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Abstract

The author proves a sharper estimate on the minimal period for periodic solutions of au-
tonomous second order Hamiltonian systems under precisely Rabinowitz’ superquadratic con-
dition.
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§1. The Main Results

In this short note, we consider the existence of non-constant periodic solutions with

prescribed minimal period for the following autonomous second order Hamiltonian systems

ẍ+ V ′(x) = 0, ∀x ∈ Rn, (1.1)

where n is a positive integer. V : Rn → R is a function, and V ′ denotes its gradient. In

his pioneer work [6] in 1978, P. Rabinowitz posed a conjecture of whether (1.1) possesses a

non-constant solution with any prescribed minimal period under superquadratic conditions.

Since then, a large amount of contributions on this minimal period problem have been made

by many mathematicians. We refer to [1] for discussions and references before 1990 on this

problem. In a recent paper[4] under precisely Rabinowitz’ superquadratic condition, the

author proved that for every T > 0 there exists a T -periodic even non-constant solution x

of (1.1) with minimal period T/k for some integer k satisfying 1 ≤ k ≤ n+ 2 (cf. also [2, 3,

5]). In this paper we further improve this estimate for the integer k to 1 ≤ k ≤ n+ 1. Our

main results are the following theorems.

Theorem 1.1. Suppose V satisfies the following conditions.

(V1) V ∈ C2(Rn,R).

(V2) There exist constants µ > 2 and r0 > 0 such that

0 < µV (x) ≤ V ′(x) · x, ∀|x| ≥ r0.

(V3) V (x) ≥ V (0) = 0, ∀x ∈ Rn.
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(V4) V (x) = o(|x|2), at x = 0.

Then for every T > 0, the system (1.1) possesses a non-constant T -periodic even solution

with minimal period T/k for some integer k satisfying 1 ≤ k ≤ n+ 1.

Theorem 1.2. Suppose V satisfies conditions (V1)–(V3) and the following condition.

(V5) There exist constants ω > 0 and r1 > 0 such that

V (x) ≤ ω

2
|x|2, ∀|x| ≤ r1.

Then for every positive T < 2π√
ω
, the conclusion of Theorem 1.1 holds.

Our proof depends on a new inequality (Theorem 2.1) of iterated Morse indices for the

functional corresponding to (1.1) defined on even function spaces, and the approach used in

[4].

§2. The Proofs

As in [4] let ET =W 1,2(ST ,R
n), where ST = R/(TZ), with the norm

∥x∥T =
(∫ T

0

|ẋ|2dt+ T |x(0)|2
)1/2

, ∀x ∈ ET .

The functional corresponding to the system (1.1) is defined by

ψT (x) =

∫ T

0

(1
2
|ẋ|2 − V (x)

)
dt, ∀x ∈ ET . (2.1)

Define

SET = {x ∈ ET |x(−t) = x(t), ∀t ∈ R}.

In [4] it is proved that the critical points of ψT restricted to SET are one-to-one correspondent

to T -periodic even solutions of the system (1.1).

For any critical point x of ψT |SET the following bilinear form is defined by ψ′′
T (x) on SET :

ϕT (y, z) =

∫ T

0

{ẏ · ż −A(t)y · z}dt, ∀y, z ∈ SET . (2.2)

Denote by Ls(R
n) the space of symmetric n×n real matrices. A(t) = V ′′(x(t)) satisfies the

following condition.

(AS) A ∈ C(ST ,Ls(R
n)) and A(t) is even about t = 0.

Note that ϕT corresponds to the following linear second order Hamiltonian system

ÿ +A(t)y = 0, ∀y ∈ Rn. (2.3)

It is proved in [4] that under (AS), SET possesses a ϕT -orthogonal decomposition SET =

SE+
T ⊕ SE0

T ⊕ SE−
T according to ϕT being positive, null, and negative definite respectively.

If x is a non-constant critical point of ψT in SET , then ẋ is a nontrivial solution of (2.3)

with A(t) = V ′′(x(t)), and ẋ ∈ ET is odd about t = 0. Thus we define the space of such

odd solutions of (2.3) by OE0
T = {y ∈ ET | y is an odd solution of (2.3)}.

Definition 2.1. Define siT = dimSE−
T and oνT = dimOE0

T .

The following estimate on the iterated Morse indices is the main result in this paper.

Theorem 2.1. Suppose the condition (AS) holds. Then

sikT ≥ kmin{oνT , 1}, ∀k ∈ N. (2.4)
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Proof. Suppose oνT ≥ 1 and fix an integer k ∈ N. Fix u ∈ OE0
T \{0}. We define new

functions u+ and u− ∈ C(SkT ,R
n) by

u+(t) =

{
u(t), if 0 ≤ t ≤ T/2,

0, if T/2 ≤ t ≤ kT,
u−(t) =

{
u(t+ T/2), if 0 ≤ t ≤ T/2,

0, if T/2 ≤ t ≤ kT.
(2.5)

Define a T/2-translation operator η : C(SkT ,R
n) → C(SkT ,R

n) by

ηv(t) = v(t− T/2), ∀v ∈ C(SkT ,R
n). (2.6)

Now we define a sequence of functions {ui} for 1 ≤ i ≤ k based on u by

ui = ηi−1u+ − η2k−iu−, if i ∈ 2N− 1, (2.7)

ui = −ηi−1u− + η2k−iu+, if i ∈ 2N, (2.8)

(cf. Figure 1.) and define N = span{ui | 1 ≤ i ≤ k}.
Since all the ui’s have mutually nonintersect supports, they are linearly independet. Note

that each ui ∈ EkT is even, there hold

dimN = k, N ⊂ SEkT , (2.9)

ϕkT (ui, uj) = 0, if i ̸= j. (2.10)

Since u ∈ OE0
T \{0}, we obtain u̇(0) = u̇(T ) ̸= 0 and u̇(T/2) ̸= 0. Therefore each ui is

not C1, and therefore does not belong to kerϕT in ET . Since uk is not C1 at t = kT/2, any

function in N\{0} is not C1. Therefore we obtain

N ∩ kerϕkT = {0}. (2.11)

If i is odd, from the definition of ui, we obtain

ϕkT (ui, ui) =

∫ iT/2

(i−1)T/2

(|u̇i|2 −A(t)ui · ui)dt+
∫ (2k−i+1)T/2

(2k−i)T/2

(|u̇i|2 −A(t)ui · ui)dt

=

∫ T/2

0

(|u̇+|2 −A(t)u+ · u+)dt+
∫ T/2

0

(|u̇−|2 −A(t+ T/2)u− · u−)dt

=

∫ T

0

(|u̇|2 −A(t)u · u)dt

= 0. (2.12)

If i is even, from the definition of ui, we obtain similarly

ϕkT (ui, ui) =

∫ T/2

0

(|u̇−|2 −A(t+ T/2)u− · u−)dt+
∫ T/2

0

(|u̇+|2 −A(t)u+ · u+)dt

= 0. (2.13)

Note that (2.10), (2.12), and (2.13) imply

ϕkT (v1, v2) = 0 ∀v1, v2 ∈ N. (2.14)

Based upon (2.9), (2.11), and (2.14), we can apply the step 4 in the proof of Theorem

3.10 of [4], and obtain (2.4). The proof is complete.

Note that different from the constructions in Theorem 3.10 of [4], the ui’s may not be

ϕkT -orthogonal to constant solutions. Theorem 2.1 should be compared with the following

iteration inequality of Morse indices, Theorem 3.10 of [4], where σ+
kT ∈ [0, n] is an integer

determined by A(t),

sikT ≥ (k − 1)min{oνT , 1}+ σ+
kT , ∀k ∈ N.
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Since the non-constant solution x obtained via the saddle point theorem in the proofs of

Theorems 1.1 and 1.2 always possesses Morse indices siT ≤ n+ 1 and oνT/k ≥ 1, where the

minimal period of x is denoted by τ ≡ T/k for some k ∈ N, we then obtain from Theorem

2.1,

n+ 1 ≥ siT = sikτ ≥ kmin{oντ , 1} ≥ k.

This proves Theorems 1.1 and 1.2. For details of the proof we refer to that in the section

4 of [4], where we replace the Theorem 3.10 of [4] by the above Theorem 2.1. Note that in

the proof of Theorem 1.2, we use Grownwall’s inequality to get the constant 2π/
√
ω.
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Figure 1. Functions in N defined by (2.7) and (2.8) for the case of k = 4.


