of indecomposable

modules. But by [16] the most BGG–algebras are representation infinite. Thus one considers,

however, another interesting concept of finite type for a quasi–hereditary algebra (with the

given ordering of simple modules), namely, that of F(∆)–finite type, where F(∆) is the ∆–

good module category. In this section we give a reduction to determine the finiteness of F(∆)

by applying the well–developed theory of vectorspace categories. We shall use the results in

this section to characterize F(∆)–finite quasi–hereditary algebras A(X,M) associated with

the labelling matrix (X, M) in the last two sections. Compared with the method in [6], this

reduction is more general.

The main idea is to establish a functor between the category F(∆A) for a quasi–hereditary

algebra A and a vectorspace category, and thus reduce the finiteness of F(∆A) to that of a

vectorspace category.

1.1 Let A be a quasi–hereditary algebra with a weight poset ∧. Suppose that ω ∈
∧ is a maximal element. Thus the standard module ∆A(ω) corresponding to ω is the

indecomposable projective module P (ω) = Aeω. Let us denote by A0 the factor algebra of

A by the heredity ideal AeωA. Then A0 is automatically a quasi-hereditary algebra with

the standard modules ∆A(λ), λ ∈ ∧\{ω}.
Lemma 1.1. Let A be a quasi–hereditary algebra and ω a maximal element in ∧. Then

(1) End(P (ω)) ∼= k;

(2) For each module M in F(∆A), there is a unique submodule M ′ of M such that

M ′ ∈ add(P (ω)) and

M/M ′ ∈ F({∆A(λ)|λ ̸= ω}) = F(∆A0).

The proof of the second statement is referred to [4].

Theorem 1.1. There is a functor η : F(∆A)
op → Ŭ(F(∆A0)

op, Ext1A(−, P (ω))) such

that

(1) η is dense and full;

(2) If M, N are modules in F(∆A) such that η(M) ∼= η(N), then M ∼= N ;
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(3) For each module 0 ̸= M ∈ F(∆A), there holds η(M) ̸= 0.

Proof. The construction of the functor η is based on Lemma 1.1. A very similar con-

struction was already used in [17]. To define the functor η, we take an arbitrary module

M ∈ F(∆A), we have by Lemma 1.1 an exact sequence

0 −−−−→ P (ω)m
αM

−−−−→ M
πM

−−−−→ M0 −−−−→ 0,

where αM denotes the canonical inclusion and where πM is the canonical surjection from M

onto the factor module M0 ∈ F(∆A0). Applying HomA(−, P (ω)) to this sequence, we get

the following long exact sequence

0 −→ HomA(M0, P (ω)) −→ HomA(M, P (ω)) −→ HomA(P (ω)m, P (ω))

δM−→ Ext1A(M0, P (ω)) −→ Ext1A(M, P (ω)) −→ 0 .

We define

η(M)= (HomA(P (ω)m, P (ω)),M0, δM ) ∈ Ŭ(F(∆A0)
op,Ext1A(−, P (ω)))

since HomA(P (ω)m, P (ω)) ∼= km by Lemma 1.1. For each f ∈ HomA(N, M) we define

η(f) = (fω, f0) by the following commutative diagram:

0 −−−−→ P (ω)m
αM

−−−−→ M
πM

−−−−→ M0 −−−−→ 0xf ′
ω

xf

xf0

0 −−−−→ P (ω)n
αN

−−−−→ N
πN

−−−−→ N0 −−−−→ 0

(Here the existence of f ′ω follows from the fact HomA(P (ω),M0) = 0 and hence f ′ω is the

restriction of f onto the submodule P (ω)n). Put fω = HomA(f
′
ω, P (ω)). Then η(f) is a

morphism from η(M) to η(N) since we have the desired commutative diagram

· · · −−−−→ HomA(P (ω)m, P (ω))
δM

−−−−→ Ext1A(M0, P (ω)) −−−−→ · · ·yHomA(f ′
ω, P (ω))

yExt1A(f0, P (ω))

· · · −−−−→ HomA(P (ω)n, P (ω))
δN

−−−−→ Ext1A(N0, P (ω)) −−−−→ · · ·
Clearly, η is a well–defined functor.

(1) η is dense. In fact, given an arbitrary object in Ŭ(F(∆A0)
op, Ext1A(−, P (ω))), say

(Mω,M0, ϕ : Mω −→ Ext1A(M0, P (ω))),

we can write Mω in the form
m
⊕
i=1

k with m = dimkMω, and

ϕ = (ϕ1, · · · , ϕm)t with ϕi : k −→ Ext1A(M0, P (ω)).

In this way, we obtain a map

ϕ̃ : k −→ Ext1A
(
M0,

m
⊕
i=1

P (ω)
)
with ϕ̃ = (ϕ1, · · · , ϕm),

and the image of 1 ∈ k under ϕ̃ gives an element in Ext1A
(
M0,

m
⊕
i=1

P (ω)
)
; thus an exect

sequence of the form

0 −→
m
⊕
i=1

P (ω) −→ M −→ M0 −→ 0

exists and it follows that η(M) is isomorphic to (Mω, M0, ϕ). This shows that η is dense.
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The functor η is full. Indeed, for given objects M, N in F(∆A), suppose f = (fω, f0) :

η(M) −→ η(N) is a morphism in Ŭ(F(∆A0)
op, Ext1A(−, P (ω))), where

fω : HomA(P (ω)m, P (ω)) → HomA(P (ω)n, P (ω)),

and f0 : N0 −→ M0 is a homomorphism, that is, we have the following commutative diagram

HomA(P (ω)m, P (ω))
δM

−−−−→ Ext1A(M0, P (ω))yfω

yExt1(f0, P (ω))

HomA(P (ω)n, P (ω))
δN

−−−−→ Ext1A(N0, P (ω))

We may write fω = Hom(f ′ω, P (ω)) with f ′ω : P (ω)n −→ P (ω)m. Then the diagram

above induces the following commutative diagram

HomA(P (ω)m, P (ω)m)
δmM

−−−−→ Ext1A(M0, P (ω)m)yHom(fω′ ,P (ω)m)

yExt1(f0, P (ω)m)

HomA(P (ω)n, P (ω)m)
δmN

−−−−→ Ext1A(N0, P (ω)m)

Thus the images of the identity map of P (ω)m under

Hom(f ′ω, P (ω)m)δN
m and δM

mExt1(f0, P (ω)m)

coincide, so we obtain the following commutative diagram

0 −−−−→ P (ω)m
αM

−−−−→ M
πM

−−−−→ M0 −−−−→ 0∥∥∥ xf2

xf0

0 −−−−→ P (ω)m
γ

−−−−→ X
ε

−−−−→ N0 −−−−→ 0xf ′
ω

xf1

∥∥∥
0 −−−−→ P (ω)n

αN

−−−−→ N
πN

−−−−→ N0 −−−−→ 0

Set f = f1f2. It is clear that η(f) = f . Hence the functor η is full.

(2) This statement follows directly from (1) and the fact that a morphism f is an isomor-

phism if so is η(f).

(3) This statement is trivial.

This finishes the proof.

Indeed, in the above theorem the functor η induces a bijection between the isoclasses

of indecomposable objects in F(∆A) and those in the corresponding vectorspace category

Ŭ(F(∆A0)
op,Ext1A(−, P (ω))). Thus the theorem gives a method to see whether F(∆A) is

finite.

The theorem can be formulated more generally for a subcategory of A–mod with certain

properties. However, for our purpose it is more convenient to work with F(∆A) only. Now

let us see some corollaries of the theorem.

Corollary 1.1. Let A be a quasi–hereditary algebra with standard modules ∆(1), · · · ,∆(n).

If A is F(∆)–finite, there holds dimkExt
1
A(∆(i), ∆(j)) ≤ 1 for all i and j.

Proof. We may assume that i < j. In this case we can assume further that ∆(j) = ∆(n)
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is the projective module corresponding to the maximal weight n. Then the condition

dimExt1A(∆(i), ∆(j)) ≥ 2

implies that Ext1A(∆(i), ∆(j)) as a right module over End∆(i) ∼= k is not uniserial. Thus

the vectorspace category Ŭ(F(∆A0)
op, Ext1A(−, ∆(j)) is infinite by [10, Proposition 4.7].

Therefore, F(∆A) is infinite, a contradiction.

Corollary 1.2. If A is an F(∆A)–finite quasi–hereditary algebra, then for each indecom-

posable module M in F(∆A) with ∆–composition factors of the form ∆(j) for j < i, there

holds

dimkExt
1
A(M, ∆(i)) ≤ 3.

This is also a direct consequence of a result in the theory of finite vectorspace categories

(see [10, Lemma 4.8]).

The following three lemmas describe the behaviour of relative irreducible maps under the

functor η. Since their proofs are straightforward, we omit them.

Lemma 1.2. Suppose f : M → N is a relative irreducible map in F(∆A) between

indecomposable modules M and N . Then η(f) = 0 if and only if M ∈ F(∆A0) and N =

P (ω).

Lemma 1.3. Let f : M −→ N be a relative irreducible map in F(∆A) between indecom-

posable modules M and N such that η(f) ̸= 0. Then η(f) : η(N) −→ η(M) is irreducible in

Ŭ(F(∆A0)
op, Ext1A(−, P (ω))).

Lemma 1.4. If f : M −→ N is a morphism between two indecomposable modules in

F(∆A) such that η(f) is irreducible, then f is irreducible in F(∆A).

1.2 To end this section, let us point out another necessary condition which will be useful.

Assume that A is a quasi–hereditary algebra with a poset (∧, ≤). Take a set of orthogonal

primitive idempotents {eλ | λ ∈ ∧} such that Aeλ ∼= PA(λ), where PA(λ) is the projective

A–module corresponding to the weight λ. Let Γ be a subset of ∧. We denote by eΓ the

idempotent eΓ =
∑
λ∈Γ

eλ and set AΓ = eΓAeΓ.

Recall that a subset Γ of ∧ is called an ideal in ∧ if µ ∈ Γ and λ ≤ µ imply λ ∈ Γ. Dually,

a subset Γ of ∧ is called a coideal in ∧ if ∧\Γ is an ideal in ∧.
In what follows we always assume that A is a quasi–hereditary with a poset (∧, ≤) and

that Γ is a coideal in ∧. For simplicity, we write e = eΓ.

Lemma 1.5. Under the above assumptions, we have

(1) The algebra AΓ is a quasi–hereditary with standard modules {e∆A(γ) | γ ∈ Γ} and

with the poset (Γ, ≤) induced by the order relation of ∧.
(2) The costandard modules of AΓ are the module e∇A(γ) for γ ∈ Γ.

(3) If λ /∈ Γ, then e∆A(λ) = 0 and e∇A(λ) = 0.

For the proof of this lemma one may see [8].

Theorem 1.2. Suppose A is a quasi–hereditary algebra with a poset (∧, ≤) and with

standard modules ∆A(λ) for λ ∈ ∧. Let Γ be a coideal in ∧. Then the exact functor

Ae⊗eAe − : F(∆eAe) −→ F({∆A(γ) | γ ∈ Γ})

is an equivalence.
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The proof follows from [5, Theorem 2] since Ae ∈ F({∆A(γ) | γ ∈ Γ}). This result

suggests that one may use subalgebra to see whether F(∆A) is finite.

§2. The Finiteness of F(∆) for Algebras of the Form A(X,M)

In this section we use the results in the previous section to study the finiteness of F(∆)

for quasi–hereditary algebras of the form A(X,M) associated with a matrix labelling poset

(X, M) and present some necessary conditions on (X, M) such that F(∆) is finite.

2.1 We recall some definitions from [7] (see also [3]). Let X be a finite poset. For

x, y ∈ X we write x l y (or y m x) to signify that x < y and that there is no z ∈ X

satisfying x < z < y. For x, y ∈ X with x ≤ y the closed subinterval [x, y] is defined to be

the full convex subposet of X formed by all z ∈ X with x ≤ z ≤ y. A maximal chain of

length n from x to y is a sequence

x = x0 l x1 l · · · l xn = y.

The minimum (resp. maximum) of the lengths of all maximal chains from x to y is called

the minimal (resp. maximal) length of [x, y].

We consider each closed subinterval [x, y] ofX with minimal length 2. Suppose u1, · · · , un

are elements in [x, y] such that

x l ui l y, 1 ≤ i ≤ n,

are all maximal chains from x to y of length 2, i.e. the Hasse diagram of [x, y] has a

subdiagram of the following form

u1

�
... �

x — ui — y

�
... �
un

and we call it for simplicity a mesh diagram of x and y. With such a mesh we associate a

matrix Mn(x, y) ∈ kn×n, say

Mn(x, y) = (a(x,y)uiuj
)uiuj .

Then we say that X is labelled by matrices, denoted by (X,M), where M is the set of all

the labelling matrices, and call M a matrix labelling on X.

We first define an associative k–algebra A′X with a k–basis consisting of all symbols

xn · · ·x1x0, where n ≥ 0 and xi ∈ X, 0 ≤ i ≤ n, satisfy either xi−1 l xi or xi−1 m xi. The

multiplication is defined on the basis elements by setting (ym · · · y1y0)(xn · · ·x1x0) equal

to ym · · · y1xn · · ·x1x0 if y0 = xn and 0 otherwise, and then extended to A′X by linearity.

Obviously, there is a k–algebra anti-involution ε of A′X defined on the basis vectors by

ε : xn · · ·x1x0 7−→ x0x1 · · ·xn.

Further, for x l u, x l v in X, we define

ruxv = uxv −
∑
y

a(x,y)uv uyv,
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where the sum runs over all y satisfying u l y and v l y. Note that we allow in the above

definition that u = v and that if there is no y satisfying u l y and v l y then the summation

is zero.

Finally, by A(X,M) we denote the quotient algebra of A′X by the ideal I(X, M) generated

by elements of the following two types

ruxv, x, u, v ∈ X with x l u and x l v, (2.1.1)

un · · ·u1u0 − vm · · · v1v0, u0u1 · · ·un − v0v1 · · · vm, for u < v in X, (2.1.2)

where u = un l · · · l u1 l u0 = v and u = vm l · · · l v1 l v0 = v are maximal chains

from u to v.

It is known that A(X,M) is quasi–hereditary if (X, M) satisfies the conditions in [3] or

if the Hasse diagram of X is a tree (see [7]). Moreover, if A(X,M) is quasi–hereditary, it

admits a strong ∆–subalgebra which is just the incidence algebra I(X) of X generated by

all elements x+ I(X, M) and yz + I(X, M) for x, y, z ∈ X with y l z and an exact Borel

subalgebra B generated by all elements x+ I(X, M) and yz+ I(X, M) for x, y, z ∈ X with

y m z (see [7, 3.7]). In this case the standard A(X,M)–modules are just the indecomposable

projective I(X)–modules and the costandard A(X,M)–modules are just the indecomposable

injective B–modules.

2.2 The following lemma will be used in our proofs.

Lemma 2.1. Let A be a quasi–hereditary algebra and B a strong exact Borel subalgebra

of A. Then for each natural number l, each B–module M , and each A–module N , there is

an isomorphism

ExtlA(A⊗B M, N) ∼= ExtlB(M, N |B),

where N |B denotes the restriction of A–module N to B.

From now on, we assume that (X, M) is a matrix labelling poset such that A(X,M) is

quasi–hereditary, and we simply write A for A(X,M) if there is no confusion arising.

Lemma 2.2. If A is F(∆)–finite, then the Hasse diagram of X is a tree and the algebra

A is a BGG–algebra.

Proof. Suppose that X is not a tree, then there are elements a < b in X such that there

exist x, y ∈ X satisfying a l x < b and a l y < b. Now let us compute the dimension of

Ext1A(∆(a), ∆(b)). By Lemma 2.1, there holds

dimkExt
1
A(∆(a), ∆(b)) = dimkExt

1
B(E(a), ∆(b)|B),

where E(a) denotes the simple module corresponding to the weight a ∈ X and where B is

the strong exact Borel subalgebra of A. Note that as a B–module

∆(b)|B = ⊕
z≤b

E(z).

Therefore, one has

dimkExt
1
A(∆(a), ∆(b))

= ⊕
z≤b

dimkExt
1
B(E(a), E(z))

≥ dimkExt
1
B(E(a), E(x)) + dimkExt

1
B(E(a), E(y)) = 2.
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By Corollary 1.3, the algebra A is then F(∆)–infinite. This contradiction implies that the

Hasse diagram of X must be a tree.

Proposition 2.1. If A is F(∆)–finite, then the Hasse diagram of X is of Dynkin type.

Proof. Since the strong exact Borel subalgebra B of A is also a factor algebra of A (that

is, B ∼= A/(xy|x l y)), the functor A⊗B− : B–mod−→ A–mod preserves indecomposability

and isomorphism classes. Hence, if A is F(∆)–finite, then the algebra B is hereditary by

2.3 and of finite type. Hence the Hasse diagram of X is of Dynkin type.

Proposition 2.2. Suppose that X is a bipartite poset, i.e. there do not exist x, y, z in X

with x < y < z. Then A is F(∆)–finite if and only if the Hasse diagram of X is a Dynkin

diagram.

Proof. Since X is a bipartite poset, the algebra A is just the algebra A(I(X)) defined

in [19] with I(X) a hereditary algebra of radical square zero. According to [6, Theorem 4.1]

and Lemma 2.4, the algebra A is F(∆)–finite if and only if the Hasse diagram of X is a

Dynkin diagram.

Remark 2.1. If the poset X satisfies the condition 3.1(a) in [3], then A is F(∆)–finite

if and only if X is a bipartite poset with a Hasse diagram of Dynkin type.

Let T be the characteristic module of the quasi–hereditary algebra A (for the definition

of T see [15]). We set

H(T ) = {Y ∈ A−mod | HomA(T, Y ) = 0}.

Then we may describe F(∆) by means of H(T ).

Proposition 2.3. If the Hasse diagram of X is a tree, then H(T ) is equivalent to the

category F(∆)/⟨T ⟩, where ⟨T ⟩ denotes the ideal of F(∆) generated by morphisms which

factor through the objects in add(T ).

Proof. Since the Hasse diagram of X is a tree, the incidence algebra I(X) is a hereditary

algebra. This implies that each standard module of A has projective dimension at most 1.

Since A is a BGG–algebra, each costandard module has injective dimension at most 1.

Hence, by [15, Theorem 3] the proposition follows.

2.3 Recall that a subset Y of X is called a coideal in X if y ∈ Y and y < z imply z ∈ Y .

For a coideal Y in X, each matrix labelling M of X gives rise to a matrix labelling of Y

in the obvious way, and we denote it by N . Finally, we set e = eY =
∑
y∈Y

(y + I(X,M)) in

A(X,M).

Theorem 2.1. Let (X, M) be a matrix labelling poset such that A(X,M) is quasi–

hereditary and Y a coideal in X with the induced matrix labelling N . Then F(∆A(Y,N)
)

is finite if so is F(∆A(X,M)
).

The theorem follows from Theorem 1.2 and the following lemma.

Lemma 2.3. With the same assumptions as in 2.3, we have an isomorphism

A(Y,N)
∼= eA(X,M)e.

Proof. There is a natural embedding

i : A′Y −→ A′X
y0y1 · · · ym 7−→ y0y1 · · · ym.
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Clearly, the morphism i induces an injective algebra homomorphism ĩ : A′Y → ẽA′X ẽ, where

ẽ =
∑
y∈Y

y is an idempotent in A′X .

Consider the following diagram

A′Y
ĩ

−−−−→ ẽA′X ẽyπY

yπ̃

A′Y /I(Y,N) ẽA′X ẽ/ẽI(X,M)ẽ∥∥∥ yη

A(Y,N)

Ψ
−−−−→ eA(X,M)e

where π̃ is the canonical projection and η the canonical isomorphism. It is easy to see that

Ker(̃iπ̃η) = I(Y,N), thus ĩπ̃η factors through the canonical projection

πY : A′Y → A′Y /I(Y,N) = A(Y,N),

i.e., there is an injective algebra homomorphism Ψ : A(Y,N) → eA(X,M)e such that ĩπ̃η =

πY Ψ.

It remains to show that Ψ is surjective. Given an arbitrary element in eA(X,M)e of the

form x0x1 · · ·xn + I(X,M), where x0 and xn lie in Y , one can easily use induction on

n to get that x0x1 · · ·xn + I(X,M) lies in Im(Ψ). Since each element in eA(X,M)e is a

k–linear combination of elements of the form x0x1 · · ·xn + I(X,M) with x0, xn ∈ Y , the

homomorphism Ψ is surjective. This finishes the proof.

Since the converse of Proposition 2.1 is not true, it would be interesting to give a complete

list of matrix labelling posets (X, M) with the Hasse diagrams of X a Dynkin diagram such

that F(∆A(X,M)
) is finite. In the next section we shall deal with this question in a special

case in detail.

§3. Examples

In this section we will classify all the matrix labelling posets (X, M) with X linearly

ordered sets such that A(X,M) is F(∆)–finite. And meanwhile this gives also an explanation

of the methods in section 1.

3.1 Let X = {1 < 2 < · · · < n} be a linearly ordered set. If n ≥ 3, then each matrix

labelling of X is given by n− 2 elements

M(1, 3) = a1, · · · ,M(n− 2, n) = an−2 in k.

For simplicity, we denote by the sequence (a1, a2, · · · an−2) the matrix labelling M .

Further, if we attach to X the new matrix labelling N = (b1, b2, · · · , bn−2) such that

bi = 1 if ai ̸= 0 and that bi = 0 if ai = 0 for all 1 ≤ i ≤ n− 2, then the associated algebras

A(X,N) and A(X,M) are isomorphic. Thus in the following we will assume that each labelling

M = (a1, a2, · · · , an−2) of X is such that ai = 0 or 1 for all 1 ≤ i ≤ n − 2 and we simply

write A for A(X,M).

Proposition 3.1. Let X = {1 < 2 < · · · < n} be a linearly ordered set with the matrix

labelling M = (a1, a2, · · · , an−2). Then A = A(X,M) is F(∆)–finite if and only if one of the

following conditions is satisfied:
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(i) n ≤ 3;

(ii) n = 4 and (a1, a2) ̸= (0, 0);

(iii) n = 5 and (a1, a2, a3) = (1, 1, 1).

Proof. I) We first prove that the algebras A given in the proposition are F(∆)–finite.

This will be done by examining the finiteness of F(∆A) case by case.

1) In case n ≤ 2, the algebras A are trivialwise F(∆)–finite.

2) In case n = 3 and a1 = 0, the algebra A is then given by the quiver

1
α←−
−→
α′

2
β←−
−→
β′

3

with relations αα′ = ββ′ = 0. From [6, 3.4], we know that A is F(∆)–finite. For the use of

the later computation we list the Auslander–Reiten quiver of F(∆A) in Fig. 1.
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Fig.1 Fig.2

(In the figures above the indecomposable modules are displayed by their Loewy factors and

the dotted vertical lines should be identified.)

3) In case (X, M) = ({1 < 2 < 3}, (1)), ({1 < 2 < 3 < 4}, (1, 1)) or ({1 < 2 < 3 < 4 <

5}, (1, 1, 1)), the algebra A is F(∆)–finite according to [5]. Moreover, if (X, M) = ({1 <

2 < 3}, (1)), the Auslander–Reiten quiver of F(∆A) is displayed in Fig.2.

4) In case n = 4 and (a1, a2) = (1, 0), the algebra A is given by the quiver

1
α←−
−→
α′

2
β←−
−→
β′

3
γ←−
−→
γ′

4

with relations

αα′ = β′β and ββ′ = γγ′ = 0.

According to Theorem 1.2, we consider the vectorspace category

Ŭ(F(∆A0)
op, Ext1A(−, PA(4))),

where A0 is the algebra associated with the matrix labelling poset ({1 < 2 < 3}, (1)) (see

3)). A computation shows that dimkExt
1
A(M, PA(4)) ≤ 1 for each indecomposable object

in F(∆A0). Thus the study of the category Ŭ(F(∆A0)
op, Ext1A(−, PA(4))) is reduced to
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the study of representations of the poset S with the following Hasse diagram (see [10, 4.1]):

a— b— c— d, e— f — g

and there is a natural bijection between the isoclasses of indecomposable objects in

Ŭ(F(∆A0)
op, Ext1A(−, PA(4)))

and indecomposable representatons of S. By Kleiner’s criterion (see [12]), the poset S is

of finite type, hence the category Ŭ(F(∆A0)
op, Ext1A(−, PA(4))) is finite. By Theorem 1.2,

the algebra A is then F(∆)–finite. In fact, F(∆A) has 27 isoclasses of indecomposables.

5) In case n = 4 and (a1, a2) = (0, 1), as in case 4) we consider the vectorspace category

Ŭ(F(∆A0)
op,Ext1A(−, PA(4))),

where A0 is the algebra associated with the matrix labelling poset ({1 < 2 < 3}, (0)) (see 2)).
According to [10, 4.10, 4.11], there is a bijection between the isoclasses of indecomposable

objects in

Ŭ(F(∆A0)
op,Ext1A(−, PA(4)))

and those of indecomposable representations of the following biinvolutive poset S∗∗ whose

Hasse diagram is of the following form:

b — d — f — h — v
� � � � �
a — c — e — g — u

�
x

whose involution on S is given by

a∗ = u, u∗ = a, c∗ = v, v∗ = c, and s∗ = s

for all remaining points s in S, and whose involution on S2 = {(s, t)|s ≤ t} by

(a, b)∗ = (u, v), (u, v)∗ = (a, c), and (s, t)∗ = (s, t)

for all remaining pairs (s, t) ∈ S2. According to [13, 1.2], one can associate with S∗∗ a poset

C(S∗∗) which is of finite type by Kleiner’s criterion. It follows from the main theorem in

[14] that S∗∗ is of finite type. Thus the vectorspace category

Ŭ(F(∆A0), Ext
1
A(−, PA(4)))

is finite, that is, A is F(∆)–finite.

II) To prove the necessity, by Theorem 2.1 it suffices to prove that the algebras A =

A(X,M) are F(∆)–infinite for the matrix labelling posets (X, M) satisfying one of the fol-

lowing conditions:

(i) n = 4 and (a1, a2) = (0, 0),

(ii) n = 5 and (a1, a2, a3) ̸= (1, 1, 1),

(iii) n = 6 and (a1, a2, a3, a4) = (1, 1, 1, 1).

In the following we show that for the above matrix labelling posets the algebras A are

F(∆)–infinite.

a) In case n = 4 and (a1, a2) = (0, 0), the infiniteness of F(∆A) follows from [6, Proposi-

tion 3.4].
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b) In case n = 5 and (a1, a2, a3) = (0, 0, 0), (0, 0, 1) or (1, 0, 0), the infiniteness of F(∆A)

follows from a), Theorems 1.1 and 2.1.

c) In case n = 5 and (a1, a2, a3) = (0, 1, 1), the algebra A is given by the quiver

1
α←−
−→
α′

2
β←−
−→
β′

3
γ←−
−→
γ′

4
δ←−
−→
δ′
5

with relations

αα′ = δδ′ = 0, ββ′ = γ′γ and γγ′ = δ′δ.

By the reduction in [6], the categories F(∆A) and Ŭ(F(∆C), HomC(PC(2),−)) have the

same representation type, where C is the algebra given by the following quiver

2
β←−
−→
β′

3
γ←−
−→
γ′

4
δ←−
−→
δ′
5

with relations

δδ′ = 0, ββ′ = γ′γ and γγ′ = δ′δ

and where PC(2) is the projective C–module corresponding to the vertex 2. Consider the

indecomposable C–module

M = (M2,M3,M4,M5;β, β
′, γ, γ′, δ, δ′) ∈ F(∆C)

given by (
k4, k3, k2, k;

[
0 1 0 0

0 0 1 0

0 0 0 1

]
,

[ 1 0 0

0 0 1

0 0 1

0 0 0

]
,
[
0 1 0

0 0 1

]
,

[
0 1

0 1

0 0

]
, [ 0 1 ] ,

[
1

0

])
.

A computation shows that HomC(PC(2),M) considered as right EndC(M)–module is not

uniserial, thus with Ŭ(F(∆C), HomC(PC(2),−)) also F(∆A) is infinite.

d) In case n = 5 and (a1, a2, a3) = (0, 1, 0), an argument similar to c) shows that the

algebra A is F(∆)–infinite.

e) In case n = 5 and (a1, a2, a3) = (1, 1, 0), the algebra A is given by the quiver

1
α←−
−→
α′

2
β←−
−→
β′

3
γ←−
−→
γ′

4
δ←−
−→
δ′
5

with relations

αα′ = β′β, ββ′ = γ′γ and γγ′ = δδ′ = 0.

By Theorem 1.1, we consider the vectorspace category

Ŭ(F(∆A0)
op, Ext1A(−, PA(5))),

where A0 is the factor algebra A/Ae5A. Consider the indecomposable A0–module

N = (N1, N2, N3, N4;α, α
′, β, β′, γ, γ′)

given by (
k4, k3, k2, k;

[
0 1 0 0

0 0 1 0

0 0 0 1

]
,

[ 1 0 0

0 0 1

0 0 1

0 0 0

]
,
[
0 1 0

0 0 1

]
,

[
0 1

0 1

0 0

]
, [ 0 1 ] ,

[
1

0

])
.

This module belongs to F(∆A0) and one can prove that the space Ext1A0
(N,PA(5))

considered as right module over EndA0(N) is not uniserial, thus the category

Ŭ(F(∆A0)
op,Ext1A(−, PA(5)))
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is infinite. By Theorem 1.1, the category F(∆A) is then infinite.

f) In case n = 5 and (a1, a2, a3) = (1, 0, 1), the infiniteness of F(∆A) can be proved in a

way similar to e).

g) In case n = 6 and (a1, a2, a3, a4) = (1, 1, 1, 1), the infiniteness of F(∆A) is proved in

[5].

This finishes the proof of the proposition.
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