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Abstract

Given an essentially normal operator T with connected spectrum and ind(λ − T ) > 0 for
λ in ρF (T ) ∩ σ(T ), and a positive number ϵ, the authors show that there exists a compact K
with ||K|| < ϵ such that T +K is strongly irreducible.
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§1. Introduction

Let L(H) denote the algebra of all linear bounded operators acting on a complex, sepa-

rable, infinite dimensional Hilbert space H. An operator T ∈ L(H) is said to be strongly

irreducible, if it does not commute with any non-trivial idempotent in L(H) (see [1, 2, 3]).

The strong irreducibility is one of the important properties of operators invariant under

similiarity. In what follows, T ∈ (SI) means that T is a strongly irreducible operator on its

acting space.

An operator T is essentially normal if the self-commutator [T ∗, T ] = T ∗T − TT ∗ is

compact. We denote (U + K)(H) = {R ∈ L(H) : R is invertible of the form unitary plus

compact}, and denote the U +K orbit of T

(U +K)(T ) = {R−1TR, R ∈ (U +K)(H)}.

T ≃
U+K

A means that A ∈ (U +K)(T ). It is obvious that ≃
U+K

is an equivalent relation. Note

that T is essentially normal and T ≃
U+K

A imply that A is essentially normal.

D.A. Herrero and C.L. Jiang proved[3] that if σ(T ), the spectrum of T , is connected,

then there exists a sequence {Tn} of strongly irreducible operators such that ||Tn − T || →
0 (n → ∞). C. L. Jiang and Z. Y. Wang[4] improved this result and proved that there

exists a strongly irreducible operator A such that i) the spectral pictures (i.e., the spectra

and index functions) of T and A are equal; ii) T is a limit of operators similar to A; iii) if

there is another strongly irreducible operator B satisfying i) and ii), then B is also a limit

of operators similar to A.
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The following questions were naturally thought by Herreto:

(1) Given T ∈ L(H) with connected σ(T ), does there exist a K compact such that

T +K ∈ (SI)?

(2) Given T ∈ L(H) with connected σ(T ) and given ϵ > 0, does there exist K compact

such that ||K|| < ϵ and T +K ∈ (SI)?

(3) Given an essentially normal operator T with connected σ(T ), what are the answers

for the above two questions. C. L. Jiang, S. H. Sun and Z. Y. Wang[5] proved that if T is

essentially normal with connected σ(T ), then there existsK compact such that T+K ∈ (SI).

Using the (U+K) orbit, Q. Y. Ji, C. L. Jiang and Z. Y. Wang[6] proved that if T is essentially

normal, σ(T ) = Ω, where Ω is an analytic Jordan region and ind(λ− T ) = n (λ ∈ Ω), then

for each ϵ > 0, there exists K compact such that ||K|| < ϵ and T +K ∈ (SI).

The following are the main theorem of this article.

Main Theorem. Let T ∈ L(H) be essentially normal with connected σ(T ) and ind(λ−
T ) > 0 (λ ∈ ρF (T ) ∩ σ(T )), then for each ϵ > 0, there exists Kϵ compact with ||Kϵ|| < ϵ

such that T +Kϵ ∈ (SI), where ρF (T ) = {λ ∈ C; λ− T is Fredholm}.

§2. Preparation

Lemma 2.1. Let B ∈ L(H) and let M = [ker(B − λ)∗]⊥, where λ ∈ ρl(B) ∩ σ(B) and

n is a natural number. Then B|M ∼ B and PMB∗|M ∼ B∗, where PM is the orthogonal

projection onto M, ρl(B) = {λ ∈ C; λ−B is left invertible}.
Proof. Since M =Ran(λ − B) and since ker(λ − B) = {0}, A1 := (λ − B) ∈ L(H,M)

is invertible. Set B1 = B|M. Then A−1
1 B1A1 = B, i.e., B|M ∼ B. The second conclusion

is a direct consequence of the first.

Lemma 2.2. Let Bn ∈ B1(Ωn) and λn ∈ Ωn, (n = 1, 2, · · · ), B1(Ωn) is the set of Cowen-

Douglas operators of index 1[4] and {Ωn} is a sequence of uniformly bounded, connected open

subsets of complex plan C (n = 1, 2, · · · ). Set T =
∞⊕

n=1
Bn on H =

∞⊕
n=1

Hn, and assume that

Pm is the orthogonal projection on to M =
m⊕

n=1
{ker(λn−Bn)

m
⊕

0. Then P⊥
mT |P⊥

mTH ∼ T ,

where P⊥
m = I − Pm.

Proof. Denote Mn =ker(λn −Bn)
m (n = 1, 2, · · · ,m). We have

P⊥
mT |P⊥

mH =
( m⊕

n=1

P⊥
mn

Bn|P⊥
mn

Hn

) ∞⊕
n=m+1

Bn,

where Pmn is the orthogonal projection on Mn. Then by Lemma 2.1, there exists Xn

invertible such that

Xn

( m⊕
n=1

P⊥
mn

Bn|P⊥
mn

Hn

)
X−1

n = Bn (n = 1, 2, · · · ,m).

Set X =
m⊕

n=1
Xn

⊕( ∞⊕
n=m+1

In
)
. Then X(P⊥

mT |P⊥
mH)X−1 = T . Here In is the identity

operator on Hn.

Lemma 2.3. Let A ∈ L(H). If λ ∈ ρF (A) such that dimker(λ − A) =ind(λ − A) = 1
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and e0 /∈Ran(λ−A)∗, then

A ∼
(
λ 1

⊗
e0

0 A

)
on C

⊕
H.

Proof. Denote M =ker(λ−A)⊥. Then

A =

(
λ C
0 (A∗|M)∗

)ker(λ−A)

ker(λ−A)⊥

and A∗|M ∼ A∗ by Lemma 2.1 or (A∗|M)∗ ∼ A. Thus

A ∼
(
λ C1

0 A

)C

H
, (1.1)

where C1 is an operator of rank one, i.e., C1 = 1
⊗

f for some f ∈ H. Since e0 /∈Ran(λ −
A)∗, f = ae0 + (A− λ)∗f1, for some complex number α. If α = 0, then

f = (A− λ)∗f1 or C1 = 1
⊗

(A− λ)∗f1.

From (1.1), A− λ ∼
(
0 C1

0 A− λ

)
. Since(

1 −1
⊗

f1
0 1

)(
0 C1

0 A− λ

)(
1 −1

⊗
f1

0 1

)
=

(
0 0
0 A− λ

)
,

A− λ ∼
(
0 0
0 A− λ

)
.

This contradicts the condition dimker(λ−A) = 1. Thus α ̸= 0.

Set X =

(
α−1 −1

⊗
f1

0 1

)
. Then

X

(
λ C1

0 A

)
X−1 =

(
λ 1

⊗
e0

0 A

)
.

Thus A ∼
(
λ 1

⊗
e0

0 A

)
.

Lemma 2.4. Given A ∈ L(H), let T =

(
F C
0 A

)
∈ L(Cn

⊕
H), where F is an n × n

matrix satisfying that σ(F ) ⊂ σ(A) ∩ ρF (A) and dimker(λ − A) =ind(λ − A) = 1 for each

λ ∈ σ(F ). Then for ϵ > 0 there exists K compact with ||K|| < ϵ such that

T +K ∼ A.

Proof. When n = 1, T =

(
λ C
0 A

)
, where C is an operator of rank 1, i.e., C = a

⊗
f

for some f in H. If f /∈Ran(λ − A)∗, T ∼ A by Lemma 2.3. If f ∈Ran(A − λ)∗, choose

e0 ∈ker(λ−A), thus f + e0 /∈Ran(λ−A)∗. Set

K =

(
0 ϵ(α

⊗
e0)

0 0

)
.

Thus T + K ∼ A by Lemma 2.3. Assume that the conclusion of the lemma is true for

n ≤ k − 1. We shall prove that lemma is true for n = k. Let λ0 ∈ σ(F ). Then there exists

U unitary such that

U

(
F C
0 A

)
U∗ =

λ0 C1 C2

0 F1 C3

0 0 A

 C
Cn−1

H
= A1.
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By the induction assumption, there exist K ′
1 compact with ||K ′

1|| < ϵ/4 and X1 invertible

such that

X1

[(
F1 C3

0 A

)
+K ′

1

]
X−1

1 = A.

Thus (
1 0
0 X1

)
(A1 +K1)

(
1 0
0 X−1

1

)
=

(
λ0 C ′

0 A

)C

H
,

where K1 =

(
0 0
0 K ′

1

)C

Cn−1
⊕

H
. The proof of the part “n = 1” implies that the conclusion

of the lemma is true.

Lemma 2.5. Given A ∈ B1(Ω) and λ0 ∈ Ω, then there exist an ONB {en}∞n=1 of H and

an r > 0 such that

A =


λ0 a12 a13 . . .
0 λ0 a23 . . .

λ0

. . .


e1
e2
e3
...

and |ak k+1| > r > 0 (k = 1, 2, · · · ).
Proof. Assume that e1 ∈ker(A − λ0) with ||e1|| = 1. Let B be the right inverse of

A − λ0. Since kerB∗ = {0} (k = 1, 2, · · · ) and since e1 /∈RanB, {e1, Be1, B
2e1, · · · } is

linearly independent. Since Bk−1e1 ∈ker(A− λ0)
k and since dimker(A− λ0)

k = k,

ker(A− λ0)
k =

∨
{e1, Be1, · · · , Bk−1e1} (k = 1, 2, · · · ).

Since
∨
{ker(A− λ0)

k : k = 1, 2, · · · } = H,∨
{Bke1, k = 0, 1, 2, · · · } = H.

Let {ek}∞k=1 be the Gram-schmidt orthonormalization of {Bke1}∞k=0. Then A is an upper

triangular matrix representation

A =


λ0 a12 a13 . . .
0 λ0 a23 . . .

λ0

. . .


with respect to the ONB {ek}∞k=1. Note that (A−λ0)|ker(A−λ0) is bounded from below, thus

there exists r > 0 such that ||(A− λ0)y|| ≥ r||y|| for each y ∈ [e1]
⊥. Set xk = ak k+1ek and

x′
k = −

k−1∑
i=1

ak k+1ek (k = 1, 2, · · · ). Since A − λ0 is onto, there is a vector yk ∈
∨
{ei, i =

2, 3, · · · , k} such that −x′
k = (A− λ0)yk. Thus xk = (A− λ0)(ek+1 + yk) and

|ak k+1| = ||xk|| = ||(A− λ0)(ek+1 + yk)|| ≥ r||ek+1 + yk||

= r
√
||ek+1||2 + ||yk||2 ≥ r (k = 1, 2, · · · ).

Lemma 2.6. Let M be an almost normal operator on Hilbert space H with connected

and perfect spectrum σ(M)(= σ). And let {µn}∞n=1 be a dense subset of σ. Then for each

δ > 0 there exists K compact with ||K|| < δ satisfying

(i) N = M +K ∈ (SI) and σ(N) = σ(M) = σ;

(ii)
∨
{ker(λ−N)m; λ ∈ σp(N); m ≥ 1} = H and {µn}∞n=1 ⊂ σp(N).
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Proof. Denote Gn = {z; dist(z, σ) < ϵ2/2n+1}. Then Gn is a connected open set,

Gn ⊃ Gn+1 (n = 1, 2, · · · ) and
∞∩

n=1
Gn = σ. Choose a smooth route r1(t) of G1 such that

r1(0) = r1(1) = µ1, r1(t) passes through µ2 and choose m1 points s11, s12, · · · , s1m1 on r1(t)

satisfying

(a) s11 = µ1, µ2 ∈ {s11, s12, · · · , s1m1},
(b) 0 < |s1j − s1j−1| < ϵ2/4; 0 < |s1m1

− s11| < ϵ2/4.

Choose pairwise distinct points {λ1
j}

m1
j=1 in σ such that

|s1j − λ1
j | <

3

2
dist (s1j , σ); λ1

1 = s11 = µ1.

Similarly, for each natural number n, we can find a smooth route rn(t) of Gn such that

rn(0) = rn(1) = µ1, rn(t) passes through {λn−1
j ; 1 ≤ j ≤ mn−1} and µn. Choose mn points

sn1 , sn2 , · · · , snmn
on rn(t) satisfying

sn1 = µ1; {λn−1
j , j = 1, 2, · · · ,mn−1} ∪ {µ1, µ2, · · · , µn} ⊂ {snj , 1 ≤ j ≤ mn}

and

0 < |snj − snj−1| <
ϵ2

2(n+ 1)
, 0 < |snmn

− µ1| <
ϵ2

2(n+ 1)
.

Choose pairwise distinct points {λn
j }

mn
j=1 in σ such that

|snj − λn
j | <

3

2
dist(snj , σ); λn

1 = sn1 = µ1.

It is easy to see that {λn
j : j = 1, · · · ,mn, n = 1, 2, · · · } is dense in σ and {µn}∞n=1 ⊂ {λn

j :

j = 1, · · · ,mn, n = 1, 2, · · · }. Denote

λ1 = λ1
1, λ2 = λ1

2, · · · , λm1 = λ1
m1

, λm1+1 = λ2
1, · · · , λm1+m2 = λ2

m2
, · · · .

Thus

(i) {λk}∞k=1 is dense in σ (without loss of generality, we can assume that 0 /∈ {λk}∞k=1),

(ii) lim
k→∞

|λk+1 − λk| = 0,

(iii) card{n; λk = λn} = ∞, k = 1, 2, · · · .
Let {ek}∞k=1 be an ONB of H. Define Dek = λkek. Then σ(D) = σ(M) = σ. By

Theorem 1 of [6], there exists K1 compact with ||K1|| < δ/2 such that X(M +K1)X
−1 = D

for some X ∈ (U + K)(H). Thus it is sufficent to prove that for each ϵ > 0, there exists

a compact K2 with ||K2|| < ϵ such that D2 + K2 ∈ (SI). Define K2ek−1 = αkek, where

αk =
√
|λk+1 − λk| (k = 1, 2, · · · ). Since limαk = 0, K2 is compact. If

P =


x1 x12 . . . . . . . . .
x21 x2 . . . . . . . . .
x31 x32 x3 . . .
. . . . . . . . . . . . . . . . . .


e1
e2
e3
...

∈ A′(D +K2)

is idempotent, since P (D + K2) = (D + K2)P, λ1x1 + α1x21 = x1λ1; or x21 = 0. Since

λ2x21 + α2x31 = x21λ1, x31 = 0, · · · , we can prove that xk1 = 0 (k = 2, 3, · · · ). Similarly,

xij = 0 (i > j), i.e., P admits an upper triangular matrix representation with respect to the

ONB {ek}∞k=1. Since P 2 = P, xk = 0 or 1. Since P (D + K2) = (D + K2)P and P is an

upper trangular matrix,

xk k+1 =
xk − xk+1

λk+1 − λk
αk (k = 1, 2, 3, · · · ).
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Since xk = 0 or 1, |xk − xk+1| = 0 or 1. Since lim
k→∞

|λk+1 − λk| = 0 and since αk =√
|λk+1 − λk|, when m is big enough xk = xm for k ≥ m. Assume that xm = 0 (if xm = 1,

consider I−P ) and m is the smallest number satisfying xk = 0, when k ≥ m, i.e., xm−1 ̸= 0.

Set

D1 =


λ1 α1 0
0 λ2 α2

0 0 λ3
. . .
. . . αm−1

λm−1


e1
e2
...

em−2

em−1

on

m−1∨
k=1

{ek} = H1,

D2 =


λm αm

0 λm+1

. . .
. . .


em

em+1

...

...

on
∞∨

k=m

{ek} = H2,

and

Y =

 0 0 . . .
. . . . . . . . . . . . .
λm−1 0 . . .

 ∈ L(H2,H1).

Thus

D +K2 =

(
D1 Y
0 D2

)
,

and P =

(
P11 P12

0 P22

)
with respect to the decomposition H = H1

⊕
H2. Since P 2

22 =

P22, xk = 0; k ≥ m, P22 = 0. Thus

P11 =


x1 x2 . . . x1 m−1

0 x2 . . . x2 m−1

. . .

xm−1

 .

Suppose that

P12 =


l11 l12 l13 . . .
l21 l22 l23 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
lm−1 1 lm−1 2 lm−1 3 . . .

 .

Since

P (D +K2) = (D +K2)P, P12D2 + P11Y = D1P12,

xm−1αm−1 + lm−1, 1λm = λm−1lm−1, 1,

lm−1,m+j−1αm+j−1 + lm−1,m+j(λm+j − λm−1) = 0 (j ≥ 1).

. Since card{n : λj = λ0} = ∞, there is a natural number j0 such that λm+j0 = λm−1.

This shows that lm−1,m+j0−1 = 0. By induction, we have lm−1,1 = 0. Thus xm−1 = 0. The

contradiction implies that m = 1, i.e., P = 0 and D +K2 ∈ (SI).

Suppose {Ωi}∞i=1 is a sequence of connected, uniformly bounded open subsets of C, and
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Ωi ∩ Ωj = ∅ if i ̸= j. Let Bi ∈ B1(Ωi) on Hi (i = 1, 2, · · · ), σ(Bi) = Ωi, and

Ti =

ni⊕
k=1

Bi, 1 ≤ ni ≤ +∞, i = 1, 2, · · · .

Suppose

A =
l⊕

i=1

Ti ∈ L
( l⊕

i=1

ni⊕
k=1

Hi

)
, 1 ≤ l ≤ +∞.

Let F ∈ L(Cm) with σ(F ) ⊂ σ(A) ∩ ρF (A). Then the following lemma holds.

Lemma 2.7. For each ϵ > 0, there exists a compact K with ||K|| < ϵ such that(
F G
0 A

)
+K ∼ A,

where G ∈ L(
l⊕

i=1

ni⊕
k=1

Hi, Cm).

Proof. Using Lemma 2.4 repeatedly, we come to the conclusion immediately.

Lemma 2.8.[6, Theorem 1] Let σ be a perfect compact subset of C and {λk}∞k=1 be a dense

subset of σ. Assume that card{n : λk = λn} = ∞ and D =diag{λ1, · · · , } on H. Let

T =

Fm Gm

0 D

 on Cm
⊕

H, where Fm ∈ L(Cm) with σ(Fm) ⊂ σ and Gm ∈ L(H, Cm).

Then for each ϵ > 0, there exists K compact with ||K|| < ϵ such that T +K ≃
U+K

D.

Lemma 2.9.[5, Lemma 2.5] Let Ω be a bounded connected open subset of C and n be a

natural number. Let δ, ϵ be two positive numbers. Then there exist an essentially normal

operator B ∈ B1(Ω) and a co-subnormal operator B, and compact K, K1, K2 with ||K|| <
δ, ||K1|| < ϵ, ||K2|| < ϵ such that

(i) B = B +K;

(ii) σ(B) = Ω, σ(B) ∩ ρF (B) = Ω;

(iii) ∂Ω
0 ∩ σp(B) = ∅;

(iv) T = B(n) +K1 ∈ Bn(Ω); T ∈ (SI);

(v) kerτB,T = {0}; K2 /∈RanτT,B.

Here Bn(Ω) is the set of Cowen-Douglas operators of index n; B(n) =
n⊕
1
B on

n⊕
1
H.

Let T ∈ L(H) be an essentially normal operator with connected σ(T ). Assume that

ind(λ− T ) > 0 (λ ∈ ρF (T )∩ σ(T )). Let {Ωi}li=1 (1 ≤ l ≤ ∞) be the connected components

of ρ+F (T ) (ρ
+
F (T ) = {λ ∈ C; ind(λ− T ) > 0}) and let σ = σ(T ) \ ∪Ω0

i . Denote ni =ind(T −
λ) (λ ∈ Ωi). Let Bi ∈ B1(Ωi). By Lemma 2.9, σp(Bi) ∩ ∂Ω

0

i = ∅. Assume that {λj}∞j=1 is

a dense subset of σ satisfying card{k : λn = λk} = ∞. Denote D =diag{λ1, λ2, · · · , } and

G =
l⊕
1
Ti

⊕
D. Then we have

Lemma 2.10. (i) Λ(G) = Λ(T );

(ii) For each ϵ > 0, there exists K compact with ||K|| < ϵ such that T +K ∼ G, where

Λ(G) denotes the spectrum pictures of G.

Proof. Denote the acting space of Ti (1 ≤ i ≤ l) and D by Hi and, respectively, H∞.

Then it is obvious that Λ(G) = Λ(T ). Thus by B. D. F. Theorem[8] there exists K0 compact
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and U unitary such that

UTU∗ = G+K0.

Let {e∞k }∞k=1 be an ONB of H∞ satisfying De∞k = λke
∞
k . Assume that λi

k ∈ Ωk (k =

1, 2, · · · ) and

M1 =
m∨

k=1

ker(Tk − λi
k)

m, M2 =
∨

{e∞1 , e∞2 , · · · , e∞m},

where m is a natural number. Let Pm1 and Pm2 be the orthogonal projections onto M1 and

respectively, M2. Set Pm = Pm1 +Pm2 . Then Pm
SOT−→ I (m → ∞). Thus there is a natural

number m0 such that ||K1|| < ϵ/8, where K1 = Pm0
K0Pm0

−K0, and

G+K0 +K1 = G+ Pm0K0Pm0

=


Pm01(

⊕m
1 Ti)Pm01 Pm01(

⊕
Ti)P

⊥
m01

0 0

0 P⊥
m01

(
⊕

Ti)P
⊥
m01

0 0
0 0 Pm02DPm02 0
0 0 0 P⊥

m02
DP⊥

m02



+


Pm01K0Pm01 0 Pm01K0Pm02 0

0 0 0 0
Pm02K0Pm01 0 Pm02K0Pm02 0

0 0 0 0



=


K11 K13 K12 0
0 P⊥

m01
(
⊕

Ti)P
⊥
m01

0 0
K21 0 K22 0
0 0 0 P⊥

m02
DP⊥

m02


∼=


K11 K12 K13 0
K21 K22 0 0
0 0 P⊥

m01
(
⊕

Ti)P
⊥
m01

0
0 0 0 D

 ,

i.e., there exists U1 unitary such that

U1(G+K0 +K1)U
∗
1 =

L11 L12 0
0 P⊥

m01
(
⊕

Ti)P
⊥
m01

0
0 0 D

 ,

where

L11 =

(
K11 K12

K21 K22

)
, L12 =

(
K13

0

)
.

From the upper contintuity of spectrum, σ(L11) ⊂ σ(T )ϵ/8. Therefore there exists an

operator L with ||L|| < ϵ/4 such that σ(L11 + L) ⊂ σ(T ) and

(a) X2(L11 + L)X
−1

2 =diag{µ1, · · · , µm} = D1 for some X2 invertible;

(b) For each i, µi ∈ ρF (
⊕

Ti) ∩ σ(
⊕

Ti) or µi /∈ σ(
⊕

Ti) and µi ∈ σ(D1).

Without loss of generality, we can assume that

{µ1, · · · , µp} ⊂ σ(D), {µp+1, · · · , µm} ⊂ ρF (
⊕

Ti) ∩ σ(
⊕

Ti).

Set D11 =diag{µ1, · · · , µp}, D22 =diag{µp+1, · · · , µm}. Then D1 = D11

⊕
D22. By Lemma

2.2, P⊥
m01

(
⊕

Ti)P
⊥
m01

∼ T . Thus there exist K2 compact with ||K2|| < ϵ/8 and X1 invertible
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such that

X1U1(G+K0 +K1 + U∗
1K2U1)U

∗
1X

−1
1

= X1

L11 L12 0
0 P⊥

m01
(
⊕

Ti)P
⊥
m01

0
0 0 D

+K2

X−1
1

=


D11 0 L1 0
0 D22 L2 0
0 0

⊕
Ti 0

0 0 0 D

 = G2,

where L1, L2 are still compact operators. Therefore it is sufficient to show that for each

δ > 0, there exists K compact with ||K|| < δ such that G2 +K ∼ G =
l⊕

i=1

Ti

⊕
D. Since

{µi}pk=1 ∩ σ(
⊕

Ti) = ∅, and Lemma 3.22 of [9], τD11,
⊕

Ti
is a surjection, there is Y1 such

that D11Y1 − Y1

⊕
Ti = L1. Set

X3 =


I 0 −Y1 0
0 I 0 0
0 0 I 0
0 0 0 I

 , X3G2X
−1
3 =


D11 0 0 0
0 D22 L2 0
0 0

⊕
Ti 0

0 0 0 D

 = G3.

By Lemma 2.7, there exist K4 compact with ||K4|| < δ/8||X3||||X−1
3 || and X4 invertible of

the form unitary plus compact such that

X4

[(
D22 L2

0
⊕

Ti

)
+K4

]
=

⊕
Ti.

Therefore there are X4 invertible, K4 compact with ||K4|| < δ/8||X3||||X−1
3 || such that

X4(G3 +K4)X
−1
4 =

D11 0 0
0

⊕
Ti 0

0 0 D

 ∼=

⊕
Ti 0 0
0 D11 0
0 0 D

 ≃
U+K

(⊕
Ti 0
0 D

)
.

The last unitary equivalent relation comes from Lemma 2.8.

To summarize, there exist K compact with ||K|| < δ and X invertible such that X(G2 +

K)X−1 = G = (
⊕

Ti)
⊕

D.

Lemma 2.11.[4,Lemma 2.6] Suppose A, B ∈ L(H) such that there are Λ1 ⊂ σp(B) and

Λ2 ⊂ σp(A) satisfying

(i) Λ1 ∩ σp(A) = ∅,
(ii)

∨
λ∈Λ2

{ker(A− λ)} = H.

Then for each ϵ > 0, there exists K compact with ||K|| < ϵ such that K /∈RanτA,B.

§3. Proof of Main Theorem

Assume that G =
( l⊕

i=1

Ti

)⊕
D is given in Lemma 2.9 and Lemma 2.10. Thus for each

ϵ > 0, there exist a compact K with ||K|| < ϵ and an invertible X such that X(T+K)X−1 =

G. Thus it is sufficient to show that for each δ > 0, there exists a compact K with ||K|| < δ

such that G + K ∈ (SI). If σ(T ) = σlre(T ) (i.e., l = 0), we can obtain Main Theorem

by using Lemma 2.6 and Lemma 2.8. If σlre(T ) ̸= σ(T ), set G1 = B1

⊕
(

l⊕
i=2

Ti)
⊕

D. By
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Theorem 2 of [10], we can find a compact K1 with ||K1|| < δ/3 such that G1+K1 ∈ B1(Ω1).

Set A = G1 +K1 and then A is strongly irreducible. Thus there exists a compact K1 with

||K1|| < δ/3 such that

G+K1 =
( n−1⊕

k=1

B1

)⊕
A.

Similar to the proof of the Main Theorem in [4], we can find a compact K2 with ||K2|| < δ/3

such that

B =

ni−1⊕
k=1

B1 + K2 ∈ (SI)

and either KerτB,A = {0} or KerτA,B = {0}. Without loss of generality, we assume that

KerτA,B = {0}. Since σlre(A) ∩ σlre(B) ̸=, there is a compact K3 with K3 /∈RanτB,A and

||K3|| < δ/3. Thus we can find a compact K with ||K|| < δ such that

G+K =

(
B K3

A

)
.

A simple computation shows that G+K ∈ (SI).
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