ESSENTIALLY NORMAL + SMALL COMPACT = STRONGLY IRREDUCIBLE

JI YOUQING* JIANG CHUNLAN* WANG ZONGYAO**

Abstract

Given an essentially normal operator T with connected spectrum and $\operatorname{ind}(\lambda - T) > 0$ for λ in $\rho_F(T) \cap \sigma(T)$, and a positive number ϵ , the authors show that there exists a compact K with $||K|| < \epsilon$ such that T + K is strongly irreducible.

Keywords Essentially normal operator, Compact operator, Spectral picture1991 MR Subject Classification 41A10, 47A55Chinese Library Classification 0177.1, 0174.41

§1. Introduction

Let $\mathcal{L}(\mathcal{H})$ denote the algebra of all linear bounded operators acting on a complex, separable, infinite dimensional Hilbert space \mathcal{H} . An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be strongly irreducible, if it does not commute with any non-trivial idempotent in $\mathcal{L}(\mathcal{H})$ (see [1, 2, 3]). The strong irreducibility is one of the important properties of operators invariant under similiarity. In what follows, $T \in (SI)$ means that T is a strongly irreducible operator on its acting space.

An operator T is essentially normal if the self-commutator $[T^*, T] = T^*T - TT^*$ is compact. We denote $(\mathcal{U} + \mathcal{K})(\mathcal{H}) = \{R \in \mathcal{L}(\mathcal{H}) : R \text{ is invertible of the form unitary plus compact}\}$, and denote the $\mathcal{U} + \mathcal{K}$ orbit of T

$$(\mathcal{U} + \mathcal{K})(T) = \{ R^{-1}TR, \ R \in (\mathcal{U} + \mathcal{K})(\mathcal{H}) \}.$$

 $T \simeq_{\mathcal{U}+\mathcal{K}} A$ means that $A \in (\mathcal{U}+\mathcal{K})(T)$. It is obvious that $\simeq_{\mathcal{U}+\mathcal{K}}$ is an equivalent relation. Note that T is essentially normal and $T \simeq_{\mathcal{U}+\mathcal{K}} A$ imply that A is essentially normal.

D.A. Herrero and C.L. Jiang proved^[3] that if $\sigma(T)$, the spectrum of T, is connected, then there exists a sequence $\{T_n\}$ of strongly irreducible operators such that $||T_n - T|| \rightarrow 0$ $(n \rightarrow \infty)$. C. L. Jiang and Z. Y. Wang^[4] improved this result and proved that there exists a strongly irreducible operator A such that i) the spectral pictures (i.e., the spectra and index functions) of T and A are equal; ii) T is a limit of operators similar to A; iii) if there is another strongly irreducible operator B satisfying i) and ii), then B is also a limit of operators similar to A.

Manuscript received May 9, 1995. Revised October 25, 1995.

^{*}Department of Mathematics, Jilin University, Changchun 130023, China.

^{**}Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China.

The following questions were naturally thought by Herreto:

(1) Given $T \in \mathcal{L}(\mathcal{H})$ with connected $\sigma(T)$, does there exist a K compact such that $T + K \in (SI)$?

(2) Given $T \in \mathcal{L}(\mathcal{H})$ with connected $\sigma(T)$ and given $\epsilon > 0$, does there exist K compact such that $||K|| < \epsilon$ and $T + K \in (SI)$?

(3) Given an essentially normal operator T with connected $\sigma(T)$, what are the answers for the above two questions. C. L. Jiang, S. H. Sun and Z. Y. Wang^[5] proved that if T is essentially normal with connected $\sigma(T)$, then there exists K compact such that $T+K \in (SI)$. Using the $(\mathcal{U}+\mathcal{K})$ orbit, Q. Y. Ji, C. L. Jiang and Z. Y. Wang^[6] proved that if T is essentially normal, $\sigma(T) = \overline{\Omega}$, where Ω is an analytic Jordan region and $\operatorname{ind}(\lambda - T) = n$ ($\lambda \in \Omega$), then for each $\epsilon > 0$, there exists K compact such that $||K|| < \epsilon$ and $T + K \in (SI)$.

The following are the main theorem of this article.

Main Theorem. Let $T \in \mathcal{L}(\mathcal{H})$ be essentially normal with connected $\sigma(T)$ and $\operatorname{ind}(\lambda - T) > 0$ ($\lambda \in \rho_F(T) \cap \sigma(T)$), then for each $\epsilon > 0$, there exists K_{ϵ} compact with $||K_{\epsilon}|| < \epsilon$ such that $T + K_{\epsilon} \in (SI)$, where $\rho_F(T) = \{\lambda \in C; \lambda - T \text{ is Fredholm}\}.$

§2. Preparation

Lemma 2.1. Let $B \in \mathcal{L}(\mathcal{H})$ and let $\mathcal{M} = [ker(B - \lambda)^*]^{\perp}$, where $\lambda \in \rho_l(B) \cap \sigma(B)$ and n is a natural number. Then $B|_{\mathcal{M}} \sim B$ and $P_{\mathcal{M}}B^*|_{\mathcal{M}} \sim B^*$, where $P_{\mathcal{M}}$ is the orthogonal projection onto \mathcal{M} , $\rho_l(B) = \{\lambda \in C; \lambda - B \text{ is left invertible}\}.$

Proof. Since $\mathcal{M} = \operatorname{Ran}(\lambda - B)$ and since $\ker(\lambda - B) = \{0\}$, $A_1 := (\lambda - B) \in \mathcal{L}(\mathcal{H}, \mathcal{M})$ is invertible. Set $B_1 = B|_{\mathcal{M}}$. Then $A_1^{-1}B_1A_1 = B$, i.e., $B|_{\mathcal{M}} \sim B$. The second conclusion is a direct consequence of the first.

Lemma 2.2. Let $B_n \in \mathcal{B}_1(\Omega_n)$ and $\lambda_n \in \Omega_n$, $(n = 1, 2, \cdots)$, $\mathcal{B}_1(\Omega_n)$ is the set of Cowen-Douglas operators of index $1^{[4]}$ and $\{\Omega_n\}$ is a sequence of uniformly bounded, connected open subsets of complex plan \mathcal{C} $(n = 1, 2, \cdots)$. Set $T = \bigoplus_{n=1}^{\infty} B_n$ on $\mathcal{H} = \bigoplus_{n=1}^{\infty} \mathcal{H}_n$, and assume that P_m is the orthogonal projection on to $\mathcal{M} = \bigoplus_{n=1}^m \{\ker(\lambda_n - B_n)^m \bigoplus 0.$ Then $P_m^{\perp}T|_{P_m^{\perp}T\mathcal{H}} \sim T$, where $P_m^{\perp} = I - P_m$.

Proof. Denote $\mathcal{M}_n = \ker(\lambda_n - B_n)^m$ $(n = 1, 2, \cdots, m)$. We have

$$P_m^{\perp}T|_{P_m^{\perp}\mathcal{H}} = \left(\bigoplus_{n=1}^m P_{m_n}^{\perp} B_n|_{P_{m_n}^{\perp}\mathcal{H}_n}\right) \bigoplus_{n=m+1}^\infty B_n$$

where P_{m_n} is the orthogonal projection on \mathcal{M}_n . Then by Lemma 2.1, there exists X_n invertible such that

$$X_n \Big(\bigoplus_{n=1}^m P_{m_n}^{\perp} B_n |_{P_{m_n}^{\perp} \mathcal{H}_n} \Big) X_n^{-1} = B_n \quad (n = 1, 2, \cdots, m).$$

Set $X = \bigoplus_{n=1}^{m} X_n \bigoplus \left(\bigoplus_{n=m+1}^{\infty} I_n \right)$. Then $X(P_m^{\perp}T|_{P_m^{\perp}\mathcal{H}})X^{-1} = T$. Here I_n is the identity operator on \mathcal{H}_n .

Lemma 2.3. Let $A \in \mathcal{L}(\mathcal{H})$. If $\lambda \in \rho_F(A)$ such that dimker $(\lambda - A) = \operatorname{ind}(\lambda - A) = 1$

and $e_0 \notin \operatorname{Ran}(\lambda - A)^*$, then

$$A \sim \begin{pmatrix} \lambda & 1 \bigotimes e_0 \\ 0 & A \end{pmatrix} \text{ on } \mathcal{C} \bigoplus \mathcal{H}.$$

Proof. Denote $\mathcal{M} = \ker(\lambda - A)^{\perp}$. Then

$$A = \begin{pmatrix} \lambda & C\\ 0 & (A^*|_{\mathcal{M}})^* \end{pmatrix}_{\ker(\lambda - A)}^{\ker(\lambda - A)}$$

and $A^*|_{\mathcal{M}} \sim A^*$ by Lemma 2.1 or $(A^*|_{\mathcal{M}})^* \sim A$. Thus

$$A \sim \begin{pmatrix} \lambda & C_1 \\ 0 & A \end{pmatrix}_{\mathcal{H}}^{\mathcal{C}}, \tag{1.1}$$

).

where C_1 is an operator of rank one, i.e., $C_1 = 1 \bigotimes f$ for some $f \in \mathcal{H}$. Since $e_0 \notin \operatorname{Ran}(\lambda - A)^*$, $f = ae_0 + (A - \lambda)^* f_1$, for some complex number α . If $\alpha = 0$, then

$$f = (A - \lambda)^* f_1$$
 or $C_1 = 1 \bigotimes (A - \lambda)^* f_1$.

From (1.1), $A - \lambda \sim \begin{pmatrix} 0 & C_1 \\ 0 & A - \lambda \end{pmatrix}$. Since $\begin{pmatrix} 1 & -1 \bigotimes f_1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & C_1 \\ 0 & A - \lambda \end{pmatrix} \begin{pmatrix} 1 & -1 \bigotimes f_1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & A - \lambda \end{pmatrix}$, $A - \lambda \sim \begin{pmatrix} 0 & 0 \\ 0 & A - \lambda \end{pmatrix}$.

This contradicts the condition dimker $(\lambda - A) = 1$. Thus $\alpha \neq 0$.

Set
$$X = \begin{pmatrix} \alpha & 1 & -1 \bigotimes f_1 \\ 0 & 1 \end{pmatrix}$$
. Then

$$X \begin{pmatrix} \lambda & C_1 \\ 0 & A \end{pmatrix} X^{-1} = \begin{pmatrix} \lambda & 1 \bigotimes e_0 \\ 0 & A \end{pmatrix}$$

Thus $A \sim \begin{pmatrix} \lambda & 1 \bigotimes e_0 \\ 0 & A \end{pmatrix}$.

Lemma 2.4. Given $A \in \mathcal{L}(\mathcal{H})$, let $T = \begin{pmatrix} F & C \\ 0 & A \end{pmatrix} \in \mathcal{L}(\mathcal{C}^n \bigoplus \mathcal{H})$, where F is an $n \times n$ matrix satisfying that $\sigma(F) \subset \sigma(A) \cap \rho_F(A)$ and dimker $(\lambda - A) = \operatorname{ind}(\lambda - A) = 1$ for each $\lambda \in \sigma(F)$. Then for $\epsilon > 0$ there exists K compact with $||K|| < \epsilon$ such that

$$T+K\sim A$$

Proof. When n = 1, $T = \begin{pmatrix} \lambda & C \\ 0 & A \end{pmatrix}$, where C is an operator of rank 1, i.e., $C = a \bigotimes f$ for some f in \mathcal{H} . If $f \notin \operatorname{Ran}(\lambda - A)^*$, $T \sim A$ by Lemma 2.3. If $f \in \operatorname{Ran}(A - \lambda)^*$, choose $e_0 \in \operatorname{ker}(\lambda - A)$, thus $f + e_0 \notin \operatorname{Ran}(\lambda - A)^*$. Set

$$K = \begin{pmatrix} 0 & \epsilon(\alpha \bigotimes e_0) \\ 0 & 0 \end{pmatrix}.$$

Thus $T + K \sim A$ by Lemma 2.3. Assume that the conclusion of the lemma is true for $n \leq k - 1$. We shall prove that lemma is true for n = k. Let $\lambda_0 \in \sigma(F)$. Then there exists U unitary such that

$$U\begin{pmatrix} F & C\\ 0 & A \end{pmatrix}U^* = \begin{pmatrix} \lambda_0 & C_1 & C_2\\ 0 & F_1 & C_3\\ 0 & 0 & A \end{pmatrix} \begin{array}{c} \mathcal{C}\\ \mathcal{C}^{n-1} = A_1.\\ \mathcal{H} \end{array}$$

By the induction assumption, there exist K'_1 compact with $||K'_1|| < \epsilon/4$ and X_1 invertible such that

$$X_1 \left[\begin{pmatrix} F_1 & C_3 \\ 0 & A \end{pmatrix} + K_1' \right] X_1^{-1} = A.$$

Thus

$$\begin{pmatrix} 1 & 0 \\ 0 & X_1 \end{pmatrix} (A_1 + K_1) \begin{pmatrix} 1 & 0 \\ 0 & X_1^{-1} \end{pmatrix} = \begin{pmatrix} \lambda_0 & C' \\ 0 & A \end{pmatrix}_{\mathcal{H}}^{\mathcal{C}},$$

where $K_1 = \begin{pmatrix} 0 & 0 \\ 0 & K'_1 \end{pmatrix}_{\mathcal{C}^{n-1} \bigoplus \mathcal{H}}^{\mathcal{C}}$. The proof of the part "n = 1" implies that the conclusion of the lemma is true.

Lemma 2.5. Given $A \in \mathcal{B}_1(\Omega)$ and $\lambda_0 \in \Omega$, then there exist an ONB $\{e_n\}_{n=1}^{\infty}$ of \mathcal{H} and an r > 0 such that

$$A = \begin{pmatrix} \lambda_0 & a_{12} & a_{13} & \dots \\ 0 & \lambda_0 & a_{23} & \dots \\ & & \lambda_0 & \\ & & & \ddots \end{pmatrix} \stackrel{e_1}{\underset{e_2}{e_3}}$$

and $|a_{k \ k+1}| > r > 0 \ (k = 1, 2, \cdots).$

Proof. Assume that $e_1 \in \ker(A - \lambda_0)$ with $||e_1|| = 1$. Let *B* be the right inverse of $A - \lambda_0$. Since $\ker B^* = \{0\}$ $(k = 1, 2, \cdots)$ and since $e_1 \notin \operatorname{Ran} B$, $\{e_1, Be_1, B^2e_1, \cdots\}$ is linearly independent. Since $B^{k-1}e_1 \in \ker(A - \lambda_0)^k$ and since $\dim \ker(A - \lambda_0)^k = k$,

$$\ker(A - \lambda_0)^k = \bigvee \{e_1, Be_1, \cdots, B^{k-1}e_1\} \ (k = 1, 2, \cdots).$$

Since $\bigvee \{ \ker(A - \lambda_0)^k : k = 1, 2, \dots \} = \mathcal{H},$

$$\bigvee \{B^k e_1, \ k = 0, 1, 2, \cdots \} = \mathcal{H}.$$

Let $\{e_k\}_{k=1}^{\infty}$ be the Gram-schmidt orthonormalization of $\{B^k e_1\}_{k=0}^{\infty}$. Then A is an upper triangular matrix representation

$$A = \begin{pmatrix} \lambda_0 & a_{12} & a_{13} & \dots \\ 0 & \lambda_0 & a_{23} & \dots \\ & & \lambda_0 & \\ & & & \ddots \end{pmatrix}$$

with respect to the ONB $\{e_k\}_{k=1}^{\infty}$. Note that $(A - \lambda_0)|_{\ker(A - \lambda_0)}$ is bounded from below, thus there exists r > 0 such that $||(A - \lambda_0)y|| \ge r||y||$ for each $y \in [e_1]^{\perp}$. Set $x_k = a_k |_{k+1}e_k$ and $x'_k = -\sum_{i=1}^{k-1} a_k |_{k+1}e_k | (k = 1, 2, \cdots)$. Since $A - \lambda_0$ is onto, there is a vector $y_k \in \bigvee \{e_i, i = 2, 3, \cdots, k\}$ such that $-x'_k = (A - \lambda_0)y_k$. Thus $x_k = (A - \lambda_0)(e_{k+1} + y_k)$ and $|a_k |_{k+1}| = ||x_k|| = ||(A - \lambda_0)(e_{k+1} + y_k)|| \ge r||e_{k+1} + y_k||$ $= r\sqrt{||e_{k+1}||^2 + ||y_k||^2} \ge r \quad (k = 1, 2, \cdots).$

Lemma 2.6. Let M be an almost normal operator on Hilbert space \mathcal{H} with connected and perfect spectrum $\sigma(M)(=\sigma)$. And let $\{\mu_n\}_{n=1}^{\infty}$ be a dense subset of σ . Then for each $\delta > 0$ there exists K compact with $||K|| < \delta$ satisfying

- (i) $N = M + K \in (SI)$ and $\sigma(N) = \sigma(M) = \sigma$;
- (ii) $\bigvee \{ \ker(\lambda N)^m; \ \lambda \in \sigma_p(N); \ m \ge 1 \} = \mathcal{H} \text{ and } \{ \mu_n \}_{n=1}^{\infty} \subset \sigma_p(N).$

Proof. Denote $G_n = \{z; \operatorname{dist}(z, \sigma) < \epsilon^2/2^{n+1}\}$. Then G_n is a connected open set, $G_n \supset G_{n+1} \ (n = 1, 2, \cdots)$ and $\bigcap_{n=1}^{\infty} G_n = \sigma$. Choose a smooth route $r_1(t)$ of G_1 such that $r_1(0) = r_1(1) = \mu_1, \ r_1(t)$ passes through μ_2 and choose m_1 points $s_1^1, \ s_2^1, \cdots, s_{m_1}^1$ on $r_1(t)$ satisfying

(a) $s_1^1 = \mu_1, \ \mu_2 \in \{s_1^1, \ s_2^1, \cdots, s_{m1}^1\},\$

(b) $0 < |s_j^1 - s_{j-1}^1| < \epsilon^2/4$; $0 < |s_{m_1}^1 - s_1^1| < \epsilon^2/4$. Choose pairwise distinct points $\{\lambda_j^1\}_{j=1}^{m_1}$ in σ such that

$$|s_j^1 - \lambda_j^1| < \frac{3}{2} \operatorname{dist}(s_j^1, \sigma); \quad \lambda_1^1 = s_1^1 = \mu_1.$$

Similarly, for each natural number n, we can find a smooth route $r_n(t)$ of G_n such that $r_n(0) = r_n(1) = \mu_1$, $r_n(t)$ passes through $\{\lambda_j^{n-1}; 1 \le j \le m_{n-1}\}$ and μ_n . Choose m_n points $s_1^n, s_2^n, \dots, s_{m_n}^n$ on $r_n(t)$ satisfying

$$s_1^n = \mu_1; \ \{\lambda_j^{n-1}, \ j = 1, 2, \cdots, m_{n-1}\} \cup \{\mu_1, \ \mu_2, \cdots, \mu_n\} \subset \{s_j^n, \ 1 \le j \le m_n\}$$

and

$$0 < |s_j^n - s_{j-1}^n| < \frac{\epsilon^2}{2(n+1)}, \quad 0 < |s_{m_n}^n - \mu_1| < \frac{\epsilon^2}{2(n+1)}.$$

Choose pairwise distinct points $\{\lambda_j^n\}_{j=1}^{m_n}$ in σ such that

$$|s_j^n - \lambda_j^n| < \frac{3}{2} \operatorname{dist}(s_j^n, \sigma); \quad \lambda_1^n = s_1^n = \mu_1.$$

It is easy to see that $\{\lambda_j^n : j = 1, \dots, m_n, n = 1, 2, \dots\}$ is dense in σ and $\{\mu_n\}_{n=1}^{\infty} \subset \{\lambda_j^n : j = 1, \dots, m_n, n = 1, 2, \dots\}$. Denote

$$\lambda_1 = \lambda_1^1, \ \lambda_2 = \lambda_2^1, \cdots, \lambda_{m_1} = \lambda_{m_1}^1, \ \lambda_{m_1+1} = \lambda_1^2, \cdots, \lambda_{m_1+m_2} = \lambda_{m_2}^2, \cdots$$

Thus

- (i) $\{\lambda_k\}_{k=1}^{\infty}$ is dense in σ (without loss of generality, we can assume that $0 \notin \{\lambda_k\}_{k=1}^{\infty}$),
- (ii) $\lim_{k \to \infty} |\lambda_{k+1} \lambda_k| = 0$,
- (iii) $\operatorname{card}\{n; \lambda_k = \lambda_n\} = \infty, \ k = 1, 2, \cdots$

Let $\{e_k\}_{k=1}^{\infty}$ be an ONB of \mathcal{H} . Define $De_k = \lambda_k e_k$. Then $\sigma(D) = \sigma(M) = \sigma$. By Theorem 1 of [6], there exists K_1 compact with $||K_1|| < \delta/2$ such that $X(M+K_1)X^{-1} = D$ for some $X \in (\mathcal{U} + \mathcal{K})(\mathcal{H})$. Thus it is sufficient to prove that for each $\epsilon > 0$, there exists a compact K_2 with $||K_2|| < \epsilon$ such that $D_2 + K_2 \in (SI)$. Define $K_2 e_{k-1} = \alpha_k e_k$, where $\alpha_k = \sqrt{|\lambda_{k+1} - \lambda_k|} \ (k = 1, 2, \cdots)$. Since $\lim \alpha_k = 0$, K_2 is compact. If

$$P = \begin{pmatrix} x_1 & x_{12} \dots \dots \\ x_{21} & x_{2} \dots \dots \\ x_{31} & x_{32} & x_{3} \dots \\ \dots \dots \dots \dots \dots \end{pmatrix} \stackrel{e_1}{\underset{e_2}{e_3}} \in \mathcal{A}'(D+K_2)$$

is idempotent, since $P(D + K_2) = (D + K_2)P$, $\lambda_1 x_1 + \alpha_1 x_{21} = x_1\lambda_1$; or $x_{21} = 0$. Since $\lambda_2 x_{21} + \alpha_2 x_{31} = x_{21}\lambda_1$, $x_{31} = 0, \cdots$, we can prove that $x_{k1} = 0$ $(k = 2, 3, \cdots)$. Similarly, $x_{ij} = 0$ (i > j), i.e., P admits an upper triangular matrix representation with respect to the ONB $\{e_k\}_{k=1}^{\infty}$. Since $P^2 = P$, $x_k = 0$ or 1. Since $P(D + K_2) = (D + K_2)P$ and P is an upper trangular matrix,

$$x_{k\ k+1} = \frac{x_k - x_{k+1}}{\lambda_{k+1} - \lambda_k} \alpha_k \ (k = 1, 2, 3, \cdots).$$

Since $x_k = 0$ or 1, $|x_k - x_{k+1}| = 0$ or 1. Since $\lim_{k \to \infty} |\lambda_{k+1} - \lambda_k| = 0$ and since $\alpha_k = \sqrt{|\lambda_{k+1} - \lambda_k|}$, when *m* is big enough $x_k = x_m$ for $k \ge m$. Assume that $x_m = 0$ (if $x_m = 1$, consider I - P) and *m* is the smallest number satisfying $x_k = 0$, when $k \ge m$, i.e., $x_{m-1} \ne 0$. Set

$$D_{1} = \begin{pmatrix} \lambda_{1} & \alpha_{1} & & & 0 \\ 0 & \lambda_{2} & \alpha_{2} & & \\ 0 & 0 & \lambda_{3} & \ddots & \\ & & \ddots & \alpha_{m-1} \\ & & & \lambda_{m-1} \end{pmatrix} \stackrel{e_{1}}{\underset{e_{2}}{\underset{e_{m-2}}{\underset{e_{m-1}}{\underset{k=1}{\overset{m-1}{\underset{k=1}{\underset{e_{k}}{\underset{e_{k}}{\underset{k=1}{\underset{k$$

and

$$Y = \begin{pmatrix} 0 & 0 & \dots \\ \dots & \dots \\ \lambda_{m-1} & 0 & \dots \end{pmatrix} \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_1).$$

Thus

$$D + K_2 = \begin{pmatrix} D_1 & Y \\ 0 & D_2 \end{pmatrix},$$

and $P = \begin{pmatrix} P_{11} & P_{12} \\ 0 & P_{22} \end{pmatrix}$ with respect to the decomposition $\mathcal{H} = \mathcal{H}_1 \bigoplus \mathcal{H}_2$. Since $P_{22}^2 = P_{22}$, $x_k = 0$; $k \ge m$, $P_{22} = 0$. Thus

$$P_{11} = \begin{pmatrix} x_1 & x_2 & \dots & x_{1\ m-1} \\ 0 & x_2 & \dots & x_{2\ m-1} \\ & & \ddots & \\ & & & & x_{m-1} \end{pmatrix}.$$

Suppose that

$$P_{12} = \begin{pmatrix} l_{11} & l_{12} & l_{13} & \dots \\ l_{21} & l_{22} & l_{23} & \dots \\ \dots & \dots & \dots & \dots \\ l_{m-1 \ 1} & l_{m-1 \ 2} & l_{m-1 \ 3} & \dots \end{pmatrix}.$$

Since

$$P(D + K_2) = (D + K_2)P, \quad P_{12}D_2 + P_{11}Y = D_1P_{12},$$

$$x_{m-1}\alpha_{m-1} + l_{m-1, 1}\lambda_m = \lambda_{m-1}l_{m-1, 1},$$

$$l_{m-1,m+j-1}\alpha_{m+j-1} + l_{m-1,m+j}(\lambda_{m+j} - \lambda_{m-1}) = 0 \ (j \ge 1).$$

. Since $\operatorname{card}\{n : \lambda_j = \lambda_0\} = \infty$, there is a natural number j_0 such that $\lambda_{m+j_0} = \lambda_{m-1}$. This shows that $l_{m-1,m+j_0-1} = 0$. By induction, we have $l_{m-1,1} = 0$. Thus $x_{m-1} = 0$. The contradiction implies that m = 1, i.e., P = 0 and $D + K_2 \in (SI)$.

Suppose $\{\Omega_i\}_{i=1}^{\infty}$ is a sequence of connected, uniformly bounded open subsets of \mathcal{C} , and

 $\Omega_i \cap \Omega_j = \emptyset$ if $i \neq j$. Let $B_i \in \mathcal{B}_1(\Omega_i)$ on \mathcal{H}_i $(i = 1, 2, \cdots), \sigma(B_i) = \overline{\Omega_i}$, and $T_i = \bigoplus_{k=1}^{n_i} B_i, \ 1 \leq n_i \leq +\infty, i = 1, 2, \cdots$.

Suppose

$$A = \bigoplus_{i=1}^{l} T_i \in \mathcal{L}\Big(\bigoplus_{i=1}^{l} \bigoplus_{k=1}^{n_i} \mathcal{H}_i\Big), \ 1 \le l \le +\infty.$$

Let $F \in \mathcal{L}(\mathcal{C}^m)$ with $\sigma(F) \subset \sigma(A) \cap \rho_F(A)$. Then the following lemma holds.

Lemma 2.7. For each $\epsilon > 0$, there exists a compact K with $||K|| < \epsilon$ such that

$$\begin{pmatrix} F & G \\ 0 & A \end{pmatrix} + K \sim A$$

where $G \in \mathcal{L}(\bigoplus_{i=1}^{l} \bigoplus_{k=1}^{n_i} \mathcal{H}_i, \mathcal{C}^m).$

Proof. Using Lemma 2.4 repeatedly, we come to the conclusion immediately.

Lemma 2.8.^[6, Theorem 1] Let σ be a perfect compact subset of C and $\{\lambda_k\}_{k=1}^{\infty}$ be a dense subset of σ . Assume that card $\{n : \lambda_k = \lambda_n\} = \infty$ and $D = \text{diag}\{\lambda_1, \dots, \}$ on \mathcal{H} . Let $T = \begin{pmatrix} F_m & G_m \\ 0 & D \end{pmatrix}$ on $\mathcal{C}^m \bigoplus \mathcal{H}$, where $F_m \in \mathcal{L}(\mathcal{C}^m)$ with $\sigma(F_m) \subset \sigma$ and $G_m \in \mathcal{L}(\mathcal{H}, \mathcal{C}^m)$.

Then for each $\epsilon > 0$, there exists K compact with $||K|| < \epsilon$ such that $T + K \underset{\mathcal{U} \neq \mathcal{K}}{\simeq} D$.

Lemma 2.9.^[5, Lemma 2.5] Let Ω be a bounded connected open subset of C and n be a natural number. Let δ , ϵ be two positive numbers. Then there exist an essentially normal operator $B \in \mathcal{B}_1(\Omega)$ and a co-subnormal operator \overline{B} , and compact K, K_1 , K_2 with $||K|| < \delta$, $||K_1|| < \epsilon$, $||K_2|| < \epsilon$ such that

(i) $B = \overline{B} + K;$ (ii) $\sigma(B) = \overline{\Omega}, \ \sigma(B) \cap \rho_F(B) = \Omega;$ (iii) $\partial \overline{\Omega}^0 \cap \sigma_p(B) = \emptyset;$ (iv) $T = B^{(n)} + K_1 \in \mathcal{B}_n(\Omega); \ T \in (SI);$ (v) $\ker \tau_{B,T} = \{0\}; \ K_2 \notin \operatorname{Ran} \tau_{T,B}.$

Here $\mathcal{B}_n(\Omega)$ is the set of Cowen-Douglas operators of index n; $B^{(n)} = \bigoplus_{1}^{n} B$ on $\bigoplus_{1}^{n} \mathcal{H}$.

Let $T \in \mathcal{L}(\mathcal{H})$ be an essentially normal operator with connected $\sigma(T)$. Assume that $\operatorname{ind}(\lambda - T) > 0$ $(\lambda \in \rho_F(T) \cap \sigma(T))$. Let $\{\Omega_i\}_{i=1}^l$ $(1 \leq l \leq \infty)$ be the connected components of $\rho_F^+(T)$ $(\rho_F^+(T) = \{\lambda \in \mathcal{C}; \operatorname{ind}(\lambda - T) > 0\})$ and let $\sigma = \sigma(T) \setminus \bigcup \overline{\Omega}_i^0$. Denote $n_i = \operatorname{ind}(T - \lambda)$ $(\lambda \in \Omega_i)$. Let $B_i \in B_1(\Omega_i)$. By Lemma 2.9, $\sigma_p(B_i) \cap \partial \overline{\Omega}_i^0 = \emptyset$. Assume that $\{\lambda_j\}_{j=1}^\infty$ is a dense subset of σ satisfying $\operatorname{card}\{k : \lambda_n = \lambda_k\} = \infty$. Denote $D = \operatorname{diag}\{\lambda_1, \lambda_2, \cdots, \}$ and $G = \bigoplus^l T_i \bigoplus D$. Then we have

Lemma 2.10. (i) $\Lambda(G) = \Lambda(T)$;

(ii) For each $\epsilon > 0$, there exists K compact with $||K|| < \epsilon$ such that $T + K \sim G$, where $\Lambda(G)$ denotes the spectrum pictures of G.

Proof. Denote the acting space of T_i $(1 \le i \le l)$ and D by \mathcal{H}_i and, respectively, \mathcal{H}_{∞} . Then it is obvious that $\Lambda(G) = \Lambda(T)$. Thus by B. D. F. Theorem^[8] there exists K_0 compact and U unitary such that

$$UTU^* = G + K_0.$$

Let $\{e_k^{\infty}\}_{k=1}^{\infty}$ be an ONB of \mathcal{H}_{∞} satisfying $De_k^{\infty} = \lambda_k e_k^{\infty}$. Assume that $\lambda_k^i \in \Omega_k$ $(k = 1, 2, \cdots)$ and

$$\mathcal{M}_1 = \bigvee_{k=1}^m \ker(T_k - \lambda_k^i)^m, \quad \mathcal{M}_2 = \bigvee \{e_1^\infty, \ e_2^\infty, \cdots, e_m^\infty\},$$

where *m* is a natural number. Let P_{m_1} and P_{m_2} be the orthogonal projections onto \mathcal{M}_1 and respectively, \mathcal{M}_2 . Set $P_m = P_{m_1} + P_{m_2}$. Then $P_m \xrightarrow{\text{SOT}} I(m \to \infty)$. Thus there is a natural number m_0 such that $||K_1|| < \epsilon/8$, where $K_1 = P_{m_0}K_0P_{m_0} - K_0$, and

$$\begin{aligned} G+K_{0}+K_{1}&=G+P_{m_{0}}K_{0}P_{m_{0}}\\ &=\begin{pmatrix}P_{m_{01}}(\bigoplus_{1}^{m}T_{i})P_{m_{01}} & P_{m_{01}}(\bigoplus_{1}T_{i})P_{m_{01}}^{\perp} & 0 & 0\\ 0 & P_{m_{01}}(\bigoplus_{1}T_{i})P_{m_{01}}^{\perp} & 0 & 0\\ 0 & 0 & P_{m_{02}}DP_{m_{02}} & 0\\ 0 & 0 & 0 & 0 & P_{m_{02}}DP_{m_{02}}^{\perp}\end{pmatrix}\\ &+\begin{pmatrix}P_{m_{01}}K_{0}P_{m_{01}} & 0 & P_{m_{01}}K_{0}P_{m_{02}} & 0\\ 0 & 0 & 0 & 0 & 0\\ P_{m_{02}}K_{0}P_{m_{01}} & 0 & P_{m_{02}}K_{0}P_{m_{02}} & 0\\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}\\ &=\begin{pmatrix}K_{11} & K_{13} & K_{12} & 0\\ 0 & P_{m_{01}}(\bigoplus_{1}T_{i})P_{m_{01}}^{\perp} & 0 & 0\\ K_{21} & 0 & K_{22} & 0\\ 0 & 0 & 0 & P_{m_{02}}^{\perp}DP_{m_{02}}^{\perp}\end{pmatrix}\\ &\cong\begin{pmatrix}K_{11} & K_{12} & K_{13} & 0\\ K_{21} & K_{22} & 0 & 0\\ 0 & 0 & P_{m_{01}}(\bigoplus_{1}T_{i})P_{m_{01}}^{\perp} & 0\\ 0 & 0 & D\end{pmatrix},\end{aligned}$$

i.e., there exists U_1 unitary such that

$$U_1(G+K_0+K_1)U_1^* = \begin{pmatrix} L_{11} & L_{12} & 0\\ 0 & P_{m_{01}}^{\perp}(\bigoplus T_i)P_{m_{01}}^{\perp} & 0\\ 0 & 0 & D \end{pmatrix},$$

where

$$L_{11} = \begin{pmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{pmatrix}, \quad L_{12} = \begin{pmatrix} K_{13} \\ 0 \end{pmatrix}.$$

From the upper continuity of spectrum, $\sigma(L_{11}) \subset \sigma(T)_{\epsilon/8}$. Therefore there exists an operator L with $||L|| < \epsilon/4$ such that $\sigma(L_{11} + L) \subset \sigma(T)$ and

(a) $\overline{X}_2(L_{11}+L)\overline{X}_2^{-1} = \text{diag}\{\mu_1, \cdots, \mu_m\} = D_1 \text{ for some } \overline{X}_2 \text{ invertible};$

(b) For each $i, \ \mu_i \in \rho_F(\bigoplus T_i) \cap \sigma(\bigoplus T_i)$ or $\mu_i \notin \sigma(\bigoplus T_i)$ and $\mu_i \in \sigma(D_1)$.

Without loss of generality, we can assume that

$$\{\mu_1, \cdots, \mu_p\} \subset \sigma(D), \quad \{\mu_{p+1}, \cdots, \mu_m\} \subset \rho_F(\bigoplus T_i) \cap \sigma(\bigoplus T_i).$$

Set $D_{11} = \text{diag}\{\mu_1, \cdots, \mu_p\}$, $D_{22} = \text{diag}\{\mu_{p+1}, \cdots, \mu_m\}$. Then $D_1 = D_{11} \bigoplus D_{22}$. By Lemma 2.2, $P_{m_{01}}^{\perp}(\bigoplus T_i)P_{m_{01}}^{\perp} \sim T$. Thus there exist K_2 compact with $||K_2|| < \epsilon/8$ and X_1 invertible

such that

$$X_{1}U_{1}(G + K_{0} + K_{1} + U_{1}^{*}K_{2}U_{1})U_{1}^{*}X_{1}^{-1}$$

$$= X_{1} \begin{bmatrix} \begin{pmatrix} L_{11} & L_{12} & 0\\ 0 & P_{m_{01}}^{\perp}(\bigoplus T_{i})P_{m_{01}}^{\perp} & 0\\ 0 & 0 & D \end{pmatrix} + K_{2} \end{bmatrix} X_{1}^{-1}$$

$$= \begin{pmatrix} D_{11} & 0 & \overline{L}_{1} & 0\\ 0 & D_{22} & \overline{L}_{2} & 0\\ 0 & 0 & \bigoplus T_{i} & 0\\ 0 & 0 & 0 & D \end{pmatrix} = G_{2},$$

where \overline{L}_1 , \overline{L}_2 are still compact operators. Therefore it is sufficient to show that for each $\delta > 0$, there exists \overline{K} compact with $||\overline{K}|| < \delta$ such that $G_2 + \overline{K} \sim G = \bigoplus_{i=1}^{l} T_i \bigoplus D$. Since $\{\mu_i\}_{k=1}^p \cap \sigma(\bigoplus T_i) = \emptyset$, and Lemma 3.22 of [9], $\tau_{D_{11},\bigoplus T_i}$ is a surjection, there is Y_1 such that $D_{11}Y_1 - Y_1 \bigoplus T_i = \overline{L}_1$. Set

$$X_{3} = \begin{pmatrix} I & 0 & -Y_{1} & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & I & 0 \\ 0 & 0 & 0 & I \end{pmatrix}, \quad X_{3}G_{2}X_{3}^{-1} = \begin{pmatrix} D_{11} & 0 & 0 & 0 \\ 0 & D_{22} & \overline{L}_{2} & 0 \\ 0 & 0 & \bigoplus T_{i} & 0 \\ 0 & 0 & 0 & D \end{pmatrix} = G_{3}.$$

By Lemma 2.7, there exist \overline{K}_4 compact with $||\overline{K}_4|| < \delta/8||X_3||||X_3^{-1}||$ and \overline{X}_4 invertible of the form unitary plus compact such that

$$\overline{X}_4 \left[\begin{pmatrix} D_{22} & \overline{L}_2 \\ 0 & \bigoplus T_i \end{pmatrix} + \overline{K}_4 \right] = \bigoplus T_i.$$

Therefore there are X_4 invertible, K_4 compact with $||K_4|| < \delta/8||X_3||||X_3^{-1}||$ such that

$$X_4(G_3 + K_4)X_4^{-1} = \begin{pmatrix} D_{11} & 0 & 0\\ 0 & \bigoplus T_i & 0\\ 0 & 0 & D \end{pmatrix} \cong \begin{pmatrix} \bigoplus T_i & 0 & 0\\ 0 & D_{11} & 0\\ 0 & 0 & D \end{pmatrix} \underset{\mathcal{U}+\mathcal{K}}{\simeq} \begin{pmatrix} \bigoplus T_i & 0\\ 0 & D \end{pmatrix}.$$

The last unitary equivalent relation comes from Lemma 2.8.

To summarize, there exist K compact with $||K|| < \delta$ and X invertible such that $X(G_2 + K)X^{-1} = G = (\bigoplus T_i) \bigoplus D$.

Lemma 2.11.^[4,Lemma 2.6] Suppose $A, B \in \mathcal{L}(\mathcal{H})$ such that there are $\Lambda_1 \subset \sigma_p(B)$ and $\Lambda_2 \subset \sigma_p(A)$ satisfying

(i)
$$\Lambda_1 \cap \sigma_p(A) = \emptyset$$
,

(ii) $\bigvee_{\lambda \in \Lambda_2} \{ \ker(A - \lambda) \} = \mathcal{H}.$

Then for each $\epsilon > 0$, there exists K compact with $||K|| < \epsilon$ such that $K \notin \operatorname{Ran}_{A,B}$.

$\S3.$ Proof of Main Theorem

Assume that $G = \left(\bigoplus_{i=1}^{l} T_i \right) \bigoplus D$ is given in Lemma 2.9 and Lemma 2.10. Thus for each $\epsilon > 0$, there exist a compact K with $||K|| < \epsilon$ and an invertible X such that $X(T+K)X^{-1} = G$. Thus it is sufficient to show that for each $\delta > 0$, there exists a compact \overline{K} with $||\overline{K}|| < \delta$ such that $G + \overline{K} \in (SI)$. If $\sigma(T) = \sigma_{lre}(T)$ (i.e., l = 0), we can obtain Main Theorem by using Lemma 2.6 and Lemma 2.8. If $\sigma_{lre}(T) \neq \sigma(T)$, set $G_1 = B_1 \bigoplus (\bigoplus_{i=2}^{l} T_i) \bigoplus D$. By

Theorem 2 of [10], we can find a compact \overline{K}_1 with $\|\overline{K}_1\| < \delta/3$ such that $G_1 + \overline{K}_1 \in \mathcal{B}_1(\Omega_1)$. Set $A = G_1 + \overline{K}_1$ and then A is strongly irreducible. Thus there exists a compact K_1 with $\|K_1\| < \delta/3$ such that

$$G + K_1 = \left(\bigoplus_{k=1}^{n-1} B_1\right) \bigoplus A.$$

Similar to the proof of the Main Theorem in [4], we can find a compact \overline{K}_2 with $\|\overline{K}_2\| < \delta/3$ such that

$$B = \bigoplus_{k=1}^{n_i - 1} B_1 + \overline{K}_2 \in (SI)$$

and either $\operatorname{Ker}\tau_{B,A} = \{0\}$ or $\operatorname{Ker}\tau_{A,B} = \{0\}$. Without loss of generality, we assume that $\operatorname{Ker}\tau_{A,B} = \{0\}$. Since $\sigma_{lre}(A) \cap \sigma_{lre}(B) \neq$, there is a compact \overline{K}_3 with $\overline{K}_3 \notin \operatorname{Ran}\tau_{B,A}$ and $\|\overline{K}_3\| < \delta/3$. Thus we can find a compact K with $\|K\| < \delta$ such that

$$G + K = \begin{pmatrix} B & \overline{K}_3 \\ & A \end{pmatrix}.$$

A simple computation shows that $G + K \in (SI)$.

References

- Jiang, Z. J., A lecture on operator theory, the report in the seminar of functional analysis in Jilin Univ., Changchun, 1979.
- [2] Gifeather, F., Strongly reducibility of operators, Indiana Univ. Math. J., 22(1972).
- [3] Herrero, D. A. & Jiang, C. L., Limits of strongly irreducible operators and the Riesz decomposition theorem, Mich. Math. J., 37(1990), 283–291.
- [4] Jiang, C. L. & Wang, Z. Y., The spectral picture and the closure of the similarity orbit of strongly irreducible operator, *Intergral Equation Operator Theory*, 24(1996), 81–105.
- [5] Jiang, C. L., Sun, S. H. & Wang, Z. Y., Essentially normal operator + compact operator = strongly irreducible operator, *Trans. Amer. Math. Soc.*, **349**:1, 217–233.
- [6] Ji, Y. Q., Jiang, C. L. & Wang, Z. Y., The (U+K)-orbit of essentially normal operators and compact perturbation of strongly irreducible operators, Functional Analysis in China, Kluwer Academic Publishers, 1996, Math. and Its Appl., Vol. 356, 307–314.
- [7] Cowen, M. & Douglas, R. G., Complex geometry and operator theory, Acta Math., 141(1978), 187–261.
- [8] Brown, L. G., Douglas, R. G. & Fillmore, P. F., Unitary equivalent modelo the compact operators and extensions of C^{*}-algebras, Proceedings of conference on operator theory, Halifax, Nova scotia 1973, Lect. Notes in Math., 345 (1973), 98-125.
- [9] Herrero, D. A., Approximation of Hilbert space operators, Vol 1 and ed., Pitman Res. Notes Math. 224 1 Longman Sci. Tech. Harlou, Essex, 1990.
- [10] Herrero, D. A., Spectral pictures of operators in the Cowen-Douglas class $\mathcal{B}_n(\Omega)$ and its closur, J. Operator Theory, 18(1987), 213–222.